变压器中性点不同接地方式优缺点
变压器中性点接地方式分析与探讨
变压器中性点接地方式分析与探讨[摘要] 概述目前电网中变压器中性点接地方式,进行分析与探讨,提出看法和发展方向[关键词] 中性点方式优点缺点发展方向1.概述中压电网以35KV、10KV、6KV三个电压电压应用较为普遍,其均为中性点非接地系统,但是随着供电网络的发展,特别是采用电缆线路的用户日益增加,使得系统单相接地电容电流不断增加,导致电网内单相接地故障扩展为事故。
我国电气设备设计规范中规定35KV电网如果单相接地电容电流大于10A,3KV —10KV电网如果接地电容电流大于30A,都需要采用中性点经消弧线圈接地方式,而《城市电网规划设计导则》(施行)第59条中规定“35KV、10KV城网,当电缆线路较长、系统电容电流较大时,也可以采用电阻方式”。
因对中压电网中性点接地方式,世界各国也有不同的观点及运行经验,就我国而言,对此在理论界、工程界也是讨论的热点问题,在中压电网改造中,其中性点的接地方式问题,现已引起多方面的关注,面临着发展方向的决策问题。
2.中性点不同的接地方式与供电的可靠性在我国中压电网的供电系统中,大部分为小电流接地系统(即中性点不接地或经消弧线圈或电阻接地系统)。
我国采用经消弧线圈接地方式已运行多年,但近几年有部分区域采用中性点经小电阻接地方式,为此对这两种接地方式作以分析,对于中性点不接地系统,因其是一种过度形式,其随着电网的发展最终将发展到上述两种方式。
2.1中性点经小电阻接地方式世界上以美国为主的部分国家采用中性点经小电阻接地方式原因是美国在历史上过高的估计了弧光接地过电压的危害性而采用此种方式用以泄放线路上的过剩电荷来限制此种过电压。
中性点经小电阻接地方式中,一般选择电阻的值较小。
在系统单相接地时,控制流过接地点的电流在500A左右,也有的控制在100A左右,通过流过接地点的电流来启动零序保护动作,切除故障线路。
其优缺点是:2.1.1.系统单相接地时,健全相电压不升高或生幅较小,对设备绝缘等级要求较低,其耐压水平可以按相电压来选择。
中性点接地方式
1 中性点直接接地中性点直接接地方式,即是将中性点直接接入大地。
该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。
这种大电流接地系统,不装设绝缘监察装置。
中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。
中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。
当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。
中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。
此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。
对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。
其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。
2 中性点不接地中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。
适用于农村10kV架空线路为主的辐射形或树状形的供电网络。
该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。
中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。
中性点不接地方式因其中性点是绝缘的,电网对地电容中储存的能量没有释放通路。
在发生弧光接地时,电弧的反复熄灭与重燃,也是向电容反复充电过程。
由于对地电容中的能量不能释放,造成电压升高,从而产生弧光接地过电压或谐振过电压,其值可达很高的倍数,对设备绝缘造成威胁。
中性点经电阻接地方式的适用范围及优缺点
中性点经电阻接地方式的适用范围及优缺点中性点经电阻接地方式,即是中性点与大地之间接人一定电阻值的电阻。
该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。
中性点经电阻接地的方式有高电阻接地、中电阻接地、低电阻接地等三种方式。
这三种电阻接地方式各有优缺点,要根据具体情况选定。
对于用电容量大且以电缆线路为主的电力系统,其电容电流往往大于30A,如果采用消弧线圈接地方式,不仅调谐工作繁琐困难,故障点不易寻找,而且消弧线圈补偿量增大,使得投资增加,占地面积也随之增大。
电缆线路不宜带故障运行,采用消弧线圈可以带故障运行的优点也不能发挥,因此这样的系统常采用电阻接地。
电阻接地根据系统电容电流的不同,分为高电阻接地和中电阻接地两种情况。
(1)高电阻接地高电阻接地多用于电容电流为10A或稍大的系统内。
接地电阻的电阻值按照流经该电阻上的电流稍大于系统的接地电容电流的原则来选择。
由于接地故障时总的接地电流比较小,对电气设备和线路所产生的机械应力和热效应也比较小,同样也减少人身遭受电击的危险和靠近接地故障点的人员遭受到电弧和闪络的危险,还可以带故障继续运行2h,以便利用这段时间消除接地故障,保持系统运行的可靠性。
(2)中电阻接地中电阻接地多用于电容电流比10A大得多的系统。
接地电阻值的选择要保证继电保护有足够的灵敏度,故障时不致引起过高的过电压,也不要造成对通信线路的干扰。
有些国家对接地电阻值有较明确的规定,例如德国规定在中压电网中,该电阻值按单相接地电流Io为1000~2000A来考虑;法国则规定:以电缆为主的城市电网,按Io为1000A考虑,以架空线为主的郊区电网,则按300A 考虑。
在工业与民用的电力系统中,Io在100A及其以上者,一般可满足继电保护的要求,而且在厂区和建筑小区内,高压电力线和通信线很少会有数千米的平行线路,所以干扰问题一般不予考虑。
中性点接地方式的选择
中性点接地方式的选择在电力系统中,中性点接地方式的选择对于系统的安全性和可靠性具有至关重要的作用。
本文将对中性点接地方式的选择进行分析和说明。
中性点接地方式的定义中性点接地方式是指将三相交流电路的中性点通过低阻抗接地到大地上的一种电气连接方式。
中性点接地的目的是防止设备或电器因为故障出现单相接地而形成的接地故障电流,从而保证系统的可靠性和安全性。
中性点接地的分类根据不同的接地方式,中性点接地可以分为以下三种类型。
TN接地方式TN接地方式是指将供电系统中的变压器的中性点通过低阻抗接地到大地上,同时将所有电器的金属外壳和防护线通过低阻抗地接到变压器的中性点上,从而形成一个可靠的保护和接地性能的系统。
TN接地方式的优点是接地电阻小、接地效果好、适用性广。
不过,TN接地方式要求设备或电器必须有良好的绝缘性能,否则容易发生漏电事故。
IT接地方式IT接地方式是指将供电系统中的变压器的中性点与大地之间通过高阻抗接地,即使发生单相接地故障,也不会形成直接的接地故障电流。
此时,只需要通过漏电继电器进行监测和报警,然后在维修过程中重新启动设备就可以恢复正常。
IT接地方式的优点是可靠性好、操作方便、可大幅降低漏电事故的发生率。
但是IT接地方式要求设备必须有良好的绝缘性能和可靠的故障检测系统,否则容易因故障漏电而引起事故。
TT接地方式TT接地方式是一种间接保护接地方式,其工作原理是将供电系统中的变压器中性点与大地之间通过高阻抗接地,并在设备的金属外壳之间接入一个保护接地电阻,从而保护设备和人员的安全。
TT接地方式的优点是设备的安全性和可靠性非常好,而且适用于大部分的操作条件。
但是,TT接地方式的缺点是接地电阻较大,所以需要对接地电阻进行定期检测、运维和维护。
中性点接地方式的选择在选择中性点接地方式时,应根据具体的操作需求和设备特点进行权衡和选择。
对于需要高可靠性和高自动化的操作条件,应选择IT接地方式,以保障设备和人员的安全性和可靠性。
变压器中性点三种接法浅析
电力系统中性点接地方式是一个很重要的综合性问题,它不仅涉及到电网本身的安全可靠性、过电压绝缘水平的选择,而且对用电设备和人身安全有重要影响。
汤河水库管理局发电厂,原有1号主变为SJL4000/60型,于1984年4月10日正式投入使用,至今使用20多年超过正常使用年限,变损较大,运行得不到安全保障。
于2007年4月更换1号主变为S11—M—4000/66型。
该变压器无论从节能、安全和免维护等方面都远远优于SJL4000/60型变压器。
变压器中性点采用TN—S方式接地。
1 分析对比根据现行的国家标准《低压配电设计规范》(GB50054)的定义,将变压器中性点接法分为三种,即TN、TT、IT三种形式。
其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地)。
第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。
TN系统:电源变压器中性点接地,设备外露部分与中性线相连。
TT系统:电源变压器中性点接地,电气设备外壳采用保护接地。
IT系统:电源变压器中性点不接地(或通过高阻抗接地),而电气设备外壳采用保护接地。
电力系统中通常采用TN系统。
本文就我厂为何选用TN-S方式接地进行对比分析。
电力系统的电源变压器的中性点接地,根据电气设备外露导电部分与系统连接的不同方式又可分三类:即TN-C系统、TN-S系统、TN-CS系统。
下面分别进行介绍。
1.1 TN—C系统其特点是:电源变压器中性点接地,保护零线(PE)与工作零线(N)共用。
(1)它是利用中性点接地系统的中性线(零线)作为故障电流的回流导线,当电气设备相线碰壳,故障电流经零线回到中点,由于短路电流大,因此可采用过电流保护器切断电源。
TN-C系统一般采用零序电流保护;(2)TN-C系统适用于三相负荷基本平衡场合,如果三相负荷不平衡,则PEN线中有不平衡电流,再加一些负荷设备引起的谐波电流也会注入PEN,从而中性线N带电,且极有可能高于50V,它不但使设备机壳带电,对人身造成不安全,而且还无法取得稳定的基准电位;(3)TN-C系统应将PEN线重复接地,其作用是当接零的设备发生相与外壳接触时,可以有效地降低零线对地电压。
变压器中性点接地系统的优缺点
变压器中性点接地系统的优缺点1.缩小了系统的故障电压:中性点接地系统可以降低对地故障时的电压水平,从而减小对设备和人员的损害,提高电气安全性。
2.降低了短路电流:中性点接地系统通过接入合适的中性点接地电阻或感应电抗器,可以限制短路电流的大小,提高系统稳定性。
3.提高了系统可靠性:中性点接地系统可以有效地将故障电流从系统中断开,减少故障引起的整个系统停电。
4.减小了电容电流:中性点接地系统可以将系统的电容电流与地结合,减少电容干扰和浪费。
5.降低了隔离性要求:中性点接地系统因为减小了故障电压水平,所以对设备的绝缘和隔离性要求相对较低。
然而,变压器中性点接地系统也存在一些缺点:1.系统故障点较多:中性点接地系统存在多个接地点,因此容易引发接地故障,并且需要较为复杂的保护装置来检测和隔离这些故障。
2.增加了对保护装置的要求:中性点接地系统需要配备更复杂的保护装置,以便及时检测和隔离故障,并确保系统的安全运行。
3.对人员的电击风险:中性点接地系统中,因为接地点多,导致地电流分布不均,可能存在电击风险,需要加强人员对电压和接地的安全培训。
4.增加了系统的谐波问题:中性点接地系统会引入一定的谐波电流,导致系统中谐波电压的增加,可能会影响到其他设备的正常运行。
5.造成电力浪费:中性点接地系统中,因为将电容电流与地结合,可能会导致一部分无功功率在中性点和地之间流失,造成电力浪费。
综上所述,变压器中性点接地系统的优点包括缩小故障电压、降低短路电流、提高系统可靠性、减小电容电流和降低隔离性要求;而缺点主要体现在系统故障点多、要求更复杂的保护装置、增加对人员的电击风险、谐波问题和电力浪费等方面。
在设计和选择中,需要综合考虑系统的安全性、可靠性和经济性。
变压器中心点接地优缺点
变压器中性点接地与不接地系统1.1 变压器中性点接地系统的优缺点:(1)优点:对电源中性点接地系统,若发生某单相接地,另两相电压不升高,这样可使整个系统绝缘水平降低;另外,单相接地会产生较大的短路电流Is,从而使保护装置(继电器、熔断器等)迅速准确地动作,提高了保护的可*性。
(2)缺点:对电源中性点接地系统,由于单相短路电流Is 很大,开关及电气设备等要选择较大容量,并且还能造成系统不稳定和干扰通讯线路等;1.2 变压器中性点不接地系统的优、缺点:(1)优点:对变压器中性点不接地系统,由于限制了单相接地电流,对通讯的干扰较小;另外单相接地可以运行一段时间,提高了供电的可*性。
(2)缺点:对变压器中性点不接地系统,当一相接地时,另两相对地电压升高倍,易使绝缘薄弱地方击穿,从而造成两相接地短路。
2 各种电压等级供电线路的接地方式(1)在110kv及以上的高压或超高压系统中,一般采用中性点接地系统,其目的是为了降低电气设备绝缘水平,免除由于单相接地后继续运行而形成的不对称性。
(2)工厂供电系统采用电压在1kv~35kv,一般为中性点不接地系统,因工厂供电距离短,对地电容小(Xc 大),单相接地电流小,这样可以运行一段时间,提高了系统的稳定性和供电可*性,对通讯干扰小等优点。
在煤矿井下,我国、西德等国禁止中性点接地,其主要目的是为安全,减小了单相接地电流,但即使小的单相接地电流,煤矿井下也不允许存在,因此在煤矿井下,安装有检漏继电器,就是当电网对地绝缘阻抗降低到危险值或人触及一相导体或电网一相接地时,能很快地切断电源,防止触电、漏电事故,提前切断故障设备。
(3)1kv以下的供电系统(380/220伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。
3 电气设备的保护接地3.1 保护接地将电气设备的金属外壳通过接地线与接地体相接,其原理是分流原理(如图1)。
220kV变电站主变压器中性点的接地方式
220kV变电站主变压器中性点的接地方式摘要:随着电力工业的发展和超高压输电线路的建设以及城市电网改造的大规模进行,面临着如何选择变压器中性点接地的安全问题。
电网中性点接地是一个综合的,系统的问题,既涉及到电网的安全可靠性,也涉及电网的经济性,中性点接地方式之家影响到系统电压水平,继电保护方式,系统的可靠运行。
如何正确选择接地方式,关系到系统运行的可靠性和设备的安全性。
基于此,本文对220kV变电站主变压器中性点的接地方式进行分析探讨。
关键词:220kV变电站;主变压器;中性点;接地方式随着我国经济的不断增长,电力系统的建设越来越快,在220kV和更高电压等级的电网系统中,变压器是生产电力的主要设备,具有中性点的绝缘水平比三相端部出线电压等级低的特点。
但在一些变压器中性点接地的电力系统中,接地短路故障时有发生,严重影响了变压器的中性点绝缘。
因此,如何对大型变压器实施中性点保护已成为人们需要解决的问题。
1变压器中性点接地方式优缺点1.1变压器中性点接地系统的优缺点对于电源中性点接地系统,如果发生某单相接地,另两相电压不变,这样会使整个系统的绝缘水平降低,此外,单相接地还会产生较大的短路电流,使保护装置迅速准确动作,从而提高保护的可靠性;电源中性点接地系统的缺点是单相短路电流很大,且还能造成系统不稳定和干扰通讯线路等,因此,要选择容量较大的开关和电气设备等。
1.2变压器中性点不接地系统的优缺点对于变压器中性点不接地系统,由于限制了单相接地电流,所以,通讯的干扰较小,提高了供电的可靠性;变压器中性点不接地系统的缺点是,当一相接地时,另两相对地电压升高1倍,易使绝缘薄弱地方击穿,进而造成两相接地短路。
2变压器中性点接地方式分析中性点直接接地方式又称大接地电流系统,其优点是一相接地时其它两相电压不升高,不存在间歇电弧造成的过电压危险。
因此,可选择额定电压低的避雷器作为系统大气过电压的保护,可降低系统的绝缘水平。
中性点经电阻接地方式适用范围及优缺点
中性点经电阻接地方式适用范围及优缺点引言在电力系统中,中性点经过电阻接地是一种常见的接地方式。
该方式通过在中性点接入一定的电阻,以将电网中的故障电流引导到地面。
本文将讨论中性点经电阻接地方式的适用范围及其优缺点。
适用范围中性点经电阻接地方式适用于低、中压电力系统,通常是在配电系统中使用。
以下是其主要适用范围的描述:1.低电压系统:中性点经电阻接地方式在低电压系统中应用广泛。
由于低压系统的短路电流较小,接地电阻通常较大,可以有效地限制故障电流的大小。
2.中电压系统:在中电压系统中,中性点经电阻接地方式也是一种常用的接地方式。
虽然中电压系统的短路电流较高,但通过选择合适的接地电阻值,仍然可以实现可靠的故障电流引导。
3.配电系统:中性点经电阻接地方式特别适用于配电系统。
配电系统通常包含大量的变压器和负载,电流较小。
中性点经电阻接地方式能够为这些系统提供经济实用的接地方法。
优点中性点经电阻接地方式具有以下优点:1.安全性:中性点经电阻接地方式可以有效地避免电网中出现的接地故障对人员和设备的危害。
通过引导故障电流到地面,可以防止电压过高对系统的进一步损坏。
2.经济性:与其他接地方式相比,中性点经电阻接地方式具有一定的经济性。
接地电阻的选择可以根据实际需求进行,因此可以满足不同系统的接地要求,同时减少了成本。
3.灵活性:中性点经电阻接地方式具有较高的灵活性。
电阻值可以根据实际需求进行调整,以满足不同系统的接地要求。
这也使得它更易于应用于各种不同的电力系统。
缺点中性点经电阻接地方式也存在一些缺点,需注意以下方面:1.效果受限:中性点经电阻接地方式的效果受限于接地电阻的大小。
如果选择的电阻值过大,可能导致故障电流无法及时引导到地面,影响系统的安全性。
2.部分故障电流仍在系统中循环:由于接地电阻的存在,部分故障电流仍然会在系统中循环,导致接地系统的功耗增加。
这可能对系统的运行效率和能源消耗产生一定影响。
结论中性点经电阻接地方式在低、中压电力系统中应用广泛,尤其适用于配电系统。
变压器中性点接地与不接地
变压器中性点接地与不接地系统1.1 变压器中性点接地系统的优缺点:(1)优点:对电源中性点接地系统,若发生某单相接地,另两相电压不升高,这样可使整个系统绝缘水平降低;另外,单相接地会产生较大的短路电流Is,从而使保护装置(继电器、熔断器等)迅速准确地动作,提高了保护的可*性。
(2)缺点:对电源中性点接地系统,由于单相短路电流Is 很大,开关及电气设备等要选择较大容量,并且还能造成系统不稳定和干扰通讯线路等;1.2 变压器中性点不接地系统的优、缺点:(1)优点:对变压器中性点不接地系统,由于限制了单相接地电流,对通讯的干扰较小;另外单相接地可以运行一段时间,提高了供电的可*性。
(2)缺点:对变压器中性点不接地系统,当一相接地时,另两相对地电压升高倍,易使绝缘薄弱地方击穿,从而造成两相接地短路。
2 各种电压等级供电线路的接地方式(1)在110kv及以上的高压或超高压系统中,一般采用中性点接地系统,其目的是为了降低电气设备绝缘水平,免除由于单相接地后继续运行而形成的不对称性。
(2)工厂供电系统采用电压在1kv~35kv,一般为中性点不接地系统,因工厂供电距离短,对地电容小(Xc 大),单相接地电流小,这样可以运行一段时间,提高了系统的稳定性和供电可*性,对通讯干扰小等优点。
在煤矿井下,我国、西德等国禁止中性点接地,其主要目的是为安全,减小了单相接地电流,但即使小的单相接地电流,煤矿井下也不允许存在,因此在煤矿井下,安装有检漏继电器,就是当电网对地绝缘阻抗降低到危险值或人触及一相导体或电网一相接地时,能很快地切断电源,防止触电、漏电事故,提前切断故障设备。
(3)1kv以下的供电系统(380/220伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。
3 电气设备的保护接地 3.1 保护接地将电气设备的金属外壳通过接地线与接地体相接,其原理是分流原理(如图1)。
主变压器和发电机的中性点接地方式
系统过电压水平较低,但单相接地 故障电流大,需要装设自动选线装 置。
经消弧线圈接地系统
系统特点
中性点经消弧线圈接地,系统发 生单相接地故障时,消弧线圈产 生的感性电流补偿接地点的容性
电流。
适用范围
适用于35kV及以下电网,特别 是对接地故障电流有严格限制的
场所。
优缺点
减小了接地故障电流,降低了弧 光接地过电压的概率,但需要装
系统特点
优缺点
中性点不接地或经高阻抗接地,系统 发生单相接地故障时,故障电流很小。
系统结构简单,供电连续性好,但系 统过电压水平较高,需要装设绝缘监 测装置。
适用范围
适用于3~10kV电网,特别是供电连 续性要求较高、接地故障对设备影响 不大的场所。Leabharlann 03 发电机中性点接地方式
发电机中性点直接接地
考虑当地供电条件及环境因素
当地供电条件包括电网电压、频率、谐波等,这 些因素会影响中性点接地方式的选择。
环境因素如气候、海拔、地质等也会对中性点接 地方式产生影响,需进行综合考虑。
在选择接地方式时,应充分了解当地供电条件和 环境因素,并进行必要的现场测试和评估。
遵循相关标准规范,确保安全可靠
中性点接地方式的选择应遵循国家和行业相关标准规范,如《电力变压 器 第1部分:总则》、《旋转电机 定额和性能》等。
主变压器和发电机的中性点接地方 式
contents
目录
• 中性点接地基本概念与重要性 • 主变压器中性点接地方式 • 发电机中性点接地方式 • 中性点接地方式对系统运行影响 • 选择合适中性点接地方式原则与建议
01 中性点接地基本概念与重 要性
中性点定义及作用
中性点定义
配电网中性点不同接地方式的优缺点参考文本
配电网中性点不同接地方式的优缺点参考文本In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of EachLink To Achieve Risk Control And Planning某某管理中心XX年XX月配电网中性点不同接地方式的优缺点参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。
配电网中性点与参考地的电气连接方式,按运行需要可将中性点不接地、经消弧线圈接地、经(高、中、低值)电阻器接地、经低值电抗器接地及直接接地等。
这些中性点接地方式各具独有的优缺点。
1 配电网中性点不接地的优缺点配电网中性点不接地是指中性点没有人为与大地连接。
事实上,这样的配电网是通过电网对地电容接地。
中性点不接地系统主要优点:电网发生单相接地故障时稳态工频电流小。
这样·如雷击绝缘闪络瞬时故障可自动清除,无需跳闸。
·如金属性接地故障,可单相接地运行,改善了电网不间断供电,提高了供电可靠性。
·接地电流小,降低了地电位升高。
减小了跨步电压和接触电压。
减小了对信息系统的干扰。
减小了对低压网的反击等。
经济方面:节省了接地设备,接地系统投资少。
中性点不接地系统的缺点:a与中性点电阻器接地系统相比,产生的过电压高(弧光过电压和铁磁谐振过电压等),对弱绝缘击穿概率大。
b在间歇性电弧接地故障时产生的高频振荡电流大,达数百安培,可能引发相间短路。
中性点不同接地方式的比较
电力系统中性点接地方式是一个涉及电力系统许多方面的综合性技术课题,它不仅涉及到电网本身的安全可靠性、过电压绝缘水平的选择,而且对通讯干扰、人身安全有重要影响。
1中性点不同接地方式的比较(1)中性点不接地的配电网。
中性点不接地方式,即中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省,适用于农村10kV架空线路长的辐射形或树状形的供电网络。
该接地方式在运行中,若发生单相接地故障,流过故障点的电流仅为电网对地的电容电流,其值很小,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,避免故障发展为两相短路,而造成停电事故。
中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动消弧,非故障相电压升高不大,不会破坏系统的对称性,可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。
(2)中性点经传统消弧线圈接地。
采用中性点经消弧线圈接地方式,即在中性点和大地之间接入一个电感消弧线圈,在系统发生单相接地故障时,利用消弧线圈的电感电流对接地电容电流进行补偿,使流过接地点的电流减小到能自行熄弧范围,其特点是线路发生单相接地时,按规程规定电网可带单相接地故障运行2h。
对于中压电网,因接地电流得到补偿,单相接地故障并不发展为相间故障,因此中性点经消弧线圈接地方式的供电可靠性,大大的高于中性点经小电阻接地方式。
(3)中性点经电阻接地。
中性点经电阻接地方式,即中性点与大地之间接入一定阻值的电阻。
该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。
在中性点经电阻接地方式中,一般选择电阻的阻值较小,在系统单相接地时,控制流过接地点的电流在500A左右,也有的控制在100A左右,通过流过接地点的电流来启动零序保护动作,切除故障线路。
2自动跟踪补偿消弧线圈自动跟踪补偿消弧线圈按改变电感方法的不同,大致可分为调匝式、调气隙式、调容式、调直流偏磁式、可控硅调节式等。
中性点接地方式6
应选择下列哪项数值?
(A)22kVA
(B)25kVA
(C)30kVA (D)28kVA
答案:[ C ] 2006年考题
解答过程:
根据电气工程电气设计手册(1)80页(3-1)公式
又根据《导体和电器选择设计技术规定》 DL/T5222-2005 第 18.1.4,式
18.1.4 消弧线圈的补偿容量,
b)装在电网的变压器中性点的消弧线圈,以及具有直配线的发电机 中性点的消弧线圈应采用过补偿方式。对于采用单元连接的发电机中 性点的消弧线圈,宜采用欠补偿方式。 C)系统中消弧线圈装设地点应符合下列要求:
应保证系统在任何运行方式下,大部分电网不得失去消弧线圈的 补偿。不应将多台消弧线圈集中安装在一处,并因避免电网仅装一台 消弧线圈。
18.1.4 消弧线圈的补偿容量,可按下式计算
Q
KIC
UN 3
= 1.35 × 22.2 ×35/1.732= 605.6KVA
其中 k 为补偿系数,过补偿取 1.35。k 的取值可根据DL/T5222-2005 第
18.1.6 条:装在电网变压器中性点的消弧线圈,以及具有直配线的发电机
中性点的消弧线圈应采用过补偿方式。 故选 D。
1 发电机及变压器中性点的接地方式
1.1 电力系统中性点接地方式
电力系统中性点的接地方式主要分两大类:中性点非直接接地和 中性点直接接地。
1.1.1 中性点非直接接地。
中性点非直接接地可分为三种形式: (1)中性点不接地。中性点不接地方式最简单,单相接地时允
许带故障运行两小时,供电连续性好,接地电流仅为线路及设备 的电容电流。但由于过电压水平高,要求有较高的绝缘水平,不 宜用于110kV及以上电网。在6-63kV电网中,则采用中性点不接地 方式,但电容电流不能超过允许值,否则接地电弧不易自熄,易 产生较高弧光间歇接地过电压,波及整个电网。
变压器中性点4种接线方式分析终极总结
流,即 1.732*1.732I=3I)。
正常运行情况下,各相对地电容电流的数值相等而相位 相差 120°,其向量和等于零,地中没有电容电流通过,中 性点对地电位为零,即中性点与地电位一致。这时中性点接 地与否对各相对地电压没有任何影响。可是,当中性点不接 地系统的各相对地电容不相等时,即使在正常运行状态下, 中性点的对地电位便不再是零,通常此情况称为中性点位移 即中性点不再是地电位,这种现象的产生,多是由于架空线 路排列不对称而又换位不完全的缘故造成的。一般情况位移 电压不超过电源电压的 5%,对运行的影响不大。
பைடு நூலகம்
地,并引出地线入户和相线构成回路就是咱们民用的 220V 电压。
在拉合变压器的主断路器时,要将变压器中性点接地, 是因为如果拉合变压器的主断路器时,发生三相未能同时拉 开或合上,会产生过电压现象,变压器中性点接地就能将这 一过电压导入大地,保证主变不被过电压烧毁(也叫击穿)。
优缺点: 优点:绝缘方面减少了投资;因为在发生单相接地时, 中性点电压为零,非故障相电压不升高,设备和线路的对地 电压可以按相电压设计,从而降低了造价,有很大经济价值, 因为超高压电气设备的绝缘是影响设计和制造的关键。 缺点:(1)供电可靠性较低:因为中性点直接接地系 统发生单相接地时,短路电流很大,须断开故障线路,中断 对用户的供电。故供电可靠性较低。为了提高供电的可靠性, 在中性点直接接地系统的线路上,广泛装设自动重合闸装 置,当发生单相短路时,继电保护将电路断开,经一段时间 后,自动重合闸装置将电路重新合上。如果单相短路是暂时 性的,线路接通后对用户恢复供电。如果单相短路是永久性 的,继电保护将再一次断开电路。据统计,有 70%以上的短 路是暂时性的,因此,重合闸的成功率在 70%以上。 (2)单相短路电流很大:中性点直接接地系统发生单 相接地时,相当于将电源的正负极直接短路,故短路电流很
变压器中性点的接地方式有几种中性点套管头上平时是否有电压
1.变压器中性点的接地方式有几种?中性点套管头上平时是否有电压?
现代电力系统中变压器中性点的接地方式分为三种:中性点不接地;中性点经电阻或消弧线圈接地;中性点直接接地。
在中性点不接地系统中,当发生单相金属性接地时,三相系统的对称性不被破坏,在某些条件下,系统可以照常运行,但是其他两相对地电压升高到线电压水平。
当系统容量较大,线路较长时,接地电弧不能自行熄灭。
为了避免电弧过电压的发生,可采用经消弧线圈接地的方式。
在单相接地时,消弧线圈中的感性电流能够补偿单相接地的电容电流。
既可保持中性点不接地方式的优点,又可避免产生接地电弧的过电压。
随着电力系统电压等级的增高和系统容量的扩大,设备绝缘费用占的比重越来越大,采用中性点直接接地方式,可以降低绝缘的投资。
我国110、220、330kV及500kV系统中性点皆直接接地。
380V的低压系统,早期为方便的抽取相电压,也直接接地;现在新建的电厂,为保证供电可靠性,380V 低压系统多采用经高阻接地(照明变仍采用中性点直接接地方式)。
关于变压器中性点套管上正常运行时有没有电压问题,这要具体情况具体分析。
理论上讲,当电力系统正常运行时,如果三相对称,则无论中性点接地采用何种方式,中性点的电压均等于零。
但是,实际上三相输电线对地电容不可能完全相等,如果不换位或换位不当,特别是在导线垂直排列的情况下,对于不接地系统和经消弧线圈接地系统,由于三相不对称,变压器的中性点在正常运行时会有对地电压。
在消弧线圈接地系统,还和补偿程度有关。
对于直接接地系统,中性点电位固定为地电位,对地电压应为零。
变压器中性点接地方式优缺点的分析
变压器中性点接地方式优缺点的分析1.零序接地:零序接地指的是变压器的中性点通过零序电流予以接地,具体实施方式有星形接地和虚地法等。
零序接地的优点如下:(1)对系统的短路电流影响小。
由于变压器中性点接地,零序电流只有在发生相间短路时才会通过中性点,其他时候零序电流几乎为零,对系统的短路电流影响较小。
(2)提高系统的可靠性。
零序接地可以减小故障电流的大小,降低设备的故障损坏率,提高系统的可靠性。
(3)容错能力强。
当发生相间短路时,系统可以自动切断故障线路,减少对其他正常运行的线路的影响。
(4)适用范围广。
零序接地可以应用于不同电压等级和不同容量的变压器系统,具有较大的适用范围。
零序接地的缺点如下:(1)对设备安全影响大。
相间短路时,会形成高电压的电压极降。
如果设备绝缘不良,可能导致设备击穿,造成设备损坏。
(2)对故障的定位困难。
由于零序电流对地进行了接地,故障相地电流难以获得,因此对故障的定位会有一定的困难。
2.高阻抗接地:高阻抗接地指的是通过接地电阻来限制故障电流的流动。
高阻抗接地的优点如下:(1)降低设备损坏率。
高阻抗接地限制了故障电流的流动,减小了设备损坏的可能性。
(2)减少对系统的干扰。
高阻抗接地可以减少电网因短路引起的干扰,提高电网的稳定性和可靠性。
(3)提供多重故障电流路径。
高阻抗接地通过接地电阻的方式为故障电流提供多重路径,提高了设备的容错能力。
高阻抗接地的缺点如下:(1)设备造价较高。
高阻抗接地需要设置接地电阻器和监测装置,增加了设备的造价。
(2)需要额外的维护工作。
高阻抗接地需要定期检查接地电阻器的工作状态,进行维护和保养。
3.低阻抗接地:低阻抗接地指的是变压器中性点通过低阻抗接地装置进行接地。
低阻抗接地的优点如下:(1)对设备保护较好。
故障发生时,低阻抗接地可以迅速将故障电流引走,保护设备不受损坏。
(2)对故障定位有利。
低阻抗接地可以通过检测故障电流的幅值和相位来定位故障点,提高了故障定位的准确性。
变压器中性点接地方式优缺点的分析
接地变压器的作用我国电力系统中,的6kV、10kV、35kV电网中一般都采用中性点不接地的运行方式.电网中主变压器配电电压侧一般为三角形接法,没有可供接地电阻的中性点。
当中性点不接地系统发生单相接地故障时,线电压三角形仍然保持对称,对用户继续工作影响不大,并且电容电流比较小(小于10A)时,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。
但是随着电力事业日益的壮大和发展,这中简单的方式已不在满足现在的需求,现在城市电网中电缆电路的增多,电容电流越来越大(超过10A),此时接地电弧不能可靠熄灭,就会产生以下后果;1),单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿;造成重大损失。
2),由于持续电弧造成空气的离解,破坏了周围空气的绝缘,容易发生相间短路;3),产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸;这些后果将严重威胁电网设备的绝缘,危及电网的安全运行.为了防止上述事故的发生,为系统提供足够的零序电流和零序电压,使接地保护可靠动作,需人为建立一个中性点,以便在中性点接入接地电阻。
为了解决这样的办法。
接地变压器(简称接地变)就在这样的情况下产生了。
接地变就是人为制造了一个中性点接地电阻,它的接地电阻一般很小(一般要求小于5欧)。
另外接地变有电磁特性,对正序、负序电流呈高阻抗,绕组中只流过很小的励磁电流.由于每个铁心柱上两段绕组绕向相反,同心柱上两绕组流过相等的零序电流呈现低阻抗,零序电流在绕组上的压降很小。
也既当系统发生接地故障时,在绕组中将流过正序、负序和零序电流。
该绕组对正序和负序电流呈现高阻抗,而对零序电流来说,由于在同一相的两绕组反极性串联,其感应电动势大小相等,方向相反,正好相互抵消,因此呈低阻抗。
接地变的工作状态,由于很多接地变只提供中性点接地小电阻,而不需带负载。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器中性点不同接地方式优缺点
1、变压器中性点接地系统的优缺点:
(1)优点:对电源中性点接地系统,若发生某单相接地,另两相电压不升高,这样可使整个系统绝缘水平降低;另外,单相接地会产生较大的短路电流Is ,从而使保护装置(继电器、熔断器等)迅速准确地动作,提高了保护的可靠性。
(2)缺点:对电源中性点接地系统,由于单相短路电流Is 很大,开关及电气设备等要选择较大容量,并且还能造成系统不稳定和干扰通讯线路等;
2、变压器中性点不接地系统的优、缺点:
(1)优点:对变压器中性点不接地系统,由于限制了单相接地电流,对通讯的干扰较小;另外单相接地可以运行一段时间,提高了供电的可靠性。
(2)缺点:对变压器中性点不接地系统,当一相接地时,另两相对地电压升高倍,易使绝缘薄弱地方击穿,从而造成两相接地短路。
3、各种电压等级供电线路的接地方式:
(1)在110kv及以上的高压或超高压系统中,一般采用中性点接地系统,其目的是为了降低电气设备绝缘水平,免除由于单相接地后继续运行而形成的不对称性。
(2)工厂供电系统采用电压在1kv~35kv,一般为中性点不接地系统,因工厂供电距离短,对地电容小(Xc大),单相接地电流小,这样可以运行一段时间,提高了系统的稳定性和供电可靠性,对通讯干扰小等优点。
在煤矿井下,我国、西德等国禁止中性点接地,其主要目的是为安全,减小了单相接地电流,但即使小的单相接地电流,煤矿井下也不允许存在,因此在煤矿井下,安装有检漏继电器,就是当电网对地绝缘阻抗降低到危险值或人触及一相导体或电网一相接地时,能很快地切断电源,防止触电、漏电事故,提前切断故障设备。
(3)1kv以下的供电系统(380/220伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。