2020年中考数学试题(解析版)

合集下载

黑龙江省绥化市2020年中考数学试题(Word版,含答案与解析)

黑龙江省绥化市2020年中考数学试题(Word版,含答案与解析)

黑龙江省绥化市2020年中考数学试卷一、单选题(共10题;共20分)1.化简|√2−3|的结果正确的是()A. √2−3B. −√2−3C. √2+3D. 3−√2【答案】 D【考点】实数的绝对值【解析】【解答】解:|√2−3|=3−√2;故答案为:D.【分析】由绝对值的意义,化简即可得到答案.2.两个长方体按图示方式摆放,其主视图是()A. B. C. D.【答案】C【考点】简单组合体的三视图【解析】【解答】解:由图可得,几何体的主视图是:.故答案为:C.【分析】依据从该几何体的正面看到的图形,即可得到主视图.3.下列计算正确的是()A. b2⋅b3=b6B. (a2)3=a6C. −a2÷a=aD. (a3)2⋅a=a6【答案】B【考点】同底数幂的乘法,同底数幂的除法,幂的乘方【解析】【解答】解:A、b2⋅b3=b5,A不符合题意;B、(a2)3=a6,B符合题意;C 、 −a 2÷a =−a ,C 不符合题意;D 、 (a 3)2⋅a =a 6⋅a =a 7 ,D 不符合题意,故答案为:B .【分析】根据同底数幂的乘法法则、幂的乘方法则、同底数幂的的除法法则计算即可. 4.下列图形是轴对称图形而不是..中心对称图形的是( )A. B. C. D.【答案】 C【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】A .是轴对称图形,也是中心对称图形,故本选项不符合题意;B .是轴对称图形,也是中心对称图形,故本选项不符合题意;C .是轴对称图形,但不是中心对称图形,故本选项符合题意;D .是轴对称图形,也是中心对称图形,故本选项不符合题意;故答案为:C .【分析】根据轴对称图形和中心对称图形的概念对各个选项判断即可解答.5.下列等式成立的是( )A. √16=±4B. √−83=2C. −a√1a=√−a D. −√64=−8 【答案】 D【考点】算术平方根,立方根及开立方,二次根式的性质与化简【解析】【解答】解:A. √16=4 ,本选项不成立;B. √−83=−2 ,本选项不成立;C. −a√1a =−a ·√a a= −√a ,本选项不成立; D. −√64=−8 ,本选项成立.故答案为:D.【分析】根据算术平方根、立方根、二次根式的化简等概念分别判断.6.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车 x 辆,37座客车 y 辆,根据题意可列出方程组( )A. {x +y =1049x +37y =466B. {x +y =1037x +49y =466C. {x +y =46649x +37y =10D. {x +y =46637x +49y =10【答案】 A【考点】二元一次方程组的实际应用-鸡兔同笼问题【解析】【解答】解 :设49座客车 x 辆,37座客车 y 辆,根据题意得 :{x +y =1049x +37y =466) 故答案为:A 。

2020年吉林省长春市中考数学试题(解析版)

2020年吉林省长春市中考数学试题(解析版)

2020年吉林省长春市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)如图,数轴上被墨水遮盖的数可能为()A.﹣1B.﹣1.5C.﹣3D.﹣4.22.(3分)为了增加青少年的校外教育活动场所,长春市将建成面积约为79000平方米的新少年宫,预计2020年12月正式投入使用.79000这个数用科学记数法表示为()A.79×103B.7.9×104C.0.79×105D.7.9×1053.(3分)下列图形是四棱柱的侧面展开图的是()A.B.C.D.4.(3分)不等式x+2≥3的解集在数轴上表示正确的是()A.B.C.D.5.(3分)比萨斜塔是意大利的著名建筑,其示意图如图所示,设塔顶中心点为点B,塔身中心线AB与垂直中心线AC的夹角为∠A,过点B向垂直中心线AC引垂线,垂足为点D.通过测量可得AB、BD、AD的长度,利用测量所得的数据计算∠A的三角函数值,进而可求∠A的大小.下列关系式正确的是()A.sin A=B.cos A=C.tan A=D.sin A=6.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,∠BDC=20°,则∠AOC的大小为()A.40°B.140°C.160°D.170°7.(3分)如图,在△ABC中,∠BAC=90°,AB>AC.按下列步骤作图:①分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;②作直线MN,与边AB相交于点D,连结CD.下列说法不一定正确的是()A.∠BDN=∠CDN B.∠ADC=2∠BC.∠ACD=∠DCB D.2∠B+∠ACD=90°8.(3分)如图,在平面直角坐标系中,点A的坐标为(3,2),AB⊥x轴于点B,点C是线段OB上的点,连结AC.点P在线段AC上,且AP=2PC,函数y=(x>0)的图象经过点P.当点C在线段OB上运动时,k的取值范围是()A.0<k≤2B.≤k≤3C.≤k≤2D.≤k≤4二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m张成人票和n张儿童票,则共需花费元.10.(3分)分解因式:a2﹣4=.11.(3分)若关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,则实数m的值为.12.(3分)正五边形的一个外角的大小为度.13.(3分)如图,在△ABC中,∠ABC=90°,AB=BC=2,以点C为圆心,线段CA的长为半径作,交CB的延长线于点D,则阴影部分的面积为(结果保留π).14.(3分)如图,在平面直角坐标系中,点A的坐标为(0,2),点B的坐标为(4,2).若抛物线y=﹣(x﹣h)2+k(h、k为常数)与线段AB交于C、D两点,且CD=AB,则k的值为.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(a﹣3)2+2(3a﹣1),其中a=.16.(6分)现有三张不透明的卡片,其中两张卡片的正面图案为“神舟首飞”,第三张卡片的正面图案为“保卫和平”,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的图案都是“保卫和平”的概率.(图案为“神舟首飞”的两张卡片分别记为A1、A2,图案为“保卫和平”的卡片记为B)17.(6分)图①、图②、图③均是3×3的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,线段AB的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求以AB为边画△ABC.要求:(1)在图①中画一个钝角三角形,在图②中画一个直角三角形,在图③中画一个锐角三角形;(2)三个图中所画的三角形的面积均不相等;(3)点C在格点上.18.(7分)在国家精准扶贫的政策下,某村企生产的黑木耳获得了国家绿色食品标准认证,绿标的认证,使该村企的黑木耳在市场上更有竞争力,今年每斤黑木耳的售价比去年增加了20元.预计今年的销量是去年的3倍,年销售额为360万元.已知去年的年销售额为80万元,问该村企去年黑木耳的年销量为多少万斤?19.(7分)如图,在▱ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为点E、F.(1)求证:OE=OF.(2)若BE=5,OF=2,求tan∠OBE的值.20.(7分)空气质量按照空气质量指数大小分为六个级别,分别为:一级优、二级良、三级轻度污染、四级中度污染、五级重度污染、六级严重污染.级别越高,说明污染的情况越严重,对人体的健康危害也就越大.空气质量达到一级优或二级良的天气为达标天气,如图是长春市从2014年到2019年的空气质量级别天数的统计图表.2014﹣2019年长春市空气质量级别天数统计表优良轻度污染中度污染重度污染严重污染空气质量级别天数年份201430215732813620154319387191582016512375815502017652116216922018123202390102019126180381650根据上面的统计图表回答下列问题:(1)长春市从2014年到2019年空气质量为“达标”的天数最多的是年.(2)长春市从2014年到2019年空气质量为“重度污染”的天数的中位数为天,平均数为天.(3)长春市从2015年到2019年,和前一年相比,空气质量为“优”的天数增加最多的是年,这一年空气质量为“优”的天数的年增长率约为(精确到1%).(空气质量为“优”的天数的增长率=×100%)(4)你认为长春市从2014年到2019年哪一年的空气质量好?请说明理由.21.(8分)已知A、B两地之间有一条长240千米的公路.甲车从A地出发匀速开往B地,甲车出发两小时后,乙车从B地出发匀速开往A地,两车同时到达各自的目的地.两车行驶的路程之和y(千米)与甲车行驶的时间x(时)之间的函数关系如图所示.(1)甲车的速度为千米/时,a的值为.(2)求乙车出发后,y与x之间的函数关系式.(3)当甲、乙两车相距100千米时,求甲车行驶的时间.22.(9分)【教材呈现】如图是华师版八年级下册数学教材第121页的部分内容.1.把一张矩形纸片如图那样折一下,就可以裁出正方形纸片,为什么?【问题解决】如图①,已知矩形纸片ABCD(AB>AD),将矩形纸片沿过点D的直线折叠,使点A落在边DC上,点A的对应点为A′,折痕为DE,点E在AB上.求证:四边形AEA′D是正方形.【规律探索】由【问题解决】可知,图①中的△A′DE为等腰三角形.现将图①中的点A′沿DC向右平移至点Q处(点Q在点C的左侧),如图②,折痕为PF,点F在DC 上,点P在AB上,那么△PQF还是等腰三角形吗?请说明理由.【结论应用】在图②中,当QC=QP时,将矩形纸片继续折叠如图③,使点C与点P 重合,折痕为QG,点G在AB上.要使四边形PGQF为菱形,则=.23.(10分)如图①,在△ABC中,∠ABC=90°,AB=4,BC=3.点P从点A出发,沿折线AB﹣BC以每秒5个单位长度的速度向点C运动,同时点D从点C出发,沿CA以每秒2个单位长度的速度向点A运动,点P到达点C时,点P、D同时停止运动.当点P不与点A、C重合时,作点P关于直线AC的对称点Q,连结PQ交AC于点E,连结DP、DQ.设点P的运动时间为t秒.(1)当点P与点B重合时,求t的值.(2)用含t的代数式表示线段CE的长.(3)当△PDQ为锐角三角形时,求t的取值范围.(4)如图②,取PD的中点M,连结QM.当直线QM与△ABC的一条直角边平行时,直接写出t的值.24.(12分)在平面直角坐标系中,函数y=x2﹣2ax﹣1(a为常数)的图象与y轴交于点A.(1)求点A的坐标.(2)当此函数图象经过点(1,2)时,求此函数的表达式,并写出函数值y随x的增大而增大时x的取值范围.(3)当x≤0时,若函数y=x2﹣2ax﹣1(a为常数)的图象的最低点到直线y=2a的距离为2,求a的值.(4)设a<0,Rt△EFG三个顶点的坐标分别为E(﹣1,﹣1)、F(﹣1,a﹣1)、G(0,a﹣1).当函数y=x2﹣2ax﹣1(a为常数)的图象与△EFG的直角边有交点时,交点记为点P.过点P作y轴的垂线,与此函数图象的另一个交点为P′(P′与P不重合),过点A作y轴的垂线,与此函数图象的另一个交点为A′.若AA′=2PP′,直接写出a的值.2020年吉林省长春市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)如图,数轴上被墨水遮盖的数可能为()A.﹣1B.﹣1.5C.﹣3D.﹣4.2【分析】由数轴上数的特征可得该数的取值范围,再进行判断即可.【解答】解:由数轴上墨迹的位置可知,该数大于﹣4,且小于﹣2,因此备选项中,只有选项C符合题意,故选:C.2.(3分)为了增加青少年的校外教育活动场所,长春市将建成面积约为79000平方米的新少年宫,预计2020年12月正式投入使用.79000这个数用科学记数法表示为()A.79×103B.7.9×104C.0.79×105D.7.9×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:79000这个数用科学记数法表示为:7.9×104.故选:B.3.(3分)下列图形是四棱柱的侧面展开图的是()A.B.C.D.【分析】根据四棱柱的侧面展开图是矩形而且有4条棱进行解答即可.【解答】解:由四棱柱的特点可知:四棱柱的侧面展开图是矩形而且有4条棱.故选:A.4.(3分)不等式x+2≥3的解集在数轴上表示正确的是()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、合并同类项可得.【解答】解:x≥3﹣2,x≥1,故选:D.5.(3分)比萨斜塔是意大利的著名建筑,其示意图如图所示,设塔顶中心点为点B,塔身中心线AB与垂直中心线AC的夹角为∠A,过点B向垂直中心线AC引垂线,垂足为点D.通过测量可得AB、BD、AD的长度,利用测量所得的数据计算∠A的三角函数值,进而可求∠A的大小.下列关系式正确的是()A.sin A=B.cos A=C.tan A=D.sin A=【分析】根据直角三角形的边角关系,即锐角三角函数逐个进行判断即可.【解答】解:在Rt△ABD中,∠ADB=90°,则sin A=,cos A=,tan A=,因此选项A正确,选项B、C、D不正确;故选:A.6.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,∠BDC=20°,则∠AOC的大小为()A.40°B.140°C.160°D.170°【分析】先利用圆周角定理得到∠BOC=40°,然后根据邻补角的定义计算出∠AOC的度数.【解答】解:∵∠BOC=2∠BDC=2×20°=40°,∴∠AOC=180°﹣40°=140°.故选:B.7.(3分)如图,在△ABC中,∠BAC=90°,AB>AC.按下列步骤作图:①分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;②作直线MN,与边AB相交于点D,连结CD.下列说法不一定正确的是()A.∠BDN=∠CDN B.∠ADC=2∠BC.∠ACD=∠DCB D.2∠B+∠ACD=90°【分析】利用线段的垂直平分线的性质以及三角形内角和定理一一判断即可.【解答】解:由作图可知,MN垂直平分线段BC,∴DB=DC,MN⊥BC,∴∠BDN=∠CDN,∠DBC=∠DCB,∴∠ADC=∠B+∠DCB=2∠B,∵∠A=90°,∴∠ADC+∠ACD=90°,∴2∠B+∠ACD=90°,故选项A,B,D正确,故选:C.8.(3分)如图,在平面直角坐标系中,点A的坐标为(3,2),AB⊥x轴于点B,点C是线段OB上的点,连结AC.点P在线段AC上,且AP=2PC,函数y=(x>0)的图象经过点P.当点C在线段OB上运动时,k的取值范围是()A.0<k≤2B.≤k≤3C.≤k≤2D.≤k≤4【分析】设C(c,0)(0≤c≤3),过P作PD⊥x轴于点D,由△PCD∽△ACB,用c表示P点坐标,再求得k关于c的解析式,最后由不等式的性质求得k的取值范围.【解答】解:∵点A的坐标为(3,2),AB⊥x轴于点B,∴OB=3,AB=2,设C(c,0)(0≤c≤3),过P作PD⊥x轴于点D,则BC=3﹣c,PD∥AB,OC=c,∴△PCD∽△ACB,∴,∵AP=2PC,∴,∴PD=,CD=1﹣c,∴OD=OC+CD=1+c,∴P(1+c,),把P(1+c,)代入函数y=(x>0)中,得k=c,∵0≤c≤3∴,故选:C.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m张成人票和n张儿童票,则共需花费(30m+15n)元.【分析】根据单价×数量=总价,用代数式表示结果即可.【解答】解:根据单价×数量=总价得,共需花费(30m+15n)元,故答案为:(30m+15n).10.(3分)分解因式:a2﹣4=(a+2)(a﹣2).【分析】有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.【解答】解:a2﹣4=(a+2)(a﹣2).11.(3分)若关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,则实数m的值为1.【分析】由于关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,∴△=0,∴(﹣2)2﹣4m=0,∴m=1,故答案为:1.12.(3分)正五边形的一个外角的大小为72度.【分析】根据多边形的外角和是360°,依此即可求解.【解答】解:正五边形的一个外角==72°.故答案为:72.13.(3分)如图,在△ABC中,∠ABC=90°,AB=BC=2,以点C为圆心,线段CA的长为半径作,交CB的延长线于点D,则阴影部分的面积为π﹣2(结果保留π).【分析】利用勾股定理求出AC,证明∠C=45°,根据S阴=S扇形CAD﹣S△ACB计算即可.【解答】解:∵AB=CB=2,∠ABC=90°,∴AC===2,∴∠C=∠BAC=45°,∴S阴=S扇形CAD﹣S△ACB=﹣×2×2=π﹣2,故答案为π﹣2.14.(3分)如图,在平面直角坐标系中,点A的坐标为(0,2),点B的坐标为(4,2).若抛物线y=﹣(x﹣h)2+k(h、k为常数)与线段AB交于C、D两点,且CD=AB,则k的值为.【分析】根据题意,可以得到点C的坐标和h的值,然后将点C的坐标代入抛物线的解析式,即可得到k的值,本题得以解决.【解答】解:∵点A的坐标为(0,2),点B的坐标为(4,2),∴AB=4,∵抛物线y=﹣(x﹣h)2+k(h、k为常数)与线段AB交于C、D两点,且CD=AB=2,∴设点C的坐标为(c,2),则点D的坐标为(c+2,2),h==c+1,∴抛物线2=﹣[c﹣(c+1)]2+k,解得,k=.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(a﹣3)2+2(3a﹣1),其中a=.【分析】根据整式的混合运算顺序进行化简,再代入值求解即可.【解答】解:原式=a2﹣6a+9+6a﹣2=a2+7.当a=时,原式=()2+7=9.16.(6分)现有三张不透明的卡片,其中两张卡片的正面图案为“神舟首飞”,第三张卡片的正面图案为“保卫和平”,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的图案都是“保卫和平”的概率.(图案为“神舟首飞”的两张卡片分别记为A1、A2,图案为“保卫和平”的卡片记为B)【分析】根据题意画出树状图得出所有等可能的情况数,找出两次抽出的卡片上的图案都是“保卫和平”的情况数,然后根据概率公式即可得出答案.【解答】解:根据题意画图如下:共有9种等可能的情况数,其中两次抽出的卡片上的图案都是“保卫和平”的有1种,则两次抽出的卡片上的图案都是“保卫和平”的概率是.17.(6分)图①、图②、图③均是3×3的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,线段AB的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求以AB为边画△ABC.要求:(1)在图①中画一个钝角三角形,在图②中画一个直角三角形,在图③中画一个锐角三角形;(2)三个图中所画的三角形的面积均不相等;(3)点C在格点上.【分析】根据网格画出符合条件的三个三角形即可.【解答】解:如图所示:即为符合条件的三角形.18.(7分)在国家精准扶贫的政策下,某村企生产的黑木耳获得了国家绿色食品标准认证,绿标的认证,使该村企的黑木耳在市场上更有竞争力,今年每斤黑木耳的售价比去年增加了20元.预计今年的销量是去年的3倍,年销售额为360万元.已知去年的年销售额为80万元,问该村企去年黑木耳的年销量为多少万斤?【分析】设该村企去年黑木耳的年销量为x万斤,则今年黑木耳的年销量为3x万斤,根据单价=总价÷数量结合今年每斤黑木耳的售价比去年增加了20元,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设该村企去年黑木耳的年销量为x万斤,则今年黑木耳的年销量为3x万斤,依题意,得:﹣=20,解得:x=2,经检验,x=2是原方程的解,且符合题意.答:该村企去年黑木耳的年销量为2万斤.19.(7分)如图,在▱ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为点E、F.(1)求证:OE=OF.(2)若BE=5,OF=2,求tan∠OBE的值.【分析】(1)由平行四边形性质得OB=OD,由AAS证得△OEB≌△OFD,即可得出结论;(2)由(1)得OE=OF,则OE=2,在Rt△OEB中,由三角函数定义即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OB=OD,∵BE⊥AC,DF⊥AC,∴∠OEB=∠OFD=90°,在△OEB和△OFD中,,∴△OEB≌△OFD(AAS),∴OE=OF;(2)解:由(1)得:OE=OF,∵OF=2,∴OE=2,∵BE⊥AC,∴∠OEB=90°,在Rt△OEB中,tan∠OBE==.20.(7分)空气质量按照空气质量指数大小分为六个级别,分别为:一级优、二级良、三级轻度污染、四级中度污染、五级重度污染、六级严重污染.级别越高,说明污染的情况越严重,对人体的健康危害也就越大.空气质量达到一级优或二级良的天气为达标天气,如图是长春市从2014年到2019年的空气质量级别天数的统计图表.2014﹣2019年长春市空气质量级别天数统计表优良轻度污染中度污染重度污染严重污染空气质量级别天数年份201430215732813620154319387191582016512375815502017652116216922018123202390102019126180381650根据上面的统计图表回答下列问题:(1)长春市从2014年到2019年空气质量为“达标”的天数最多的是2018年.(2)长春市从2014年到2019年空气质量为“重度污染”的天数的中位数为7天,平均数为8天.(3)长春市从2015年到2019年,和前一年相比,空气质量为“优”的天数增加最多的是2018年,这一年空气质量为“优”的天数的年增长率约为89%(精确到1%).(空气质量为“优”的天数的增长率=×100%)(4)你认为长春市从2014年到2019年哪一年的空气质量好?请说明理由.【分析】(1)从折线统计图可得答案;(2)利用中位数、众数的意义分别计算即可;(3)分别计算从2015年到2019年,和前一年相比,空气质量为“优”的天数,进而利用增长率计算结果;(4)根据空气质量的等级天数进行判断即可.【解答】解:(1)从折线统计图中“达标”天数的折线的最高点,相应的年份为2018年,故答案为:2018;(2)将这6年的“重度污染”的天数从小到大排列,处在中间位置的两个数的平均数为=7,因此中位数是7天,这6年的“重度污染”的天数的平均数为=8天,故答案为:7,8;(3)前一年相比,空气质量为“优”的天数增加量为:2015年,43﹣30=13天;2016年,51﹣43=8天;2017年,65﹣51=14天;2018年,123﹣65=58天;2019年,126﹣123=3天,因此空气质量为“优”的天数增加最多的是2018年,增长率为≈89%,故答案为:2018,89%;(4)从统计表中数据可知,2018年空气质量好,2018年“达标天数”最多,重度污染、中度污染、严重污染的天数最少.21.(8分)已知A、B两地之间有一条长240千米的公路.甲车从A地出发匀速开往B地,甲车出发两小时后,乙车从B地出发匀速开往A地,两车同时到达各自的目的地.两车行驶的路程之和y(千米)与甲车行驶的时间x(时)之间的函数关系如图所示.(1)甲车的速度为40千米/时,a的值为480.(2)求乙车出发后,y与x之间的函数关系式.(3)当甲、乙两车相距100千米时,求甲车行驶的时间.【分析】(1)根据图象可知甲车行驶2行驶所走路程为80千米,据此即可求出甲车的速度;进而求出甲车行驶6小时所走的路程为240千米,根据两车同时到达各自的目的地可得a=240×2=480;(2)运用待定系数法解得即可;(3)分两车相遇前与相遇后两种情况列方程解答即可.【解答】解:(1)由题意可知,甲车的速度为:80÷2=40(千米/时);a=40×6×2=480,故答案为:40;480;(2)设y与x之间的函数关系式为y=kx+b,由图可知,函数图象经过(2,80),(6,480),∴,解得,∴y与x之间的函数关系式为y=100x﹣120;(3)两车相遇前:80+100(x﹣2)=240﹣100,解得x=;两车相遇后:80+100(x﹣2)=240+100,解得x=,答:当甲、乙两车相距100千米时,甲车行驶的时间是小时或小时.22.(9分)【教材呈现】如图是华师版八年级下册数学教材第121页的部分内容.1.把一张矩形纸片如图那样折一下,就可以裁出正方形纸片,为什么?【问题解决】如图①,已知矩形纸片ABCD(AB>AD),将矩形纸片沿过点D的直线折叠,使点A落在边DC上,点A的对应点为A′,折痕为DE,点E在AB上.求证:四边形AEA′D是正方形.【规律探索】由【问题解决】可知,图①中的△A′DE为等腰三角形.现将图①中的点A′沿DC向右平移至点Q处(点Q在点C的左侧),如图②,折痕为PF,点F在DC 上,点P在AB上,那么△PQF还是等腰三角形吗?请说明理由.【结论应用】在图②中,当QC=QP时,将矩形纸片继续折叠如图③,使点C与点P 重合,折痕为QG,点G在AB上.要使四边形PGQF为菱形,则=.【分析】(1)根据邻边相等的矩形是正方形证明即可.(2)证明∠QFP=∠FPQ即可解决问题.(3)证明△PFQ,△PGA都是等边三角形,设QF=m,求出AB,AD(用m表示)即可解决问题.【解答】(1)证明:如图①中,∵四边形ABCD是矩形,∴∠A=∠ADA′=90°,由翻折可知,∠DA′E=∠A=90°,∴∠A=∠ADA′=∠DA′E=90°,∴四边形AEA′D是矩形,∵DA=DA′,∴四边形AEA′D是正方形.(2)解:结论:△PQF是等腰三角形.理由:如图②中,∵四边形ABCD是矩形,∴AB∥CD,∴∠QFP=∠APF,由翻折可知,∠APF=∠FPQ,∴∠QFP=∠FPQ,∴QF=QP,∴△PFQ是等腰三角形.(3)如图③中,∵四边形PGQF是菱形,∴PG=GQ=FQ=PF,∵QF=QP,∴△PFQ,△PGQ都是等边三角形,设QF=m,∵∠FQP=60°,∠PQD′=90°,∴∠DQD′=30°,∵∠D′=90°,∴FD′=DF=FQ=m,QD′=D′F=m,由翻折可知,AD=QD′=m,PQ=CQ=FQ=m,∴AB=CD=DF+FQ+CQ=m,∴==.故答案为.23.(10分)如图①,在△ABC中,∠ABC=90°,AB=4,BC=3.点P从点A出发,沿折线AB﹣BC以每秒5个单位长度的速度向点C运动,同时点D从点C出发,沿CA以每秒2个单位长度的速度向点A运动,点P到达点C时,点P、D同时停止运动.当点P不与点A、C重合时,作点P关于直线AC的对称点Q,连结PQ交AC于点E,连结DP、DQ.设点P的运动时间为t秒.(1)当点P与点B重合时,求t的值.(2)用含t的代数式表示线段CE的长.(3)当△PDQ为锐角三角形时,求t的取值范围.(4)如图②,取PD的中点M,连结QM.当直线QM与△ABC的一条直角边平行时,直接写出t的值.【分析】(1)根据AB=4,构建方程求解即可.(2)分两种情形:当点P在线段AB上时,首先利用勾股定理求出AC,再求出AE即可解决问题.当点P在线段BC上时,在Rt△PCE中,求出EC即可.(3)求出两种特殊情形下△PDQ是等腰直角三角形时t的值,即可求解当△PDQ为锐角三角形时t的取值范围.(4)分两种情形:如图⑥中,当点P在线段AB上,QM∥AB时.如图⑦中,当点P 在线段BC上,QM∥BC时,分别求解即可.【解答】解:(1)当点P与B重合时,5t=4,解得t=.(2)在Rt△ABC中,∵∠B=90°,AB=4,BC=3,∴AC===5,∴sin A=,cos A=,如图①中,当点P在线段AB上时,在Rt△APE中,AE=AP•cos A=4t,∴EC=5﹣4t.如图③中,当点P在线段BC上时,在Rt△PEC中,PC=7﹣5t,cos C=,∴EC=PC•cos C=(7﹣5t)=﹣3t.(3)当△PDQ是等腰直角三角形时,则PE=DE,如图④中,当点P在线段AB上时,在Rt△APE中,PE=P A•sin A=3t,∵DE=AC﹣AE﹣CD=5﹣4t﹣2t=5﹣6t,∵PE=DE,∴3t=5﹣6t,∴t=.如图⑤中,当点P在线段BC上时,在Rt△PCE中,PE=PC•sin C=(7﹣5t)=﹣4t,∵DE=CD﹣CE=2t﹣(7﹣5t)=5t﹣,∴﹣4t=5t﹣,解得t=.∵△PDQ是锐角三角形,∴观察图象可知满足条件的t的值为0<t<或<t<.(4)如图⑥中,当点P在线段AB上,QM∥AB时,过点Q作QG⊥AB于G,延长QM交BC于N,过点D作DH⊥BC于H.∵PB∥MN∥DH,PM=DM,∴BN=NH,在Rt△PQG中,PQ=2PE=6t,∴QG=PQ=t,在Rt△DCH中,HC=DC=t,∵BC=BH+CH=t+t+t=3,解得t=.如图⑦中,当点P在线段BC上,QM∥BC时,过点D作DH⊥BC于H,过点P作PK⊥QM于K.∵QM∥BC,DM=PM,∴DH=2PK,在Rt△PQK中,PQ=2PE=(7﹣5t),∴PK=PQ=(7﹣5t),在Rt△DCH中,DH=DC=t,∵DH=2PK,∴t=2×(7﹣5t),解得t=,综上所述,满足条件的t的值为或.24.(12分)在平面直角坐标系中,函数y=x2﹣2ax﹣1(a为常数)的图象与y轴交于点A.(1)求点A的坐标.(2)当此函数图象经过点(1,2)时,求此函数的表达式,并写出函数值y随x的增大而增大时x的取值范围.(3)当x≤0时,若函数y=x2﹣2ax﹣1(a为常数)的图象的最低点到直线y=2a的距离为2,求a的值.(4)设a<0,Rt△EFG三个顶点的坐标分别为E(﹣1,﹣1)、F(﹣1,a﹣1)、G(0,a﹣1).当函数y=x2﹣2ax﹣1(a为常数)的图象与△EFG的直角边有交点时,交点记为点P.过点P作y轴的垂线,与此函数图象的另一个交点为P′(P′与P不重合),过点A作y轴的垂线,与此函数图象的另一个交点为A′.若AA′=2PP′,直接写出a的值.【分析】(1)当x=0时,代入y=x2﹣2ax﹣1,即可得出结果;(2)将点(1,2)代入y=x2﹣2ax﹣1,得a=﹣1,则函数的表达式为y=x2+2x﹣1,由y=x2+2x﹣1=(x+1)2﹣2,得出抛物线的开口向上,对称轴为x=﹣1,则当x>﹣1时,y随x的增大而增大;(3)抛物线y=x2﹣2ax﹣1=(x﹣a)2﹣a2﹣1的对称轴为x=a,顶点坐标为(a,﹣a2﹣1),当a>0时,对称轴在y轴右侧,最低点就是A(0,﹣1),则2a﹣(﹣1)=2,即可得出结果;当a<0,对称轴在y轴左侧,顶点(a,﹣a2﹣1)就是最低点,则2a﹣(﹣a2﹣1)=2,即可得出结果;(4)易证直角边为EF与FG,由抛物线的对称轴为x=a,A(0,﹣1),则AA′=﹣2a,当点P在EF边上时,PP′=2(a+1),则﹣2a=2×2(a+1),即可得出结果;当点P 在FG边上时,求出PP′=2,则﹣2a=4,即可得出结果.【解答】解:(1)当x=0时,y=x2﹣2ax﹣1=﹣1,∴点A的坐标为:(0,﹣1);(2)将点(1,2)代入y=x2﹣2ax﹣1,得:2=1﹣2a﹣1,解得:a=﹣1,∴函数的表达式为:y=x2+2x﹣1,∵y=x2+2x﹣1=(x+1)2﹣2,∴抛物线的开口向上,对称轴为x=﹣1,如图1所示:∴当x>﹣1时,y随x的增大而增大;(3)抛物线y=x2﹣2ax﹣1=(x﹣a)2﹣a2﹣1的对称轴为:x=a,顶点坐标为:(a,﹣a2﹣1),当a>0时,对称轴在y轴右侧,如图2所示:∵x≤0,∴最低点就是A(0,﹣1),∵图象的最低点到直线y=2a的距离为2,∴2a﹣(﹣1)=2,解得:a=;当a<0,对称轴在y轴左侧,顶点(a,﹣a2﹣1)就是最低点,如图3所示:∴2a﹣(﹣a2﹣1)=2,整理得:(a+1)2=2,解得:a1=﹣1﹣,a2=﹣1+(不合题意舍去);综上所述,a的值为或﹣1﹣;(4)∵a<0,Rt△EFG三个顶点的坐标分别为E(﹣1,﹣1)、F(﹣1,a﹣1)、G(0,a﹣1),∴直角边为EF与FG,∵抛物线y=x2﹣2ax﹣1=(x﹣a)2﹣a2﹣1的对称轴为:x=a,A(0,﹣1),∴AA′=﹣2a,当点P在EF边上时,如图4所示:则x p=﹣1,∵EA=OA=1,∴点P在对称轴x=a的左侧,∴PP′=2(a+1),∵AA′=2PP′,∴﹣2a=2×2(a+1),解得:a=﹣;当点P在FG边上时,如图5所示:则y p=a﹣1,∴x2﹣2ax﹣1=a﹣1,解得:x1=a+,x2=a﹣,∴PP′=a+﹣(a﹣)=2,∵AA′=2PP′,∴﹣2a=4,解得:a1=﹣,a2=0(不合题意舍去);综上所述,a的值为﹣或﹣.第31页(共31页)。

江苏省淮安市2020年中考数学试题(解析版)

江苏省淮安市2020年中考数学试题(解析版)
【详解】解:如图示,AB与CD相交于E点,P在反比例函数 ( )图象上,
∵ , ,
∴ 是等腰三角形,CD是AB的垂直平分线,
∴CD是反比例函数 的对称轴,则直线CD的关系式是 ,
∵A点的坐标是 ,代入反比例函数 ,得
则反比例函数关系式为
又∵直线CD与反比例函数 ( )的图象于点 ,
则有 ,解之得: (D点在第三象限),
江苏省淮安市2020年中考数学试题
一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.2的相反数是()
A.2B.-2C. D.
【答案】B
【解析】
【分析】
直接利用相反数的定义解答即可.
【详解】解:2的相反数是-2.
故选B.
【点睛】本题考查了相反数的概念,掌握互为相反数的两个数的和为0是解答本题的关键.
8.如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()
A.205B.250C.502D.520
【答案】D
【解析】
【分析】
设两个连续奇数中的一个奇数为 ,则另一个奇数为 ,先得出由这两个奇数得到的“幸福数”为 ,再看四个选项中,能够整除4的即为答案.
【详解】设两个连续奇数中的一个奇数为 ,则另一个奇数为
则 (人)
答:该校选择“不了解”的学生有60人.
【点睛】本题考查了条形统计图和扇形统计图的信息关联、画条形统计图等知识点,掌握理解统计调查的相关知识是解题关键.
22.一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母 、 、 ,搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.

2020年广西桂林中考数学试题及参考答案(word解析版)

2020年广西桂林中考数学试题及参考答案(word解析版)

2020年桂林市初中学业水平考试试卷数学(全卷满分120分,考试用时120分钟)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有理数2,1,﹣1,0中,最小的数是()A.2 B.1 C.﹣1 D.02.如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数是()A.40° B.50° C.60° D.70°3.下列调查中,最适宜采用全面调查(普查)的是()A.调查一批灯泡的使用寿命 B.调查漓江流域水质情况C.调查桂林电视台某栏目的收视率 D.调查全班同学的身高4.下面四个几何体中,左视图为圆的是()A. B. C. D.5.若=0,则x的值是()A.﹣1 B.0 C.1 D.26.因式分解a2﹣4的结果是()A.(a+2)(a﹣2) B.(a﹣2)2 C.(a+2)2 D.a(a﹣2)7.下列计算正确的是()A.x•x=2x B.x+x=2x C.(x3)3=x6 D.(2x)2=2x28.直线y=kx+2过点(﹣1,4),则k的值是()A.﹣2 B.﹣1 C.1 D.29.不等式组的整数解共有()A.1个 B.2个 C.3个 D.4个10.如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC的度数是()A.60° B.65° C.70° D.75°11.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x 支,根据题意,下面列出的方程正确的是()A.x(x+1)=110 B.x(x﹣1)=110 C.x(x+1)=110 D.x(x﹣1)=11012.如图,已知的半径为5,所对的弦AB长为8,点P是的中点,将绕点A逆时针旋转90°后得到,则在该旋转过程中,点P的运动路径长是()A.π B.π C.2π D.2π二、填空题(本大题共6小题,每小题3分,共18分)13.2020的相反数是.14.计算:ab•(a+1)=.15.如图,在Rt△ABC中,∠C=90°,AB=13,AC=5,则cosA的值是.16.一个正方体的平面展开图如图所示,任选该正方体的一面出现“我”字的概率是.17.反比例函数y=(x<0)的图象如图所示,下列关于该函数图象的四个结论:①k>0;②当x<0时,y随x的增大而增大;③该函数图象关于直线y=﹣x对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有个.18.如图,在Rt△ABC中,AB=AC=4,点E,F分别是AB,AC的中点,点P是扇形AEF的上任意一点,连接BP,CP,则BP+CP的最小值是.三、解答题(本大题共8小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:(π+)0+(﹣2)2+|﹣|﹣sin30°.20.(6分)解二元一次方程组:.21.(8分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,3),B(4,4),C(2,1).(1)把△ABC向左平移4个单位后得到对应的△A1B1C1,请画出平移后的△A1B1C1;(2)把△ABC绕原点O旋转180°后得到对应的△A2B2C2,请画出旋转后的△A2B2C2;(3)观察图形可知,△A1B1C1与△A2B2C2关于点(,)中心对称.22.(8分)阅读下列材料,完成解答:材料1:国家统计局2月28日发布了2019年国民经济和社会发展统计公报,该公报中的如图发布的是全国“2015﹣2019年快递业务量及其增长速度”统计图(如图1).材料2:6月28日,国家邮政局发布的数据显示:受新冠疫情影响,快递业务量快速增长,5月份快递业务量同比增长41%(如图2).某快递业务部门负责人据此估计,2020年全国快递业务量将比2019年增长50%.(1)2018年,全国快递业务量是亿件,比2017年增长了%;(2)2015﹣2019年,全国快递业务量增长速度的中位数是%;(3)统计公报发布后,有人认为,图1中表示2016﹣2019年增长速度的折线逐年下降,说明2016﹣2019年全国快递业务量增长速度逐年放缓,所以快递业务量也逐年减少.你赞同这种说法吗为什么(4)若2020年全国快递业务量比2019年增长50%,请列式计算2020年的快递业务量.23.(8分)如图,在菱形ABCD中,点E,F分别是边AD,AB的中点.(1)求证:△ABE≌△ADF;(2)若BE=,∠C=60°,求菱形ABCD的面积.24.(8分)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋25.(10分)如图,将一副斜边相等的直角三角板按斜边重合摆放在同一平面内,其中∠CAB=30°,∠DAB=45°,点O为斜边AB的中点,连接CD交AB于点E.(1)求证:A,B,C,D四个点在以点O为圆心的同一个圆上;(2)求证:CD平分∠ACB;(3)过点D作DF∥BC交AB于点F,求证:BO2+OF2=EF•BF.26.(12分)如图,已知抛物线y=a(x+6)(x﹣2)过点C(0,2),交x轴于点A和点B(点A在点B的左侧),抛物线的顶点为D,对称轴DE交x轴于点E,连接EC.(1)直接写出a的值,点A的坐标和抛物线对称轴的表达式;(2)若点M是抛物线对称轴DE上的点,当△MCE是等腰三角形时,求点M的坐标;(3)点P是抛物线上的动点,连接PC,PE,将△PCE沿CE所在的直线对折,点P落在坐标平面内的点P′处.求当点P′恰好落在直线AD上时点P的横坐标.答案与解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有理数2,1,﹣1,0中,最小的数是()A.2 B.1 C.﹣1 D.0【知识考点】有理数大小比较.【思路分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解题过程】解:根据有理数比较大小的方法,可得﹣1<0<1<2,∴在2,1,﹣1,0这四个数中,最小的数是﹣1.故选:C.【总结归纳】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数是()A.40° B.50° C.60° D.70°【知识考点】平行线的性质.【思路分析】根据平行线的性质和∠1的度数,可以得到∠2的度数,本题得以解决.【解题过程】解:∵a∥b,∴∠1=∠2,∵∠1=50°,∴∠2=50°,故选:B.【总结归纳】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.3.下列调查中,最适宜采用全面调查(普查)的是()A.调查一批灯泡的使用寿命 B.调查漓江流域水质情况C.调查桂林电视台某栏目的收视率 D.调查全班同学的身高【知识考点】全面调查与抽样调查.【思路分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解题过程】解:A、调查一批灯泡的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项不合题意;B、调查漓江流域水质情况,应当采用抽样调查的方式,故本选项不合题意;C、调查桂林电视台某栏目的收视率,人数多,耗时长,应当采用抽样调查的方式,故本选项不合题意.D、调查全班同学的身高,应当采用全面调查,故本选项符合题意.故选:D.【总结归纳】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.下面四个几何体中,左视图为圆的是()A. B. C. D.【知识考点】简单几何体的三视图.【思路分析】根据四个几何体的左视图进行判断即可.【解题过程】解:下面四个几何体中,A的左视图为矩形;B的左视图为三角形;C的左视图为矩形;D的左视图为圆.故选:D.【总结归纳】本题考查了简单几何体的三视图,解决本题的关键是掌握几何体的三视图.5.若=0,则x的值是()A.﹣1 B.0 C.1 D.2【知识考点】算术平方根.【思路分析】利用算术平方根性质确定出x的值即可.【解题过程】解:∵=0,∴x﹣1=0,解得:x=1,则x的值是1.故选:C.【总结归纳】此题考查了算术平方根,熟练掌握算术平方根的性质是解本题的关键.6.因式分解a2﹣4的结果是()A.(a+2)(a﹣2) B.(a﹣2)2 C.(a+2)2 D.a(a﹣2)【知识考点】因式分解﹣运用公式法.【思路分析】利用平方差公式进行分解即可.【解题过程】解:原式=(a+2)(a﹣2),故选:A.【总结归纳】此题主要考查了公式法分解因式,关键是掌握平方差公式a2﹣b2=(a+b)(a﹣b).7.下列计算正确的是()A.x•x=2x B.x+x=2x C.(x3)3=x6 D.(2x)2=2x2【知识考点】合并同类项;幂的乘方与积的乘方.【思路分析】分别根据同底数幂的乘法法则,合并同类项法则,幂的乘方运算法则以及积的乘方运算法则逐一判断即可.【解题过程】解:A.x•x=x2,故本选项不合题意;B.x+x=2x,故本选项符合题意;C.(x3)3=x9,故本选项不合题意;D.(2x)2=4x2,故本选项不合题意.故选:B.【总结归纳】本题主要考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.8.直线y=kx+2过点(﹣1,4),则k的值是()A.﹣2 B.﹣1 C.1 D.2【知识考点】一次函数图象上点的坐标特征.【思路分析】由直线y=kx+2过点(﹣1,4),利用一次函数图象上点的坐标特征可得出关于k 的一元一次方程,解之即可得出k值.【解题过程】解:∵直线y=kx+2过点(﹣1,4),∴4=﹣k+2,∴k=﹣2.故选:A.【总结归纳】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.9.不等式组的整数解共有()A.1个 B.2个 C.3个 D.4个【知识考点】一元一次不等式组的整数解.【思路分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出答案.【解题过程】解:解不等式x﹣1>0,得:x>1,解不等式5﹣x≥1,得:x≤4,则不等式组的解集为1<x≤4,所以不等式组的整数解有2、3、4这3个,故选:C.【总结归纳】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC的度数是()A.60° B.65° C.70° D.75°【知识考点】切线的性质.【思路分析】由“AC与⊙O相切于点A“得出AC⊥OA,根据等边对等角得出∠OAB=∠OBA.求出∠OAC及∠OAB即可解决问题.【解题过程】解:∵AC与⊙O相切于点A,∴AC⊥OA,∴∠OAC=90°,∵OA=OB,∴∠OAB=∠OBA.∵∠O=130°,∴∠OAB==25°,∴∠BAC=∠OAC﹣∠OAB=90°﹣25°=65°.故选:B.【总结归纳】本题考查切线的性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x 支,根据题意,下面列出的方程正确的是()A.x(x+1)=110 B.x(x﹣1)=110 C.x(x+1)=110 D.x(x﹣1)=110【知识考点】由实际问题抽象出一元二次方程.【思路分析】设有x个队参赛,根据参加一次足球联赛的每两队之间都进行两场比赛,共要比赛110场,可列出方程.【解题过程】解:设有x个队参赛,则x(x﹣1)=110.故选:D.【总结归纳】本题考查由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.12.如图,已知的半径为5,所对的弦AB长为8,点P是的中点,将绕点A逆时针旋转90°后得到,则在该旋转过程中,点P的运动路径长是()A.π B.π C.2π D.2π【知识考点】勾股定理;垂径定理;圆心角、弧、弦的关系;轨迹;旋转的性质.【思路分析】根据已知的半径为5,所对的弦AB长为8,点P是的中点,利用垂径定理可得AC=4,PO⊥AB,再根据勾股定理可得AP的长,利用弧长公式即可求出点P的运动路径长.【解题过程】解:如图,设的圆心为O,连接OP,OA,AP',AP,AB'∵圆O半径为5,所对的弦AB长为8,点P是的中点,根据垂径定理,得AC=AB=4,PO⊥AB,OC==3,∴PC=OP﹣OC=5﹣3=2,∴AP==2,∵将绕点A逆时针旋转90°后得到,∴∠PAP′=∠BAB′=90°,∴L PP′==π.则在该旋转过程中,点P的运动路径长是π.故选:B.【总结归纳】本题考查了轨迹、垂径定理、勾股定理、圆心角、弧、弦的关系、弧长计算、旋转的性质,解决本题的关键是综合运用以上知识.二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上)13.2020的相反数是.【知识考点】相反数.【思路分析】直接利用相反数的定义得出答案.【解题过程】解:2020的相反数是:﹣2020.故答案为:﹣2020.【总结归纳】本题考查相反数.熟练掌握相反数的求法是解题的关键.14.计算:ab•(a+1)=.【知识考点】单项式乘多项式.【思路分析】根据整式的运算法则即可求出答案.【解题过程】解:原式=a2b+ab,故答案为:a2b+ab.【总结归纳】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.15.如图,在Rt△ABC中,∠C=90°,AB=13,AC=5,则cosA的值是.【知识考点】勾股定理;锐角三角函数的定义.【思路分析】根据余弦的定义解答即可.【解题过程】解:在Rt△ABC中,cosA==,故答案为:.【总结归纳】本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.16.一个正方体的平面展开图如图所示,任选该正方体的一面出现“我”字的概率是.【知识考点】几何体的展开图;概率公式.【思路分析】根据概率公式解答就可求出任选该正方体的一面出现“我”字的概率.【解题过程】解:∵共有六个字,“我”字有2个,∴P(“我”)==.故答案为:.【总结归纳】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.17.反比例函数y=(x<0)的图象如图所示,下列关于该函数图象的四个结论:①k>0;②当x <0时,y随x的增大而增大;③该函数图象关于直线y=﹣x对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有个.【知识考点】正比例函数的性质;反比例函数的图象;反比例函数的性质;反比例函数图象上点的坐标特征;轴对称的性质.【思路分析】观察反比例函数y=(x<0)的图象可得,图象过第二象限,然后根据反比例函数的图象和性质即可进行判断.【解题过程】解:观察反比例函数y=(x<0)的图象可知:图象过第二象限,∴k<0,所以①错误;因为当x<0时,y随x的增大而增大;所以②正确;因为该函数图象关于直线y=﹣x对称;所以③正确;因为点(﹣2,3)在该反比例函数图象上,所以k=﹣6,则点(﹣1,6)也在该函数的图象上.所以④正确.所以其中正确结论的个数为3个.故答案为3.【总结归纳】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质、轴对称的性质,解决本题的关键是掌握反比例函数的性质.18.如图,在Rt△ABC中,AB=AC=4,点E,F分别是AB,AC的中点,点P是扇形AEF的上任意一点,连接BP,CP,则BP+CP的最小值是.【知识考点】等腰直角三角形;相似三角形的判定与性质.【思路分析】在AB上取一点T,使得AT=1,连接PT,PA,CT.证明△PAT∽△BAP,推出==,推出PT=PB,推出PB+CP=CP+PT,根据PC+PT≥TC,求出CT即可解决问题.【解题过程】解:在AB上取一点T,使得AT=1,连接PT,PA,CT.∵PA=2.AT=1,AB=4,∴PA2=AT•AB,∴=,∵∠PAT=∠PAB,∴△PAT∽△BAP,∴==,∴PT=PB,∴PB+CP=CP+PT,∵PC+PT≥TC,在Rt△ACT中,∵∠CAT=90°,AT=1,AC=4,∴CT==,∴PB+PC≥,∴PB+PC的最小值为.故答案为.【总结归纳】本题考查等腰直角三角形的性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.三、解答题(本大题共8小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:(π+)0+(﹣2)2+|﹣|﹣sin30°.【知识考点】实数的运算;零指数幂;特殊角的三角函数值.【思路分析】原式利用零指数幂、乘方运算法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解题过程】解:原式=1+4+﹣=5.【总结归纳】此题考查了实数的运算,零指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.20.(6分)解二元一次方程组:.【知识考点】解二元一次方程组.【思路分析】方程组利用加减消元法求出解即可.【解题过程】解:①+②得:6x=6,解得:x=1,把x=1代入①得:y=﹣1,则方程组的解为.【总结归纳】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(8分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,3),B(4,4),C(2,1).(1)把△ABC向左平移4个单位后得到对应的△A1B1C1,请画出平移后的△A1B1C1;(2)把△ABC绕原点O旋转180°后得到对应的△A2B2C2,请画出旋转后的△A2B2C2;(3)观察图形可知,△A1B1C1与△A2B2C2关于点(,)中心对称.【知识考点】作图﹣平移变换;作图﹣旋转变换.【思路分析】(1)依据平移的方向和距离,即可得到平移后的△A1B1C1;(2)依据△ABC绕原点O旋转180°,即可画出旋转后的△A2B2C2;(3)依据对称点连线的中点的位置,即可得到对称中心的坐标.【解题过程】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)由图可得,△A1B1C1与△A2B2C2关于点(﹣2,0)中心对称.故答案为:﹣2,0.【总结归纳】此题主要考查了平移变换和旋转变换,正确根据题意得出对应点位置是解题关键.22.(8分)阅读下列材料,完成解答:材料1:国家统计局2月28日发布了2019年国民经济和社会发展统计公报,该公报中的如图发布的是全国“2015﹣2019年快递业务量及其增长速度”统计图(如图1).材料2:6月28日,国家邮政局发布的数据显示:受新冠疫情影响,快递业务量快速增长,5月份快递业务量同比增长41%(如图2).某快递业务部门负责人据此估计,2020年全国快递业务量将比2019年增长50%.(1)2018年,全国快递业务量是亿件,比2017年增长了%;(2)2015﹣2019年,全国快递业务量增长速度的中位数是%;(3)统计公报发布后,有人认为,图1中表示2016﹣2019年增长速度的折线逐年下降,说明2016﹣2019年全国快递业务量增长速度逐年放缓,所以快递业务量也逐年减少.你赞同这种说法吗为什么(4)若2020年全国快递业务量比2019年增长50%,请列式计算2020年的快递业务量.【知识考点】用样本估计总体;条形统计图;中位数.【思路分析】(1)由材料1中的统计图中的信息即可得到结论;(2)由材料1中的统计图的信息即可得到结论;(3)根据统计图中的信息即可得到结论;(4)根据题意列式计算即可.【解题过程】解:(1)由材料1中的统计图可得:2018年,全国快递业务量是亿件,比2017年增长了%;(2)由材料1中的统计图可得:2015﹣2019年,全国快递业务量增长速度的中位数是%;(3)不赞同,理由:由图1中的信息可得,2016﹣2019年全国快递业务量增长速度逐年放缓,但是快递业务量却逐年增加;(4)×(1+50%)=(亿件),答:2020年的快递业务量为亿件.故答案为:,,.【总结归纳】本题考查了条形统计图,中位数的定义,正确的理解题意是解题的关键.23.(8分)如图,在菱形ABCD中,点E,F分别是边AD,AB的中点.(1)求证:△ABE≌△ADF;(2)若BE=,∠C=60°,求菱形ABCD的面积.【知识考点】全等三角形的判定与性质;等边三角形的判定与性质;菱形的性质.【思路分析】(1)由SAS证明△ABE≌△ADF即可;(2)证△ABD是等边三角形,得出BE⊥AD,求出AD即可.【解题过程】(1)证明:∵四边形ABCD是菱形,∴AB=AD,∵点E,F分别是边AD,AB的中点,∴AF=AE,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS);(2)解:连接BD,如图:∵四边形ABCD是菱形,∴AB=AD,∠A=∠C=60°,∴△ABD是等边三角形,∵点E是边AD的中点,∴BE⊥AD,∴∠ABE=30°,∴AE=BE=1,AB=2AE=2,∴AD=AB=2,∴菱形ABCD的面积=AD×BE=2×=2.【总结归纳】本题考查了菱形的性质、全等三角形的判定与性质、等边三角形的判定与性质、直角三角形的性质等知识;熟练掌握菱形的性质是解题的关键.24.(8分)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋【知识考点】分式方程的应用;一元一次不等式的应用.【思路分析】(1)设每副围棋x元,则每副象棋(x﹣8)元,根据420元购买象棋数量=756元购买围棋数量列出方程并解答;(2)设购买围棋m副,则购买象棋(40﹣m)副,根据题意列出不等式并解答.【解题过程】解:(1)设每副围棋x元,则每副象棋(x﹣8)元,根据题意,得=.解得x=18.经检验x=18是所列方程的根.所以x﹣8=10.答:每副围棋18元,则每副象棋10元;(2)设购买围棋m副,则购买象棋(40﹣m)副,根据题意,得18m+10(40﹣m)≤600.解得m≤25.故m最大值是25.答:该校最多可再购买25副围棋.【总结归纳】本题考查了分式方程的应用和一元一次不等式的应用,分析题意,找到关键描述语,找到合适的数量关系是解决问题的关键.25.(10分)如图,将一副斜边相等的直角三角板按斜边重合摆放在同一平面内,其中∠CAB=30°,∠DAB=45°,点O为斜边AB的中点,连接CD交AB于点E.(1)求证:A,B,C,D四个点在以点O为圆心的同一个圆上;(2)求证:CD平分∠ACB;(3)过点D作DF∥BC交AB于点F,求证:BO2+OF2=EF•BF.【知识考点】圆的综合题.【思路分析】(1)利用直角三角形斜边的中线等于斜边的一半,判断出OA=OB=OC=OD,即可得出结论;(2)利用等弧所对的圆周角相等,即可得出结论;(3)先判断出△DEF∽△BDF,得出DF2=BF•EF,再利用勾股定理得出OD2+OF2=DF2,即可得出结论.【解题过程】证明:(1)如图,连接OD,OC,在Rt△ABC中,∠ACB=90°,点O是AB的中点,∴OC=OA=OB,在Rt△ABD中,∠ADB=90°,点O是AB的中点,∴OD=OA=OB,∴OA=OB=OC=OD,∴A,B,C,D四个点在以点O为圆心的同一个圆上;(2)由(1)知,A,B,C,D四个点在以点O为圆心的同一个圆上,且AD=BD,∴,∴CD平分∠ACB;(3)由(2)知,∠BCD=45°,∵∠ABC=60°,∴∠BEC=75°,∴∠AED=75°,∵DF∥BC,∴∠BFD=∠ABC=60°,∵∠ABD=45°,∴∠BDF=180°﹣∠BFD﹣∠ABD=75°=∠AED,∵∠DFE=∠BFD,∴△DEF∽△BDF,∴,∴DF2=BF•EF,连接OD,则∠BOD=90°,OB=OD,在Rt△DOF中,根据勾股定理得,OD2+OF2=DF2,∴OB2+OF2=BF•EF,即BO2+OF2=EF•BF.【总结归纳】此题是圆的综合题,主要考查了四点共圆的判断方法,相似三角形的判定和性质,直角三角形斜边的中线等于斜边的一半的性质,等腰三角形的判定和性质,勾股定理,三角形内角和定理,判断出∠BDF=∠AED是解本题的关键.26.(12分)如图,已知抛物线y=a(x+6)(x﹣2)过点C(0,2),交x轴于点A和点B(点A在点B的左侧),抛物线的顶点为D,对称轴DE交x轴于点E,连接EC.(1)直接写出a的值,点A的坐标和抛物线对称轴的表达式;(2)若点M是抛物线对称轴DE上的点,当△MCE是等腰三角形时,求点M的坐标;(3)点P是抛物线上的动点,连接PC,PE,将△PCE沿CE所在的直线对折,点P落在坐标平面内的点P′处.求当点P′恰好落在直线AD上时点P的横坐标.【知识考点】二次函数综合题.【思路分析】(1)将点C坐标代入抛物线解析式中,即可得出结论;(2)分三种情况:直接利用等腰三角形的性质,即可得出结论;(3)先判断出△PQE≌△P'Q'E(AAS),得出PQ=P'Q',EQ=EQ',进而得出P'Q'=n,EQ'=QE =m+2,确定出点P'(n﹣2,2+m),将点P'的坐标代入直线AD的解析式中,和点P代入抛物线解析式中,联立方程组,求解即可得出结论.【解题过程】解:(1)∵抛物线y=a(x+6)(x﹣2)过点C(0,2),∴2=a(0+6)(0﹣2),∴a=﹣,∴抛物线的解析式为y=﹣(x+6)(x﹣2)=﹣(x+2)2+,∴抛物线的对称轴为直线x=﹣2;针对于抛物线的解析式为y=﹣(x+6)(x﹣2),令y=0,则﹣(x+6)(x﹣2)=0,∴x=2或x=﹣6,∴A(﹣6,0);(2)如图1,由(1)知,抛物线的对称轴为x=﹣2,∴E(﹣2,0),∵C(0,2),∴OC=OE=2,∴CE=OC=2,∠CED=45°,∵△CME是等腰三角形,∴①当ME=MC时,∴∠ECM=∠CED=45°,∴∠CME=90°,∴M(﹣2,2),②当CE=CM时,∴MM1=CM=2,∴EM1=4,∴M1(﹣2,4),③当EM=CE时,∴EM2=EM3=2,∴M2(﹣2,﹣2),M3(﹣2,2),即满足条件的点M的坐标为(﹣2,2)或(﹣2,4)或(﹣2,2)或(﹣2,﹣2);(3)如图2,由(1)知,抛物线的解析式为y=﹣(x+6)(x﹣2)=﹣(x+2)2+,∴D(﹣2,),令y=0,则(x+6)(x﹣2)=0,∴x=﹣6或x=2,∴点A(﹣6,0),∴直线AD的解析式为y=x+4,过点P作PQ⊥x轴于Q,过点P'作P'Q'⊥DE于Q',∴∠EQ'P'=∠EQP=90°,由(2)知,∠CED=∠CEB=45°,由折叠知,EP'=EP,∠CEP'=∠CEP,∴△PQE≌△P'Q'E(AAS),∴PQ=P'Q',EQ=EQ',设点P(m,n),∴OQ=m,PQ=n,∴P'Q'=n,EQ'=QE=m+2,∴点P'(n﹣2,2+m),∵点P'在直线AD上,∴2+m=(n﹣2)+4①,∵点P在抛物线上,∴n=﹣(m+6)(m﹣2)②,联立①②解得,m=或m=,即点P的横坐标为或.【总结归纳】此题是二次函数综合题,主要考查了待定系数法,等腰三角形的性质,全等三角形的判定和性质,用分类讨论的思想解决问题是解本题的关键.。

2020年山西省中考数学真题试卷(解析版)

2020年山西省中考数学真题试卷(解析版)

2020年山西省中考数学试卷一、选择题(本大题共10小题,共30.0分))的结果是()1.计算(−6)÷(−13A. −18B. 2C. 18D. −2【答案】C)=(−6)×(−3)=18.【解析】解:(−6)÷(−13故选:C.根据有理数的除法法则计算即可,除以一个数,等于乘以这个数的倒数.本题主要考查了有理数的除法,熟练掌握运算法则是解答本题的关键.2.自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()A. B. C. D.【答案】D【解析】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形.故选:D.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.3.下列运算正确的是()A. 3a+2a=5a2B. −8a2÷4a=2aC. (−2a2)3=−8a6D. 4a3⋅3a2=12a6【答案】C【解析】解:A、3a+2a=5a,故此选项错误;B、−8a2÷4a=−2a,故此选项错误;C、(−2a2)3=−8a6,正确;D、4a3⋅3a2=12a5,故此选项错误;故选:C.直接利用合并同类项法则以及幂的乘方和积的乘方运算法则、整式的乘除运算法则分别计算得出答案.此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.4.下列几何体都是由4个大小相同的小正方体组成的,其中主视图与左视图相同的几何体是()A. B.C. D.【答案】B【解析】解:A.主视图的底层是两个小正方形,上层右边是一个小正方形;左视图底层是两个小正方形,上层左边是一个小正方形,故本选项不合题意;B.主视图和左视图均为底层是两个小正方形,上层左边是一个小正方形,故本选项符合题意;C.主视图底层是三个小正方形,上层中间是一个小正方形;左视图是一列两个小正方形,故本选项不合题意;D.主视图底层是三个小正方形,上层右边是一个小正方形;左视图是一列两个小正方形,故本选项不合题意;故选:B.主视图、左视图是分别从物体正面、左面看,所得到的图形.分别分析四种几何体的主视图与左视图,即可求解.本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.5.泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的( )A. 图形的平移B. 图形的旋转C. 图形的轴对称D. 图形的相似【答案】D【解析】解:泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的图形的相似, 故选:D .根据图形的变换和相似三角形的应用等知识直接回答即可.考查了相似三角形的应用、图形的变换等知识,解题的关键是了解物高与影长成正比,难度不大.6.不等式组{2x −6>0,4−x <−1的解集是( )A. x >5B. 3<x <5C. x <5D. x >−5【答案】A【解析】解:{2x −6>0,4−x <−1 解不等式2x −6>0,得:x >3, 解不等式4−x <−1,得:x >5, 则不等式组的解集为x >5. 故选:A .先解不等式组中的每一个不等式的解集,再利用求不等式组解集的口诀“同大取大”来求不等式组的解集.主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).7.已知点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)都在反比例函数y =kx (k <0)的图象上,且x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( )A. y2>y1>y3B. y3>y2>y1C. y1>y2>y3D. y3>y1>y2【答案】A(k<0)的图象分布在第二、四象限,【解析】解:∵反比例函数y=kx在每一象限y随x的增大而增大,而x1<x2<0<x3,∴y3<0<y1<y2.即y2>y1>y3.故选:A.(k<0)的图象分布在第二、四象限,则y3最小,y2根据反比例函数性质,反比例函数y=kx最大.本题考查反比例函数图象上点的坐标特征:反比例函数图象上点的坐标满足其解析式.也考查了反比例函数的性质.8.中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到AC=BD=12cm,C,D两点之间的距离为4cm,圆心角为60°,则图中摆盘的面积是()A. 80πcm2B. 40πcm2C. 24πcm2D. 2πcm2【答案】B【解析】解:如图,连接CD.∵OC=OD,∠O=60°,∴△COD是等边三角形,∴OC=OD=CD=4cm,∴S阴=S扇形OAB−S扇形OCD=60⋅π⋅162360−60⋅π⋅42360=40π(cm2),故选:B.首先证明△OCD是等边三角形,求出OC=OD=CD=4cm,再根据S阴=S扇形OAB−S扇形OCD,求解即可.本题考查扇形的面积,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.竖直上抛物体离地面的高度ℎ(m)与运动时间t(s)之间的关系可以近似地用公式ℎ=−5t2+v0t+ℎ0表示,其中ℎ0(m)是物体抛出时离地面的高度,v0(m/s)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为()A. 23.5mB. 22.5mC. 21.5mD. 20.5m【答案】C【解析】解:由题意可得,ℎ=−5t2+20t+1.5=−5(t−2)2+21.5,故当t=2时,h取得最大值,此时ℎ=21.5,故选:C.根据题意,可以得到h与t的函数关系式,然后化为顶点式,即可得到h的最大值,本题得以解决.本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.10.如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连接菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是()A. 13B. 14C. 16D. 18【答案】B【解析】解:由图形知阴影部分的面积是大矩形面积的14,∴飞镖落在阴影区域的概率是14,故选:B.由图形知阴影部分的面积是大矩形面积的1,据此可得答案.4本题主要考查几何概率,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.二、填空题(本大题共5小题,共15.0分)11.计算:(√3+√2)2−√24=______.【答案】5【解析】解:原式=3+2√6+2−2√6=5.故答案为5.先利用完全平方公式计算,然后化简后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n个图案有______个三角形(用含n的代数式表示).【答案】(3n+1)【解析】解:第1个图案有4个三角形,即4=3×1+1第2个图案有7个三角形,即7=3×2+1第3个图案有10个三角形,即10=3×3+1…按此规律摆下去,第n个图案有(3n+1)个三角形.故答案为:(3n+1).根据图形的变化发现规律,即可用含n的代数式表示.本题考查了规律型−图形的变化类、列代数式,解决本题的关键是根据图形的变化寻找规律.13.某校为了选拔一名百米赛跑运动员参加市中学生运动会,组织了6次预选赛,其中甲,乙两名运动员较为突出,他们在6次预选赛中的成绩(单位:秒)如下表所示:由于甲,乙两名运动员的成绩的平均数相同,学校决定依据他们成绩的稳定性进行选拔,那么被选中的运动员是______. 【答案】甲【解析】解:甲的平均成绩为:16(12.0+12.0+12.2+11.8+12.1+11.9)=12秒, 乙的平均成绩为:16(12.3+12.1+11.8+12.0+11.7+12.1)=12秒; 分别计算甲、乙两人的百米赛跑成绩的方差为:S 甲2=16[(12.2−12)2+(11.8−12)2+(12.1−12)2+(11.9−12)2]=160, S 乙2=16[(12.3−12)2+2(12.1−12)2+(11.8−12)2+(11.7−12)2]=125,∵160<125,∴甲运动员的成绩更为稳定; 故答案为:甲.分别计算、并比较两人的方差即可判断.考查了方差及算术平均数的定义,解题的关键是了解方差及平均数的计算方法,难度不大. 14.如图是一张长12cm ,宽10cm 的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24cm 2的有盖的长方体铁盒.则剪去的正方形的边长为______cm .【答案】2【解析】解:设底面长为acm ,宽为bcm ,正方形的边长为xcm ,根据题意得:{2(x +b)=12a +2x =10ab =24, 解得a =10−2x ,b =6−x , 代入ab =24中,得: (10−2x)(6−x)=24, 整理得:x 2−11x +18=0, 解得x =2或x =9(舍去), 答;剪去的正方形的边长为2cm . 故答案为:2.根据题意找到等量关系列出方程组,转化为一元二次方程求解即可.本题考查了一元二次方程的应用,解决本题的关键是根据题意找到等量关系列出方程组. 15.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,CD ⊥AB ,垂足为D ,E 为BC 的中点,AE 与CD 交于点F ,则DF 的长为______.【答案】5485【解析】解:如图,过点F 作FH ⊥AC 于H .在Rt △ABC 中,∵∠ACB =90°,AC =3,BC =4, ∴AB =√CB 2+AC 2=√42+32=5, ∵CD ⊥AB ,∴S △ABC =12⋅AC ⋅BC =12⋅AB ⋅CD , ∴CD =125,AD =√AC 2−CD 2=√32−(125)2=95,∵FH//EC ,∴FH EC=AH AC,∵EC =EB =2, ∴FHAH =23,设FH =2k ,AH =3k ,CH =3−3k , ∵tan∠FCH =FHCH =ADAD , ∴2k 3−3k=95125,∴k =917,∴FH =1817,CH =3−2717=2417, ∴CF =√CH 2+FH 2=√(1817)2+(2417)2=3017,∴DF =125−3017=5485,故答案为5485.如图,过点F 作FH ⊥AC 于H.首先证明FH :AH =2:3,设FH =2k ,AH =3k ,根据tan∠FCH =FHCH =ADAD ,构建方程求解即可.本题考查解直角三角形,平行线分线段成比例定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型. 三、计算题(本大题共1小题,共10.0分) 16.(1)计算:(−4)2×(−12)3−(−4+1).(2)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.x 2−9x 2+6x +9−2x +12x +6=(x+3)(x−3)(x+3)2−2x+12(x+3)…第一步 =x−3x+3−2x+12(x+3)…第二步 =2(x−3)2(x+3)−2x+12(x+3)…第三步=2x−6−(2x+1)2(x+3)…第四步=2x−6−2x+12(x+3)…第五步=−52x+6…第六步任务一:填空:①以上化简步骤中,第______步是进行分式的通分,通分的依据是______.或填为:______;②第______步开始出现错误,这一步错误的原因是______;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.【答案】三分式的基本性质分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变五括号前面是“−”,去掉括号后,括号里面的第二项没有变号【解析】解:(1)(−4)2×(−12)3−(−4+1)=16×(−18)+3=−2+3=1;(2)①以上化简步骤中,第三步是进行分式的通分,通分的依据是分式的基本性质.或填为:分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变;②第五步开始出现错误,这一步错误的原因是括号前面是“−”,去掉括号后,括号里面的第二项没有变号;任务二:x2−9x2+6x+9−2x+12x+6=(x+3)(x−3)(x+3)2−2x+12(x+3)…第一步=x−3x+3−2x+12(x+3)…第二步=2(x−3)2(x+3)−2x+12(x+3)…第三步=2x−6−(2x+1)2(x+3)…第四步=2x−6−2x−12(x+3)…第五步=−72x+6…第六步;任务三:答案不唯一,如:分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律运算,会简化运算过程.故答案为:三;分式的基本性质;分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变;五;括号前面是“−”,去掉括号后,括号里面的第二项没有变号.(1)先算乘方,再算乘法,最后算加减;如果有括号,要先做括号内的运算;(2)①根据分式的基本性质即可判断;②根据分式的加减运算法则即可判断;任务二:依据分式加减运算法则计算可得;任务三:答案不唯一,只要合理即可.本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则及分式的基本性质.同时考查了有理数的混合运算.四、解答题(本大题共7小题,共65.0分)17.2020年5月份,省城太原开展了“活力太原⋅乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.【答案】解:设该电饭煲的进价为x元,则标价为(1+50%)x元,售价为80%×(1+50%)x 元,根据题意,得80%×(1+50%)x−128=568,解得x=580.答:该电饭煲的进价为580元.【解析】设该电饭煲的进价为x元,则售价为80%×(1+50%)x元,根据某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元列出方程,求解即可.此题考查一元一次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.18.如图,四边形OABC是平行四边形,以点O为圆心,OC为半径的⊙O与AB相切于点B,与AO相交于点D,AO的延长线交⊙O于点E,连接EB交OC于点F.求∠C和∠E的度数.【答案】解:连接OB,如图,∵⊙O与AB相切于点B,∴OB⊥AB,∵四边形ABCO为平行四边形,∴AB//OC,OA//BC,∴OB⊥OC,∴∠BOC=90°,∵OB=OC,∴△OCB为等腰直角三角形,∴∠C=∠OBC=45°,∵AO//BC,∴∠AOB=∠OBC=45°,∴∠E=1∠AOB=22.5°.2【解析】连接OB,如图,根据切线的性质得OB⊥AB,再利用平行四边形的性质得AB//OC,OA//BC,则∠BOC=90°,接着计算出∠C=∠OBC=45°,然后利用平行线的性质得到∠AOB=∠OBC=45°,从而根据圆周角定理得到∠E的度数.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了平行四边形的性质和圆周角定理.19.2020年国家提出并部署了“新基建”项目,主要包含“特高压,城际高速铁路和城市轨道交通,5G基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩”等.《2020新基建中高端人才市场就业吸引力报告》重点刻画了“新基建”中五大细分领域(5G基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩)总体的人才与就业机会.如图是其中的一个统计图.请根据图中信息,解答下列问题:(1)填空:图中2020年“新基建”七大领域预计投资规模的中位数是______亿元;(2)甲,乙两位待业人员,仅根据上面统计图中的数据,从五大细分领域中分别选择了“5G 基站建设”和“人工智能”作为自己的就业方向.请简要说明他们选择就业方向的理由各是什么;(3)小勇对“新基建”很感兴趣,他收集到了五大细分领域的图标,依次制成编号为W,G,D,R,X的五张卡片(除编号和内容外,其余完全相同),将这五张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画状图的方法求抽到的两张卡片恰好是编号为W(5G基站建设)和R(人工智能)的概率.【答案】300【解析】解:(1)2020年“新基建”七大领域预计投资规模按照从小到大排列为100、160、200、300、300、500、640,∴图中2020年“新基建”七大领域预计投资规模的中位数是300亿元,故答案为:300;(2)甲更关注在线职位的增长率,在“新基建”五大细分领域中,2020年一季度“5G基站建设”在线职位与2019年同期相比增长率最高;乙更关注预计投资规模,在“新基建”五大细分领域中,“人工智能”在2020年预计投资规模最大;(3)列表如下:由表可知,共有20种等可能结果,其中抽到“W”和“R”的结果有2种,∴抽到的两张卡片恰好是编号为W(5G基站建设)和R(人工智能)的概率220=110.(1)根据统计图,将2020年“新基建”七大领域预计投资规模按照从小到大排列,再利用中位数定义求解可得;(2)分别从2020年一季度“5G基站建设”在线职位与2019年同期相比增长率和2020年预计投资规模角度分析求解可得;(3)列表得出所有等可能结果,从中找到符合条件的结果数,根据概率公式求解可得.本题主要考查条形统计图、折线统计图和列表法与树状图法求概率,根据条形图得出解题所需数据及画树状图列出所有等可能结果是解题的关键.20.阅读与思考如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.×年×月×日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB,现根据木板的情况,要过AB上的一点C,作出AB的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB上量出CD=30cm,然后分别以D,C为圆心,以50cm与40cm为半径画圆弧,两弧相交于点E,作直线CE,则∠DCE必为90°.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M,N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点N对应的位置标记为点Q,保持点N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点M对应的位置标记为点R.然后将RQ延长,在延长线上截取线段QS=MN,得到点S,作直线SC,则∠RCS=90°.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……任务:(1)填空:“办法一”依据的一个数学定理是______;(2)根据“办法二”的操作过程,证明∠RCS=90°;(3)①尺规作图:请在图③的木板上,过点C作出AB的垂线(在木板上保留作图痕迹,不写作法);②说明你的作法所依据的数学定理或基本事实(写出一个即可).【答案】勾股定理的逆定理【解析】解:(1)∵CD=30,DE=50,CE=40,∴CD2+CE2=302+402=502=DE2,∴∠DCE=90°,故“办法一”依据的一个数学定理是勾股定理的逆定理;故答案为:勾股定理的逆定理;(2)由作图方法可知,QP=QC,QS=QC,∴∠QCR=∠QRC,∠QCS=∠QSC,∵∠SRC+∠RCS+∠QRC+∠QSC=180°,∴2(∠QCR+∠QCS)=180°,∴∠QCR+∠QCS=90°,即∠RCS=90°;(3)①如图③所示,直线PC即为所求;②答案不唯一,到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.(1)根据勾股定理的逆定理即可得到结论;(2)根据直角三角形的性质即可得到结论;(3)根据线段垂直平分线的性质即可得到结论.本题考查了勾股定理的逆定理,线段垂直平分线的性质,正确的理解题意是解题的关键.21.图①是某车站的一组智能通道闸机,当行人通过时智能闸机会自动识别行人身份,识别成功后,两侧的圆弧翼闸会收回到两侧闸机箱内,这时行人即可通过.图②是两圆弧翼展开时的截面图,扇形ABC和DEF是闸机的“圆弧翼”,两圆弧翼成轴对称,BC和EF均垂直于地面,扇形的圆心角∠ABC=∠DEF=28°,半径BA=ED=60cm,点A与点D在同一水平线上,且它们之间的距离为10cm.(1)求闸机通道的宽度,即BC与EF之间的距离(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53);(2)经实践调查,一个智能闸机的平均检票速度是一个人工检票口平均检票速度的2倍,180人的团队通过一个智能闸机口比通过一个人工检票口可节约3分钟,求一个智能闸机平均每分钟检票通过的人数.【答案】解:(1)连接AD,并向两方延长,分别交BC,EF于M,N,由点A,D在同一条水平线上,BC,EF均垂直于地面可知,MN⊥BC,MN⊥EF,所以MN的长度就是BC与EF之间的距离,同时,由两圆弧翼成轴对称可得,AM=DN,在Rt△ABM中,∠AMB=90°,∠ABM=28°,AB=60cm,∵sin∠ABM=AMAB,∴AM=AB⋅sin∠ABM=60⋅sin28°≈60×0.47=28.2,∴MN=AM+DN+AD=2AM+AD=28.2×2+10=66.4,∴BC与EF之间的距离为66.4cm;(2)设一个人工检票口平均每分钟检票通过的人数为x人,根据题意得,180x −3=1802x,解得:x=30,经检验,x=30是原方程的根,当x=30时,2x=60,答:一个智能闸机平均每分钟检票通过的人数为60人.【解析】(1)连接AD,并向两方延长,分别交BC,EF于M,N,由点A,D在同一条水平线上,BC,EF均垂直于地面可知,MN⊥BC,MN⊥EF,所以MN的长度就是BC与EF 之间的距离,同时,由两圆弧翼成轴对称可得,AM=DN,解直角三角形即可得到结论;(2)设一个人工检票口平均每分钟检票通过的人数为x人,根据题意列方程即可得到结论.本题考查了解直角三角形的应用,分式方程的应用,正确理解题意是解题的关键.22.综合与实践问题情境:如图①,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBE′(点A的对应点为点C).延长AE交CE′于点F,连接DE.猜想证明:(1)试判断四边形BE′FE的形状,并说明理由;(2)如图②,若DA=DE,请猜想线段CF与FE′的数量关系并加以证明;解决问题:(3)如图①,若AB=15,CF=3,请直接写出DE的长.【答案】解:(1)四边形BE′FE是正方形,理由如下:∵将Rt△ABE绕点B按顺时针方向旋转90°,∴∠AEB=∠CE′B=90°,BE=BE′,∠EBE′=90°,又∵∠BEF=90°,∴四边形BE′FE是矩形,又∵BE=BE′,∴四边形BE′FE是正方形;(2)CF=E′F;理由如下:如图②,过点D作DH⊥AE于H,∵DA=DE,DH⊥AE,AE,DH⊥AE,∴AH=12∴∠ADH+∠DAH=90°,∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠DAH+∠EAB=90°,∴∠ADH=∠EAB,又∵AD=AB,∠AHD=∠AEB=90°,∴△ADH≌△BAE(AAS),∴AH=BE=1AE,2∵将Rt△ABE绕点B按顺时针方向旋转90°,∴AE=CE′,∵四边形BE′FE是正方形,∴BE=E′F,∴E′F=1CE′,2∴CF=E′F;(3)如图①,过点D作DH⊥AE于H,∵四边形BE′FE是正方形,∴BE′=E′F=BE,∵AB=BC=15,CF=3,BC2=E′B2+E′C2,∴225=E′B2+(E′B+3)2,∴E′B=9=BE,∴CE′=CF+E′F=12,由(2)可知:BE=AH=9,DH=AE=CE′=12,∴HE=3,∴DE=√DH2+HE2=√144+9=3√17.【解析】(1)由旋转的性质可得∠AEB=∠CE′B=90°,BE=BE′,∠EBE′=90°,由正方形的判定可证四边形BE′FE是正方形;AE,DH⊥AE,由“AAS”可得(2)过点D作DH⊥AE于H,由等腰三角形的性质可得AH=12AE,由旋转的性质可得AE=CE′,可得结论;△ADH≌△BAE,可得AH=BE=12(3)利用勾股定理可求BE=BE′=9,再利用勾股定理可求DE的长.本题是四边形综合题,考查了正方形的判定和性质,旋转的性质,全等三角形的判定和性质,等腰三角形的性质等知识,灵活运用这些性质进行推理是本题的关键.23.综合与探究x2−x−3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.如图,抛物线y=14直线l与抛物线交于A,D两点,与y轴交于点E,点D的坐标为(4,−3).(1)请直接写出A,B两点的坐标及直线l的函数表达式;(2)若点P是抛物线上的点,点P的横坐标为m(m≥0),过点P作PM⊥x轴,垂足为M.PM 与直线l交于点N,当点N是线段PM的三等分点时,求点P的坐标;(3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.【答案】解:(1)令y =0,得y =14x 2−x −3=0,解得,x =−2,或x =6,∴A(−2,0),B(6,0),设直线l 的解析式为y =kx +b(k ≠0),则{−2k +b =04k +b =−3, 解得,{k =−12b =−1, ∴直线l 的解析式为y =−12x −1;(2)如图1,根据题意可知,点P 与点N 的坐标分别为P(m,14m 2−m −3),N(m,−12m −1),∴PM =−14m 2+m +3,MN =12m +1,NP =−14m 2+12m +2,分两种情况:①当PM=3MN时,得−14m2+m+3=3(12m+1),解得,m=0,或m=−2(舍),∴P(0,−3);②当PM=3NP时,得−14m2+m+3=3(−14m2+12m+2),解得,m=3,或m=−2(舍),∴P(3,−154);∴当点N是线段PM的三等分点时,点P的坐标为(3,−154)或(0,−3);(3)∵直线l:y=−12x−1与y轴于点E,∴点E的坐标为(0,−1),分再种情况:①如图2,当点Q在y轴的正半轴上时,记为点Q1,过Q1作Q1H⊥AD于点H,则∠Q1HE=∠AOE=90°,∵∠Q1EH=∠AEO,∴△Q1EH∽△AEO,∴Q1HAO =EHEO,即Q1H2=EH1∴Q1H=2HE,∵∠Q1DH=45°,∠Q1HD=90°,∴Q1H=DH,∴DH=2EH,∴HE=ED,连接CD,∵C(0,−3),D(4,−3),∴CD⊥y轴,∴ED=√CE2+CD2=√22+42=2√5,∴HE=ED=2√5,Q1H=2EH=4√5,∴Q1E=√Q1H2+EH2=10,∴Q1O=Q1E−OE=9,∴Q1(0,9);②如图3,当点Q在y轴的负半轴上时,记为点Q2,过Q2作Q2G⊥AD于G,则∠Q2GE=∠AOE=90°,∵∠Q2EG=∠AEO,∴△Q2GE∽△AOE,∴Q2GAO =EGOE,即Q2G2=EG1,∴Q2G=2EG,∵∠Q2DG=45°,∠Q2GD=90°,∴∠DQ2G=∠Q2DG=45°,∴DG=Q2G=2EG,∴ED=EG+DG=3EG,由①可知,ED=2√5,∴3EG=2√5,∴EG=2√53,∴Q2G=4√5,3∴EQ2=√EG2+Q2G2=10,3∴OQ2=OE+EQ2=13,3),∴Q2(0,−133).综上,点Q的坐标为(0,9)或(0,−133【解析】(1)令y=0,便可由抛物线的解析式求得A、B点坐标,用待定系数法求得直线AD 的解析式;m2−m−3),用m表示N点坐标,分两种情况:PM=3MN;PM=3PN.分别(2)设P(m,14列出m的方程进行解答便可;(3)分两种情况,Q点在y轴正半轴上时;Q点在y轴负半轴上时.分别解决问题.本题是一个二次函数的综合题,主要考查了二次函数的图象与性质,待定系数法,等腰三角形的性质与判定,勾股定理,第(2)、(3)小题的关键在于分情况讨论.。

2020年山东省青岛市中考数学试题及参考答案(word解析版)

2020年山东省青岛市中考数学试题及参考答案(word解析版)

2020年青岛市初中学业水平考试数学试题(考试时间120分钟,满分120分)第Ⅰ卷(选择题,共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.﹣4的绝对值是()A.4 B.﹣4 C.D.2.下列四个图形中,中心对称图形是()A.B.C.D.3.2020年6月23日,中国第55颗北斗导航卫星成功发射,顺利完成全球组网.其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米=0.000000022米,将0.000000022用科学记数法表示为()A.2.2×108B.2.2×10﹣8C.0.22×10﹣7D.22×10﹣94.如图所示的几何体,其俯视图是()A.B.C.D.5.如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4)B.(2,﹣2)C.(3,﹣2)D.(﹣1,4)6.如图,BD是⊙O的直径,点A,C在⊙O上,=,AC交BD于点G.若∠COD=126°,则∠AGB的度数为()A.99°B.108°C.110°D.117°7.如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A.B.C.2D.48.已知在同一直角坐标系中,二次函数y=ax2+bx和反比例函数y=的图象如图所示,则一次函数y=x﹣b的图象可能是()A.B.C.D.第Ⅱ卷非选择题(共96分)二、填空题(本大题共6小题,每小题3分,共18分)9.计算:(﹣)×=.10.某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么将被录用(填甲或乙).应聘者/项目甲乙学历9 8经验7 6工作态度 5 711.如图,点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB的面积为6.若点P(a,7)也在此函数的图象上,则a=.12.抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是.13.如图,在正方形ABCD中,对角线AC与BD交于点O,点E在CD的延长线上,连接AE,点F是AE的中点,连接OF交AD于点G.若DE=2,OF=3,则点A到DF的距离为.14.如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=120°,AB+AC=16,的长为π,则图中阴影部分的面积为.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)已知:△ABC.求作:⊙O,使它经过点B和点C,并且圆心O在∠A的平分线上.四、解答题(本大题共9小题,共74分)16.(8分)(1)计算:(+)÷(﹣);(2)解不等式组:17.(6分)小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A,B是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形.同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请说明理由.18.(6分)如图,在东西方向的海岸上有两个相距6海里的码头B,D,某海岛上的观测塔A距离海岸5海里,在A处测得B位于南偏西22°方向.一艘渔船从D出发,沿正北方向航行至C处,此时在A处测得C位于南偏东67°方向.求此时观测塔A与渔船C之间的距离(结果精确到0.1海里).(参考数据:sin22°≈,cos22°≈,tan22°≈,sin67°≈,cos67°≈,tan67°≈)19.(6分)某校为调查学生对海洋科普知识的了解情况,从全校学生中随机抽取n名学生进行测试,测试成绩进行整理后分成五组,并绘制成如图的频数直方图和扇形统计图.请根据图中信息解答下列问题:(1)补全频数直方图;(2)在扇形统计图中,“70~80”这组的百分比m=;(3)已知“80~90”这组的数据如下:81,83,84,85,85,86,86,86,87,88,88,89.抽取的n名学生测试成绩的中位数是分;(4)若成绩达到80分以上(含80分)为优秀,请你估计全校1200名学生对海洋科普知识了解情况为优秀的学生人数.20.(8分)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)连接AF,CE.当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.22.(10分)某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM =2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?23.(10分)实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a (1<a<n)个整数,这a个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表①所取的2个整数1,2 1,3 2,32个整数之和 3 4 5如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表②所取的2个整数1,2 1,3 1,4 2,3 2,4 3,42个整数之和 3 4 5 5 6 7 如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有种不同的结果.(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和共有种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有种不同的结果.(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和共有种不同的结果.探究三:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和共有种不同的结果.归纳结论:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,n+3(n为整数,且n≥2)这(n+1)个整数中任取a(1<a<n+1)个整数,这a个整数之和共有种不同的结果.24.(12分)已知:如图,在四边形ABCD和Rt△EBF中,AB∥CD,CD>AB,点C在EB上,∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,延长DC交EF于点M.点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s.过点P作GH⊥AB于点H,交CD于点G.设运动时间为t(s)(0<t<5).解答下列问题:(1)当t为何值时,点M在线段CQ的垂直平分线上?(2)连接PQ,作QN⊥AF于点N,当四边形PQNH为矩形时,求t的值;(3)连接QC,QH,设四边形QCGH的面积为S(cm2),求S与t的函数关系式;(4)点P在运动过程中,是否存在某一时刻t,使点P在∠AFE的平分线上?若存在,求出t的值;若不存在,请说明理由.答案与解析第Ⅰ卷(选择题,共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.﹣4的绝对值是()A.4 B.﹣4 C.D.【知识考点】绝对值.【思路分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解题过程】解:∵|﹣4|=4,∴﹣4的绝对值是4.故选:A.【总结归纳】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.下列四个图形中,中心对称图形是()A.B.C.D.【知识考点】中心对称图形.【思路分析】根据中心对称图形的概念结合各图形的特点求解.【解题过程】解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、是中心对称图形,符合题意.故选:D.【总结归纳】本题考查了中心对称图形与轴对称图形的概念.判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.2020年6月23日,中国第55颗北斗导航卫星成功发射,顺利完成全球组网.其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米=0.000000022米,将0.000000022用科学记数法表示为()A.2.2×108B.2.2×10﹣8C.0.22×10﹣7D.22×10﹣9【知识考点】科学记数法—表示较小的数.【思路分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解题过程】解:将0.000000022用科学记数法表示为2.2×10﹣8.故选:B.【总结归纳】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.如图所示的几何体,其俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解题过程】解:从上面看是一个矩形,矩形的中间处有两条纵向的实线,实线的两旁有两条纵向的虚线.故选:A.【总结归纳】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4)B.(2,﹣2)C.(3,﹣2)D.(﹣1,4)【知识考点】坐标与图形变化﹣平移;坐标与图形变化﹣旋转.【思路分析】根据平移和旋转的性质,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,即可得点A的对应点A′的坐标.【解题过程】解:如图,△A′B′C′即为所求,则点A的对应点A′的坐标是(﹣1,4).故选:D.【总结归纳】本题考查了坐标与图形变换﹣旋转、平移,解决本题的关键是掌握旋转的性质.6.如图,BD是⊙O的直径,点A,C在⊙O上,=,AC交BD于点G.若∠COD=126°,则∠AGB的度数为()A.99°B.108°C.110°D.117°【知识考点】圆心角、弧、弦的关系;圆周角定理.【思路分析】根据圆周角定理得到∠BAD=90°,∠DAC=∠COD=63°,再由=得到∠B=∠D=45°,然后根据三角形外角性质计算∠AGB的度数.【解题过程】解:∵BD是⊙O的直径,∴∠BAD=90°,∵=,∴∠B=∠D=45°,∵∠DAC=∠COD=×126°=63°,∴∠AGB=∠DAC+∠D=63°+45°=108°.故选:B.【总结归纳】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.7.如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A.B.C.2D.4【知识考点】矩形的性质;翻折变换(折叠问题).【思路分析】由矩形的性质,折叠轴对称的性质,可求出AF=FC=AE=5,由勾股定理求出AB,AC,进而求出OA即可.【解题过程】解:∵矩形ABCD,∴AD∥BC,AD=BC,AB=CD,∴∠EFC=∠AEF,∴AE=AF=3,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB==4,在Rt△ABC中,AC==4,∴OA=OC=2,故选:C.【总结归纳】本题考查矩形的性质、折叠轴对称的性质,勾股定理等知识,根据图形直观,求出线段的长是得出答案的前提.8.已知在同一直角坐标系中,二次函数y=ax2+bx和反比例函数y=的图象如图所示,则一次函数y=x﹣b的图象可能是()A.B.C.D.【知识考点】一次函数的图象;反比例函数的图象;二次函数的图象.【思路分析】根据反比例函数图象和二次函数图象经过的象限,即可得出a<0、b>0、c>0,由此即可得出<0,﹣b<0,即可得出一次函数y=x﹣b的图象经过二三四象限,再对照四个选项中的图象即可得出结论.【解题过程】解:∵二次函数开口向下,∴a<0;∵二次函数的对称轴在y轴右侧,左同右异,∴b符号与a相异,b>0;∵反比例函数图象经过一三象限,∴c>0,∴<0,﹣b<0,∴一次函数y=x﹣b的图象经过二三四象限.故选:B.【总结归纳】本题考查了反比例函数的图象、一次函数的图象以及二次函数的图象,根据反比例函数图象和二次函数图象经过的象限,找出a<0、b>0、c>0是解题的关键.第Ⅱ卷非选择题(共96分)二、填空题(本大题共6小题,每小题3分,共18分)9.计算:(﹣)×=.【知识考点】二次根式的混合运算.【思路分析】先化简括号内的二次根式,再合并括号内的同类二次根式,最后计算乘法即可得.【解题过程】解:原式=(2﹣)×=×=4,故答案为:4.【总结归纳】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.10.某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么将被录用(填甲或乙).应聘者/项目甲乙学历9 8经验7 6工作态度 5 7【知识考点】加权平均数.【思路分析】根据加权平均数的定义列式计算,比较大小,平均数大者将被录取.【解题过程】解:∵==,==,∴<,∴乙将被录用,故答案为:乙.【总结归纳】本题主要考查加权平均数,若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则(x1w1+x2w2+…+x n w n)÷(w1+w2+…+w n)叫做这n个数的加权平均数.11.如图,点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB 的面积为6.若点P(a,7)也在此函数的图象上,则a=.【知识考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【思路分析】根据反比例函数系数k的几何意义求得k的值,即可求得反比例函数的解析式,代入点P,即可求得a.【解题过程】解:∵AB垂直于x轴,垂足为B,∴△OAB的面积=|k|,即|k|=6,而k>0,∴k=12,∴反比例函数为y=,∵点P(a,7)也在此函数的图象上,∴7a=12,解得a=.故答案为.【总结归纳】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.12.抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是.【知识考点】抛物线与x轴的交点.【思路分析】根据抛物线的解析式和二次函数的性质可以求得抛物线y=2x2+2(k﹣1)x﹣k(k 为常数)与x轴交点的个数,本题得以解决.【解题过程】解:∵抛物线y=2x2+2(k﹣1)x﹣k(k为常数),∴当y=0时,0=2x2+2(k﹣1)x﹣k,∴△=[2(k﹣1)]2﹣4×2×(﹣k)=4k2+4>0,∴0=2x2+2(k﹣1)x﹣k有两个不相等的实数根,∴抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴有两个交点,故答案为:2.【总结归纳】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.13.如图,在正方形ABCD中,对角线AC与BD交于点O,点E在CD的延长线上,连接AE,点F是AE的中点,连接OF交AD于点G.若DE=2,OF=3,则点A到DF的距离为.【知识考点】全等三角形的判定与性质;直角三角形斜边上的中线;三角形中位线定理;正方形的性质.【思路分析】根据正方形的性质得到AO=DO,∠ADC=90°,求得∠ADE=90°,根据直角三角形的性质得到DF=AF=EF=AE,根据三角形中位线定理得到FG=DE=1,求得AD=CD=4,过A作AH⊥DF于H,根据相似三角形的性质和勾股定理即可得到结论.【解题过程】解:∵在正方形ABCD中,对角线AC与BD交于点O,∴AO=DO,∠ADC=90°,∴∠ADE=90°,∵点F是AE的中点,∴DF=AF=EF=AE,∴OF垂直平分AD,∴AG=DG,∴FG=DE=1,∵OF=2,∴OG=2,∵AO=CO,∴CD=2OG=4,∴AD=CD=4,过A作AH⊥DF于H,∴∠H=∠ADE=90°,∵AF=DF,∴∠ADF=∠DAE,∴△ADH∽△AED,∴=,∴AE===2,∴=,∴AH=,即点A到DF的距离为,故答案为:.【总结归纳】本题考查了正方形的性质,相似三角形的判定和性质,线段垂直平分线的性质,三角形中位线定理,勾股定理,直角三角形的性质,正确的识别图形是解题的关键.14.如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=120°,AB+AC=16,的长为π,则图中阴影部分的面积为.【知识考点】切线的性质;弧长的计算;扇形面积的计算.【思路分析】连接OM、ON,根据半圆分别与AB,AC相切于点M,N.可得OM⊥AB,ON⊥AC,由∠BAC=120°,可得∠MON=60°,得∠MOB+∠NOC=120°,再根据的长为π,可得OM=ON=r=3,连接OA,根据Rt△AON中,∠AON=30°,ON=3,可得AM=AN=,进而可求图中阴影部分的面积.【解题过程】解:如图,连接OM、ON,∵半圆分别与AB,AC相切于点M,N.∴OM⊥AB,ON⊥AC,∵∠BAC=120°,∴∠MON=60°,∴∠MOB+∠NOC=120°,∵的长为π,∴=π,∴r=3,∴OM=ON=r=3,连接OA,在Rt△AON中,∠AON=30°,ON=3,∴AN=,∴AM=AN=,∴BM+CN=AB+AC﹣(AM+AN)=16﹣2,∴S阴影=S△OBM+S△OCN﹣(S扇形MOE+S扇形NOF)=3×(BM+CN)﹣()=(16﹣2)﹣3π=24﹣3﹣3π.故答案为:24﹣3﹣3π.【总结归纳】本题考查了切线的性质、弧长的计算、扇形面积的计算,解决本题的关键是掌握弧长和扇形面积的计算公式.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)已知:△ABC.求作:⊙O,使它经过点B和点C,并且圆心O在∠A的平分线上.【知识考点】作图—复杂作图.【思路分析】作出∠A的平分线和线段BC的垂直平分线,找到它们的交点,即为圆心O,再以OB为半径画出⊙O,得出答案.【解题过程】解:如图所示:⊙O即为所求.【总结归纳】此题主要考查了复杂作图,正确掌握角平分线和垂直平分线的作法是解题关键.四、解答题(本大题共9小题,共74分)16.(8分)(1)计算:(+)÷(﹣);(2)解不等式组:【知识考点】分式的混合运算;解一元一次不等式组.【思路分析】(1)先计算括号内分式的加减运算,再将除法转化为乘法,最后约分即可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解题过程】解:(1)原式=(+)÷(﹣)=÷=•=;(2)解不等式2x﹣3≥﹣5,得:x≥﹣1,解不等式x+2<x,得:x>3,则不等式组的解集为x>3.【总结归纳】本题考查的是解一元一次不等式组和分式的混合运算,正确求出每一个不等式解集并掌握分式的混合运算顺序和运算法则是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(6分)小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A,B是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形.同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请说明理由.【知识考点】列表法与树状图法;游戏公平性.【思路分析】用列表法表示所有可能出现的结果情况,进而求出小亮、小颖去的概率,进而判断游戏是否公平.【解题过程】解:用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中配成紫色的有3种,配不成紫色的有3种,∴P(小颖)==,P(小亮)==,因此游戏是公平.【总结归纳】本题考查列表法或树状图法求随机事件的发生的概率,列举出所有可能出现的结果数,是解决问题的前提.18.(6分)如图,在东西方向的海岸上有两个相距6海里的码头B,D,某海岛上的观测塔A距离海岸5海里,在A处测得B位于南偏西22°方向.一艘渔船从D出发,沿正北方向航行至C处,此时在A处测得C位于南偏东67°方向.求此时观测塔A与渔船C之间的距离(结果精确到0.1海里).(参考数据:sin22°≈,cos22°≈,tan22°≈,sin67°≈,cos67°≈,tan67°≈)【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】过点A作AE⊥BD于点E,过点C作CF⊥AE于点F,得矩形CDEF,再根据锐角三角函数即可求出观测塔A与渔船C之间的距离.【解题过程】解:如图,过点A作AE⊥BD于点E,过点C作CF⊥AE于点F,得矩形CDEF,∴CF=DE,根据题意可知:AE=5,∠BAE=22°,∴BE=AE•tan22°=5×=2,∴DE=BD﹣BE=6﹣2=4,∴CF=4,在Rt△AFC中,∠CAF=67°,∴AC==4×=4.33(海里).答:观测塔A与渔船C之间的距离约为4.33海里.【总结归纳】本题考查了解直角三角形的应用﹣方向角问题,解决本题的关键是掌握方向角定义.19.(6分)某校为调查学生对海洋科普知识的了解情况,从全校学生中随机抽取n名学生进行测试,测试成绩进行整理后分成五组,并绘制成如图的频数直方图和扇形统计图.请根据图中信息解答下列问题:(1)补全频数直方图;(2)在扇形统计图中,“70~80”这组的百分比m=;(3)已知“80~90”这组的数据如下:81,83,84,85,85,86,86,86,87,88,88,89.抽取的n名学生测试成绩的中位数是分;(4)若成绩达到80分以上(含80分)为优秀,请你估计全校1200名学生对海洋科普知识了解情况为优秀的学生人数.【知识考点】用样本估计总体;频数(率)分布直方图;扇形统计图;中位数.【思路分析】(1)求出调查人数,和“90﹣100”的人数即可补全频数直方图;(2)用“70﹣80”的频数10除以调查人数50 即可得出m的值;(3)利用中位数的意义,求出中间位置的两个数的平均数,即可得出中位数;(4)样本估计总体,样本中优秀所占的百分比为,因此估计总体1200人的是优秀的人数.【解题过程】解:(1)8÷16%=50(人),50﹣4﹣8﹣10﹣12=16(人),补全频数直方图如图所示:(2)m=10÷50=20%,故答案为:20%;(3)将50个数据从小到大排列后,处在第25、26位的两个数的平均数为=84.5,因此中位数是84.5,故答案为:84.5;(4)1200×=672(人),答:全校1200名学生对海洋科普知识了解情况为优秀的学生有672人.【总结归纳】本题考查频数分布直方图、扇形统计图的意义和制作方法,理解和掌握统计图中的数量关系是正确计算的关键.20.(8分)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?【知识考点】一次函数的应用.【思路分析】(1)根据函数图象中的数据,可以求得游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并计算出同时打开甲、乙两个进水口的注水速度;(2)根据题意和(1)中的结果,可以得到甲进水管的进水速度,从而可以求得单独打开甲进水口注满游泳池需多少小时.【解题过程】解:(1)设y与t的函数解析式为y=kt+b,,解得,,即y与t的函数关系式是y=140t+100,同时打开甲、乙两个进水口的注水速度是:(380﹣100)÷2=140(m3/h);(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.∴甲进水口进水的速度是乙进水口进水速度的,∵同时打开甲、乙两个进水口的注水速度是140m3/h,∴甲进水口的进水速度为:140÷(+1)×=60(m3/h),480÷60=8(h),即单独打开甲进水口注满游泳池需8h.【总结归纳】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.。

湖北省武汉市2020年中考数学试题(解析版)

湖北省武汉市2020年中考数学试题(解析版)

湖北省武汉市2020年中考数学真题一、选择题1.2-的相反数是( ) A. 2- B. 2C.12D. 12-【答案】B 【解析】 分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2相反数是2, 故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .2.x 的取值范围是( ) A. 0x ≥ B. 2x ≥-C. 2x ≤D. 2x ≥【答案】D 【解析】 【分析】由二次根式有意义的条件列不等式可得答案.20,x ∴-≥2.x ∴≥故选D .【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数为非负数是解题的关键. 3.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是( ) A. 两个小球的标号之和等于1 B. 两个小球的标号之和等于6 C. 两个小球的标号之和大于1 D. 两个小球的标号之和大于6【答案】B 【解析】 【分析】随机事件是指在某个条件下有可能发生有可能不会发生的事件,根据此定义即可求解.【详解】解:从两个口袋中各摸一个球,其标号之和最大为6,最小为2,选项A:“两个小球的标号之和等于1”为不可能事件,故选项A错误;选项B:“两个小球的标号之和等于6”为随机事件,故选项B正确;选项C:“两个小球的标号之和大于1”为必然事件,故选项C错误;选项D:“两个小球的标号之和大于6”为不可能事件,故选项D错误.故选:B.【点睛】本题考查了随机事件、不可能事件、必然事件的概念,熟练掌握各事件的定义是解决本题的关键.4.现实世界中,对称现象无处不在,中国的方块字中有些也只有对称性,下列汉字是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形的定义“在平面内,一个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形”逐项判断即可得.【详解】A、不是轴对称图形,此项不符题意B、不是轴对称图形,此项不符题意C、是轴对称图形,此项符合题意D、不是轴对称图形,此项不符题意故选:C.【点睛】本题考查了轴对称图形的定义,熟记定义是解题关键.5.下图是由4个相同的正方体组成的立体图形,它的左视图是()A. B. C. D.【答案】A【解析】分析】根据左视图的定义即可求解. 【详解】根据图形可知左视图为故选A .【点睛】此题主要考查三视图,解题的关键是熟知左视图的定义.6.某班从甲、乙、丙、丁四位选中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手概率是( ) A.13B.14C.16D.18【答案】C 【解析】 【分析】画出树状图展示所有12种等可能的结果数,再根据概率公式即可求解. 【详解】画树状图为:∴P (选中甲、乙两位)=21126= 故选C .【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率. 7.若点()11,A a y -,()21,B a y +在反比例函数(0)ky k x=<的图象上,且12y y >,则a 的取值范围是( ) A. 1a <- B. 11a -<<C. 1a >D. 1a <-或1a >【答案】B 【解析】 【分析】 由反比例函数(0)ky k x=<,可知图象经过第二、四象限,在每个象限内,y 随x 的增大而增大,由此分三种情况①若点A 、点B 在同在第二或第四象限;②若点A 在第二象限且点B 在第四象限;③若点A在第四象限且点B 在第二象限讨论即可. 【详解】解:∵反比例函数(0)ky k x=<, ∴图象经过第二、四象限,在每个象限内,y 随x 的增大而增大, ①若点A 、点B 同在第二或第四象限, ∵12y y >, ∴a-1>a+1, 此不等式无解;②若点A 在第二象限且点B 在第四象限, ∵12y y >, ∴1010a a -⎧⎨+⎩<>,解得:11a -<<;③由y 1>y 2,可知点A 在第四象限且点B 在第二象限这种情况不可能. 综上,a 的取值范围是11a -<<. 故选:B .【点睛】本题考查反比例函数的图象和性质,熟练掌握反比例函数的图象和性质是解题的关键,注意要分情况讨论,不要遗漏.8.一个容器有进水管和出水管,每分钟的进水和出水是两个常数.从某时刻开始4min 内只进水不出水,从第4min 到第24min 内既进水又出水,从第24min 开始只出水不进水,容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则图中a 的值是( )A. 32B. 34C. 36D. 38【答案】C 【解析】 【分析】设每分钟的进水量为bL ,出水量为cL ,先根据函数图象分别求出b 、c 的值,再求出24x =时,y 的值,然后根据每分钟的出水量列出等式求解即可.【详解】设每分钟的进水量为bL ,出水量为cL 由第一段函数图象可知,205()4b L == 由第二段函数图象可知,20(164)(164)35b c +---= 即201251235c +⨯-= 解得15()4c L =则当24x =时,1520(244)5(244)454y =+-⨯--⨯= 因此,45452412154a c-=== 解得36(min)a = 故选:C .【点睛】本题考查了函数图象的应用,理解题意,从函数图象中正确获取信息,从而求出每分钟的进水量和出水量是解题关键.9.如图,在半径为3的⊙O 中,AB 是直径,AC 是弦,D 是AC 的中点,AC 与BD 交于点E .若E 是BD 的中点,则AC 的长是( )B.C.D.【答案】D 【解析】 【分析】连接DO 、DA 、DC ,设DO 与AC 交于点H ,证明△DHE ≌△BCE ,得到DH=CB ,同时OH 是三角形ABC 中位线,设OH=x ,则BC=2x=DH ,故半径DO=3x ,解出x ,最后在Rt △ACB 中由勾股定理即可求解.【详解】解:连接DO 、DA 、DC 、OC ,设DO 与AC 交于点H ,如下图所示,∵D是AC的中点,∴DA=DC,∴D在线段AC的垂直平分线上,∵OC=OA,∴O在线段AC的垂直平分线上,∴DO⊥AC,∠DHC=90°,∵AB是圆的直径,∴∠BCA=90°,∵E是BD的中点,∴DE=BE,且∠DEH=∠BEC,∴△DHE≌△BCE(AAS),∴DH=BC,又O是AB中点,H是AC中点,∴HO是△ABC的中位线,设OH=x,则BC=DH=2x,∴OD=3x=3,∴x=1,即BC=2x=2,在Rt△ABC中,==AC故选:D.【点睛】本题考查了圆周角定理、三角形全等、勾股定理等,属于综合题,熟练掌握其性质和定理是解决此题的关键10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张⨯方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方由6个小正方形组成的32⨯方格纸片,将“L”形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的66形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A. 160B. 128C. 80D. 48【答案】A【解析】【分析】先计算出66⨯方格纸片中共含有多少个32⨯方格纸片,再乘以4即可得.【详解】由图可知,在66⨯方格纸片中,32⨯方格纸片个数为54240⨯⨯=(个)则404160n=⨯=故选:A.【点睛】本题考查了图形类规律探索,正确得出在66⨯方格纸片中,32⨯方格纸片的个数是解题关键.二、填空题11._______.【答案】3【解析】【分析】根据二次根式的性质进行求解即可.=3-=3,故答案为3.a=是解题的关键.12.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是________.【答案】4.5【解析】【分析】根据中位数的定义即可得.【详解】将这组数据按从小到大进行排序为3,3,4,5,5,6 则这组数据的中位数是454.52+= 故答案为:4.5.【点睛】本题考查了中位数的定义,熟记定义是解题关键.13.计算2223m nm n m n --+-的结果是________. 【答案】1m n- 【解析】 【分析】根据分式的减法法则进行计算即可. 【详解】原式2()3()()()()m n m nm n m n m n m n ---+=+--223()()m n m nm n m n --=++-()()m nm n m n =++-1m n=- 故答案为:1m n-. 【点睛】本题考查了分式的减法运算,熟记运算法则是解题关键.14.在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC 是平行四边形ABCD 的对角线,点E 在AC 上,AD AE BE ==,102D ︒∠=,则BAC ∠的大小是________.【答案】26°. 【解析】 【分析】设∠BAC=x ,然后结合平行四边形的性质和已知条件用x 表示出∠EBA 、∠BEC 、 ∠BCE 、 ∠BEC 、 ∠DCA 、∠DCB ,最后根据两直线平行同旁内角互补,列方程求出x 即可.【详解】解:设∠BAC=x ∵平行四边形ABCD 的对角线 ∴DC//AB,AD=BC,AD//BC ∴∠DCA=∠BAC=x ∵AE=BE∴∠EBA =∠BAC=x ∴∠BEC =2x ∵AD AE BE == ∴BE=BC∴∠BCE=∠BEC =2x ∴∠DCB=∠BCE+∠DCA=3x ∵AD//BC ,102D ︒∠=∴∠D+∠DCB=180°,即102°+3x=180°,解得x=26°. 故答案为26°.【点睛】本题主要考查了平行四边形的性质、等腰三角形的判定和性质,运用平行四边形结合已知条件判定等腰三角形和掌握方程思想是解答本题的关键.15.抛物线2y ax bx c =++(a ,b ,c 为常数,0a <)经过(2,0)A ,(4,0)B -两点,下列四个结论: ①一元二次方程20ax bx c ++=的根为12x =,24x =-; ②若点()15,C y -,()2,D y π在该抛物线上,则12y y <; ③对于任意实数t ,总有2at bt a b +≤-;④对于a 的每一个确定值,若一元二次方程2ax bx c p ++=(p 为常数,0p >)的根为整数,则p 的值只有两个.其中正确的结论是________(填写序号). 【答案】①③ 【解析】 【分析】①根据二次函数与一元二次方程的联系即可得;②先点(2,0)A ,(4,0)B -得出二次函数的对称轴,再根据二次函数的对称性与增减性即可得;③先求出二次函数的顶点坐标,再根据二次函数图象的平移规律即可得;④先将抛物线2y ax bx c =++向下平移p 个单位长度得到的二次函数解析式为2y ax bx c p =++-,再根据二次函数与一元二次方程的联系即可得.【详解】抛物线2y ax bx c =++经过(2,0)A ,(4,0)B -两点∴一元二次方程20ax bx c ++=的根为12x =,24x =-,则结论①正确抛物线的对称轴为4212x -+==- ∴3x =时的函数值与5x =-时的函数值相等,即为1y 0a <∴当1x ≥-时,y 随x 的增大而减小又13π-<<12y y ∴>,则结论②错误当1x =-时,y a b c =-+则抛物线的顶点的纵坐标为a b c -+,且0a b c -+>将抛物线2y ax bx c =++向下平移a b c -+个单位长度得到的二次函数解析式为22()y ax bx c a b c ax bx a b =++--+=+-+由二次函数图象特征可知,2y ax bx a b =+-+的图象位于x 轴的下方,顶点恰好在x 轴上 即0y ≤恒成立则对于任意实数t ,总有20at bt a b +-+≤,即2at bt a b +≤-,结论③正确将抛物线2y ax bx c =++向下平移p 个单位长度得到的二次函数解析式为2y ax bx c p =++- 函数2y ax bx c p =++-对应的一元二次方程为20ax bx c p ++-=,即2ax bx c p ++=因此,若一元二次方程2ax bx c p ++=的根为整数,则其根只能是121,3x x ==-或120,2x x ==-或121x x ==-对应的p 的值只有三个,则结论④错误 综上,结论正确的是①③ 故答案为:①③.【点睛】本题考查了二次函数的图象与性质(对称性、增减性)、二次函数图象的平移问题、二次函数与一元二次方程的联系等知识点,熟练掌握并灵活运用二次函数的图象与性质是解题关键.16.如图,折叠矩形纸片ABCD ,使点D 落在AB 边的点M 处,EF 为折痕,1AB =,2AD =.设AM 的长为t ,用含有t 的式子表示四边形CDEF 的面积是________.【答案】211144t t -+ 【解析】 【分析】首先根据题意可以设DE =EM =x ,在三角形AEM 中用勾股定理进一步可以用t 表示出x ,再可以设CF =y ,连接MF ,所以BF =2−y ,在三角形MFN 与三角形MFB 中利用共用斜边,根据勾股定理可求出用t 表示出y ,进而根据四边形的面积公式可以求出答案. 【详解】设DE =EM =x , ∴222(2)x x t =-+,∴x =244t + ,设CF =y ,连接FM ,∴BF =2−y , 又∵FN = y ,NM =1,∴22221(2)(1)y y t +=-+-,∴y =2244t t -+,∴四边形CDEF 的面积为:1()2x y CD +=221424()244t t t +-++∙1,故答案为:211144t t -+. 【点睛】本题主要考查了勾股定理的综合运用,熟练掌握技巧性就可得出答案.三、解答题17.计算:()235423a a a a ⎡⎤⋅+÷⎢⎥⎣⎦.【答案】610a 【解析】 【分析】根据同底数幂相乘、乘积的幂、幂的乘方、同底数幂相除运算法则逐步求解即可. 【详解】解:原式35829()+÷+=a a a8829)(+÷=a a a8210=÷a a 610=a .【点睛】本题考查了整式的乘除中幂的运算法则,熟练掌握公式及其运算法则是解决此类题的关键. 18.如图,直线EF 分别与直线AB ,CD 交于点E ,F .EM 平分BEF ∠,FN 平分CFE ∠,且EM ∥FN .求证:AB ∥CD .【答案】证明见解析. 【解析】 【分析】先根据角平分线的定义可得11,22MEF BEF N CF FE E ∠=∠∠∠=,再根据平行线的性质可得MEF NFE ∠=∠,从而可得BEF CFE ∠=∠,然后根据平行线的判定即可得证.【详解】EM 平分BEF ∠,FN 平分CFE ∠11,22MEF BEF NF CFE E ∠=∠∠∠=∴ EM //FN MEF NFE ∠=∠∴1122BEF CFE ∴∠=∠,即BEF CFE ∠=∠ //AB CD ∴.【点睛】本题考查了平行线的判定与性质、角平分线的定义等知识点,熟记平行线的判定与性质是解题关键.19.为改善民生;提高城市活力,某市有序推行“地摊经济”政策.某社区志愿者随机抽取该社区部分居民,按四个类别:A 表示“非常支持”,B 表示“支持”,C 表示“不关心”,D 表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如下两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了________名居民进行调查统计,扇形统计图中,D 类所对应的扇形圆心角的大小是________;(2)将条形统计图补充完整;(2)该社区共有2000名居民,估计该社区表示“支持”的B 类居民大约有多少人?【答案】(1)60,18︒;(2)图见解析;(3)该社区表示“支持”的B 类居民大约有1200人. 【解析】 【分析】(1)根据C 类的条形统计图和扇形统计图的信息可得出总共抽取的人数,再求出D 类居民人数的占比,然后乘以360︒即可得;(2)根据(1)的结论,先求出A 类居民的人数,再补全条形统计图即可; (3)先求出表示“支持”的B 类居民的占比,再乘以2000即可得. 【详解】(1)总共抽取的居民人数为915%60÷=(名) D 类居民人数的占比为3100%5%60⨯= 则D 类所对应的扇形圆心角的大小是3605%18⨯︒=︒ 故答案为:60,18︒;(2)A 类居民的人数为60369312---=(名) 补全条形统计图如下所示:(3)表示“支持”的B 类居民的占比为36100%60%60⨯= 则200060%1200⨯=(名)答:该社区表示“支持”的B 类居民大约有1200人.【点睛】本题考查了条形统计图和扇形统计图的信息关联、画条形统计图等知识点,熟练掌握统计调查的相关知识是解题关键.20.在8×5的网格中建立如图的平面直角坐标系,四边形OABC 的顶点坐标分别为(0,0)O ,(3,4)A ,(8,4)B ,(5,0)C .仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB 绕点C 逆时针旋转90︒,画出对应线段CD ; (2)在线段AB 上画点E ,使45BCE ︒∠=(保留画图过程的痕迹); (3)连接AC ,画点E 关于直线AC 的对称点F ,并简要说明画法. 【答案】(1)见解析;(2)见解析;(3)见解析 【解析】 【分析】(1)根据题意,将线段CD 是将线段CB 绕点C 逆时针旋转90︒即可; (2)连接BD ,并连接(4,2),(5,5)点,两线段的交点即为所求的点E. (3)连接(5,0)和(0,5)点,与AC 的交点为F,且F 为所求.【详解】解:(1)如图示,线段CD 是将线段CB 绕点C 逆时针旋转90︒得到的;(2)∠BCE 为所求的角,点E 为所求的点.(3)连接(5,0)和(0,5)点,与AC 的交点为F,且F 为所求.【点睛】本题考查了作图-旋转变换,正方形的性质,全等三角形的性质和轴对称的性质,熟悉相关性质是解题的关键.21.如图,在Rt ABC 中,90ABC ∠=︒,以AB 为直径的⊙O 交AC 于点D ,AE 与过点D 的切线互相垂直,垂足为E .(1)求证:AD 平分BAE ∠; (2)若CD DE =,求sin BAC ∠的值.【答案】(1)证明见解析;(2)sin BAC ∠. 【解析】【分析】(1)如图(见解析),先根据圆的切线的性质可得OD DE ⊥,再根据平行线的判定与性质可得DAE ADO ∠=∠,然后根据等腰三角形的性质可得DAO ADO ∠=∠,最后根据角平分线的定义即可得证;(2)如图(见解析),先根据角的和差、等量代换可得ADE C ∠=∠,再根据三角形全等的判定定理与性质可得AD BC =,设,AD BC a CD x ===,然后根据相似三角形的判定与性质可得AC BCBC CD=,从而可求出x 的值,最后根据正弦三角函数的定义即可得. 【详解】(1)如图,连接OD 由圆的切线的性质得:OD DE ⊥AE DE ⊥//OD AE ∴ DAE ADO ∴∠=∠又OA OD =DAO ADO ∴∠=∠ DAE DAO ∴∠=∠则AD 平分BAE ∠; (2)如图,连接BD由圆周角定理得:90ADB ∠=︒90BDC ∴∠=︒90ABC ∠=︒ 90DAO C ∴∠+∠=︒ 90DAE ADE ∠+∠=︒ADE C ∴∠=∠在ADE 和BCD 中,90E BDC DE CDADE C ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()ADE BCD ASA ∴≅AD BC ∴=设,AD BC a CD x ===,则AC AD CD a x =+=+,且0,0a x >>在ACB △和BCD 中,90C CABC BDC ∠=∠⎧⎨∠=∠=︒⎩ACB BCD ∴~AC BC BC CD ∴=,即a x aa x+=解得x =0x =<(不符题意,舍去)经检验,x =是所列分式方程的解AC a ∴=+=则在Rt ABC中,sin BC BAC AC ∠===故sin BAC ∠.【点睛】本题考查了圆周角定理、圆的切线的性质、正弦三角函数、相似三角形的判定与性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形和相似三角形是解题关键.22.某公司分别在A ,B 两城生产同种产品,共100件.A 城生产品的总成本y (万元)与产品数量x (件)之间具有函数关系2y ax bx c =++,当10x =时,400y =;当20x 时,1000y =.B 城生产产品的每件成本为70万元. (1)求a ,b 的值;(2)当A ,B 两城生产这批产品的总成本的和最少时,求A ,B 两城各生产多少件?(3)从A 城把该产品运往C ,D 两地的费用分别为m 万元/件和3万元/件;从B 城把该产品运往C ,D 两地的费用分别为1万元/件和2万元/件,C 地需要90件,D 地需要10件,在(2)的条件下,直接写出A ,B 两城总运费的和的最小值(用含有m 的式子表示). 【答案】(1)1a =,30b =;(2)A 城生产20件,B 城生产80件;(3)当02m <≤时,A ,B 两城总运费的和的最小值为(2090)m +万元;当2m >时,A ,B 两城总运费的和的最小值为(10110)m +万元. 【解析】 【分析】(1)先根据题意得出产品数量为0时,总成本y 也为0,再利用待定系数法即可求出a 、b 的值; (2)先根据(1)的结论得出y 与x 的函数关系式,从而可得出A ,B 两城生产这批产品的总成本的和,再根据二次函数的性质即可得;(3)设从A 城运往C 地的产品数量为n 件,A ,B 两城总运费的和为P ,先列出从A 城运往D 地的产品数量、从B 城运往C 地的产品数量、从B 城运往D 地的产品数量,再求出n 的取值范围,然后根据题干运费信息列出P 与n 的函数关系式,最后根据一次函数的性质求解即可得. 【详解】(1)由题意得:当产品数量为0时,总成本也为0,即0x =时,0y =则010010400400201000c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得1300a b c =⎧⎪=⎨⎪=⎩故1a =,30b =;(2)由(1)得:230y x x =+设A ,B 两城生产这批产品的总成本的和为W 则223070(100)700400x x x x x W ++-+==- 整理得:220)60(60x W -+= 由二次函数的性质可知,当20x 时,W 取得最小值,最小值为6600万元此时1001002080x -=-=答:A 城生产20件,B 城生产80件;(3)设从A 城运往C 地的产品数量为n 件,A ,B 两城总运费的和为P ,则从A 城运往D 地的产品数量为(20)n -件,从B 城运往C 地的产品数量为(90)n -件,从B 城运往D 地的产品数量为(1020)n -+件由题意得:20010200n n -≥⎧⎨-+≥⎩,解得1020n ≤≤3(20)(90)2(1020)P mn n n n =+-+-+-+整理得:(2)130P m n =-+根据一次函数的性质分以下两种情况:①当02m <≤时,在1020n ≤≤内,P 随n 的增大而减小 则20n =时,P 取得最小值,最小值为20(2)1302090m m -+=+ ②当2m >时,在1020n ≤≤内,P 随n 的增大而增大则10n =时,P 取得最小值,最小值为10(2)13010110m m -+=+答:当02m <≤时,A ,B 两城总运费的和的最小值为(2090)m +万元;当2m >时,A ,B 两城总运费的和的最小值为(10110)m +万元.【点睛】本题考查了利用待定系数法求二次函数的解析式、二次函数与一次函数的实际应用等知识点,较难的是题(3),正确设立未知数,建立函数关系式是解题关键.23.问题背景:如图(1),已知A ABC DE ∽△△,求证:ABD ACE ∽;尝试应用:如图(2),在ABC 和ADE 中,90BAC DAE ︒∠=∠=,30ABC ADE ︒∠=∠=,AC与DE 相交于点F .点D 在BC 边上,AD BD=,求DFCF 的值;拓展创新:如图(3),D 是ABC 内一点,30BAD CBD ︒∠=∠=,90BDC ︒∠=,4AB =,AC =AD 的长.【答案】问题背景:见详解;尝试应用:3;拓展创新:AD =【解析】 【分析】问题背景:通过A ABC DE ∽△△得到AB AC AD AE =,AB ACAD AE=,再找到相等的角,从而可证ABD ACE ∽;尝试应用:连接CE ,通过BAC DAE ∽可以证得ABD ACE ∽,得到BD ADCE AE=,然后去证AFE DFC ∽△△,ADF ECF ∽△△,通过对应边成比例即可得到答案;拓展创新:在AD 的右侧作∠DAE=∠BAC ,AE 交BD 延长线于E ,连接CE ,通过BAC DAE ∽,BAD CAE ∽,然后利用对应边成比例即可得到答案.【详解】问题背景:∵A ABC DE ∽△△, ∴∠BAC=∠DAE ,AB ACAD AE=, ∴∠BAD+∠DAC=CAE+∠DAC , ∴∠BAD=∠CAE , ∴ABD ACE ∽;尝试应用:连接CE ,∵90BAC DAE ︒∠=∠=,30ABC ADE ︒∠=∠=, ∴BAC DAE ∽,∴AB ADAC AE=, ∵∠BAD+∠DAC=CAE+∠DAC , ∴∠BAD=∠CAE , ∴ABD ACE ∽,∴BD ADCE AE=, 由于30ADE ︒∠=,90DAE ︒∠=,∴30AE tan AD ︒==即BD AD CE AE ==,∵ADBD =, ∴3ADCE=,∵90BAC DAE ︒∠=∠=,30ABC ADE ︒∠=∠=,∴60C E ︒∠=∠=,又∵AFE DFC ∠=∠,∴AFE DFC ∽△△, ∴AF EF DF CF =,即AF DF EF CF=, 又∵AFD EFC ∠=∠∴ADF ECF ∽△△, ∴3DF AD CF CE==;拓展创新:AD =如图,在AD 的右侧作∠DAE=∠BAC ,AE 交BD 延长线于E ,连接CE ,∵∠ADE=∠BAD+∠ABD ,∠ABC=∠ABD+∠CBD ,30BAD CBD ︒∠=∠=,∴∠ADE=∠ABC ,又∵∠DAE=∠BAC ,∴BAC DAE ∽, ∴AB AC BC AD AE DE==, 又∵∠DAE=∠BAC ,∴∠BAD=∠CAE ,∴BAD CAE ∽,∴=BD AB AD CE AC AE ===, 设CD=x ,在直角三角形BCD 中,由于∠CBD=30°, ∴BD =,2BC x =, ∴32CE x =,∴DE =, ∵AB BC AD DE=,∴4AD =,∴AD =【点睛】本题考查了相似三角形的综合问题,熟练掌握相似三角形的判定和性质是解题的关键. 24.将抛物线2:(2)C y x =-向下平移6个单位长度得到抛物线1C ,再将抛物线1C 向左平移2个单位长度得到抛物线2C .(1)直接写出抛物线1C ,2C 的解析式;(2)如图(1),点A 在抛物线1C 对称轴l 右侧上,点B 在对称轴l 上,OAB 是以OB 为斜边的等腰直角三角形,求点A 的坐标;(3)如图(2),直线y kx =(0k ≠,k 为常数)与抛物线2C 交于E ,F 两点,M 为线段EF 的中点;直线4y x k=-与抛物线2C 交于G ,H 两点,N 为线段GH 的中点.求证:直线MN 经过一个定点. 【答案】(1)抛物线1C 的解析式为: y=x 2-4x-2;抛物线2C 的解析式为:y=x 2-6;(2)点A 的坐标为(5,3)或(4,-2);(3)直线MN 经过定点(0,2)【解析】【分析】(1)根据函数图象上下平移:函数值上加下减;左右平移:自变量左加右减写出函数解析式并化简即可; (2)先判断出点A 、B 、O 、D 四点共圆,再根据同弧所对的圆周角相等得到∠BDA=∠BOA=45°,从而证出DAC △是等腰直角三角形.设点A 的坐标为(x ,x 2-4x-2),把DC 和AC 用含x 的代数式表示出来,利用DC=AC 列方程求解即可,注意有两种情况;(3)根据直线y kx =(0k ≠,k 为常数)与抛物线2C 交于E ,F 两点,联立两个解析式,得到关于x 的一元二次方程,根据根与系数的关系求出点M 的横坐标,进而求出纵坐标,同理求出点N 的坐标,再用待定系数法求出直线MN 的解析式,从而判断直线MN 经过的定点即可.【详解】解:(1)∵抛物线2:(2)C y x =-向下平移6个单位长度得到抛物线1C ,再将抛物线1C 向左平移2个单位长度得到抛物线2C ,∴抛物线1C 的解析式为:y=(x-2)2-6,即y=x 2-4x-2,抛物线2C 的解析式为:y=(x-2+2)2-6,即y=x 2-6.(2)如下图,过点A 作AC ⊥x 轴于点C ,连接AD ,∵OAB 是等腰直角三角形,∴∠BOA =45°,又∵∠BDO=∠BAO=90°,∴点A 、B 、O 、D 四点共圆,∴∠BDA=∠BOA=45°,∴∠ADC=90°-∠BDA=45°,∴DAC △是等腰直角三角形,∴DC=AC .∵点A 在抛物线1C 对称轴l 右侧上,点B 在对称轴l 上,∴抛物线1C 的对称轴为x=2,设点A 的坐标为(x ,x 2-4x-2),∴DC=x-2,AC= x 2-4x-2,∴x-2= x 2-4x-2,解得:x=5或x=0(舍去),∴点A 的坐标为(5,3);同理,当点B 、点A 在x 轴的下方时,x-2= -(x 2-4x-2),x=4或x=-1(舍去),∴点A 的坐标为(4,-2),综上,点A 的坐标为(5,3)或(4,-2).(3)∵直线y kx =(0k ≠,k 为常数)与抛物线2C 交于E ,F 两点,∴26y kx y x =⎧⎨=-⎩, ∴x 2-kx-6=0,设点E 的横坐标为x E ,点F 的横坐标为x F ,∴x E +x F =k ,∴中点M 的横坐标x M =2E F x x +=2k , 中点M 的纵坐标y M =kx=22k , ∴点M 的坐标为(2k ,22k ); 同理可得:点N 的坐标为(2k -,28k), 设直线MN 的解析式为y=ax+b (a ≠0),将M (2k ,22k )、N (2k -,28k )代入得: 222282k k a b a b k k ⎧=+⎪⎪⎨⎪=-+⎪⎩,解得:242k a k b ⎧-=⎪⎨⎪=⎩,∴直线MN 的解析式为y= 24k k-·x+2(0k ≠), 不论k 取何值时(0k ≠),当x=0时,y=2,∴直线MN 经过定点(0,2).【点睛】本题考查二次函数综合应用,熟练掌握图象平移的规律、判断点A 、B 、O 、D 四点共圆的方法、用待定系数法求函数解析式的步骤是解题的关键.。

2020年山东省滨州市中考数学试卷(解析版)

2020年山东省滨州市中考数学试卷(解析版)

2020年滨州市初中学业水平考试试题数学参考答案一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.下列各式正确的是()A.﹣|﹣5|=5 B.﹣(﹣5)=﹣5 C.|﹣5|=﹣5 D.﹣(﹣5)=5【分析】根据绝对值的性质和相反数的定义对各选项分析判断即可.解:A、∵﹣|﹣5|=﹣5,∴选项A不符合题意;B、∵﹣(﹣5)=5,∴选项B不符合题意;C、∵|﹣5|=5,∴选项C不符合题意;D、∵﹣(﹣5)=5,∴选项D符合题意.故选:D.2.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A.60°B.70°C.80°D.100°【分析】根据平行线和角平分线的定义即可得到结论.解:∵AB∥CD,∴∠1=∠CPF=55°,∵PF是∠EPC的平分线,∴∠CPE=2∠CPF=110°,∴∠EPD=180°﹣110°=70°,故选:B.3.冠状病毒的直径约为80~120纳米,1纳米=1.0×10﹣9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10﹣9米B.1.1×10﹣8米C.1.1×10﹣7米D.1.1×10﹣6米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.解:110纳米=110×10﹣9米=1.1×10﹣7米.故选:C.4.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)【分析】直接利用点的坐标特点进而分析得出答案.解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.5.下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1 B.2 C.3 D.4【分析】根据轴对称图形与中心对称图形的概念求解.解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B.6.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.4 B.6 C.8 D.12【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=上,∴四边形AEOD的面积为4,∵点B在双曲线线y=上,且AB∥x轴,∴四边形BEOC的面积为12,∴矩形ABCD的面积为12﹣4=8.故选:C.7.下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.对角线互相垂直且平分的四边形是正方形【分析】利用正方形的判定依次判断,可求解.解:A、对角线互相垂直且相等的平行四边形是正方形是真命题,故选项A不合题意;B、对角线互相垂直的矩形是正方形是真命题,故选项B不合题意;C、对角线相等的菱形是正方形是真命题,故选项C不合题意;D、对角线互相垂直且平分的四边形是菱形,即对角线互相垂直且平分的四边形是正方形是假命题,故选项D符合题意;故选:D.8.已知一组数据:5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A.1 B.2 C.3 D.4【分析】先把数据由小到大排列为3,4,4,5,9,然后根据算术平均数、中位数和众数的定义得到数据的平均数,中位数和众数,再根据方差公式计算数据的方差,然后利用计算结果对各选项进行判断.解:数据由小到大排列为3,4,4,5,9,它的平均数为=5,数据的中位数为4,众数为4,数据的方差=[(3﹣5)2+(4﹣5)2+(4﹣5)2+(5﹣5)2+(9﹣5)2]=4.4.所以A、B、C、D都正确.故选:D.9.在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为()A.6 B.9 C.12 D.15【分析】直接根据题意画出图形,再利用垂径定理以及勾股定理得出答案.解:如图所示:∵直径AB=15,∴BO=7.5,∵OC:OB=3:5,∴CO=4.5,∴DC==6,∴DE=2DC=12.故选:C.10.对于任意实数k,关于x的方程x2﹣(k+5)x+k2+2k+25=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法判定【分析】先根据根的判别式求出“△”的值,再根据根的判别式的内容判断即可.解:x2﹣(k+5)x+k2+2k+25=0,△=[﹣(k+5)]2﹣4××(k2+2k+25)=﹣k2+6k﹣25=﹣(k﹣3)2﹣16,不论k为何值,﹣(k﹣3)2≤0,即△=﹣(k﹣3)2﹣16<0,所以方程没有实数根,故选:B.11.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3 B.4 C.5 D.6【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①由图象可知:a>0,c<0,∵﹣=1,∴b=﹣2a<0,∴abc<0,故①错误;②∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故②正确;③当x=2时,y=4a+2b+c<0,故③错误;④当x=﹣1时,y=a﹣b+c>0,∴3a+c>0,故④正确;⑤当x=1时,y的值最小,此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c≤am2+bm+c,故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确,⑥当x<﹣1时,y随x的增大而减小,故⑥错误,故选:A.12.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为()A.B.C.D.【分析】根据中位线定理可得AM=2,根据折叠的性质和等腰三角形的性质可得A′M=A′N=2,过M点作MG⊥EF于G,可求A′G,根据勾股定理可求MG,进一步得到BE,再根据平行线分线段成比例可求OF,从而得到OD.解:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG==,∴BE=OF=MG=,∴OF:BE=2:3,解得OF=,∴OD=﹣=.故选:B.二、填空题:本大题共8个小题.每小题5分,满分40分.13.若二次根式在实数范围内有意义,则x的取值范围为x≥5.【分析】根据二次根式有意义的条件得出x﹣5≥0,求出即可.解:要使二次根式在实数范围内有意义,必须x﹣5≥0,解得:x≥5,故答案为:x≥5.14.在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为80°.【分析】根据等腰三角形两底角相等可求∠C,再根据三角形内角和为180°列式进行计算即可得解.解:∵AB=AC,∠B=50°,∴∠C=∠B=50°,∴∠A=180°﹣2×50°=80°.故答案为:80°.15.若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为y=.【分析】当y=2时,即y=2x=2,解得:x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=,即可求解.解:当y=2时,即y=2x=2,解得:x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=并解得:k=2,故答案为:y=.16.如图,⊙O是正方形ABCD的内切圆,切点分别为E、F、G、H,ED与⊙O相交于点M,则sin∠MFG 的值为.【分析】根据同弧所对的圆周角相等,可以把求三角函数的问题,转化为直角三角形的边的比的问题.解:∵⊙O是正方形ABCD的内切圆,∴AE=AB,EG=BC;根据圆周角的性质可得:∠MFG=∠MEG.∵sin∠MFG=sin∠MEG==,∴sin∠MFG=.故答案为:.17.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为.【分析】利用完全列举法展示所有可能的结果数,再利用三角形三边的关系得到组成三角形的结果数,然后根据概率公式计算.解:3,5,8,10,13,从中任取三根,所有情况为:3、5、8;3、5、10;3、5、13;3、8、10;3、8、13;3,10,13;5、8、10;5、8、13;5、10、13;8、10、13;共有10种等可能的结果数,其中可以组成三角形的结果数为4,所以可以组成三角形的概率==.故答案为.18.若关于x的不等式组无解,则a的取值范围为a≥1.【分析】分别求出每一个不等式的解集,根据口诀:大大小小无解了可得答案.解:解不等式x﹣a>0,得:x>2a,解不等式4﹣2x≥0,得:x≤2,∵不等式组无解,∴2a≥2,解得a≥1,故答案为:a≥1.19.观察下列各式:a1=,a2=,a3=,a4=,a5=,…,根据其中的规律可得a n=(用含n的式子表示).【分析】观察分母的变化为3、5、7,…,2n+1次幂;分子的变化为:奇数项为n2+1;偶数项为n2﹣1;依此即可求解.解:由分析可得a n=.故答案为:.20.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2、、4,则正方形ABCD的面积为14+4.【分析】如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.首先证明∠PMC=90°,推出∠CMB=∠APB=135°,推出A,P,M共线,利用勾股定理求出AB2即可.解:如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.∵BP=BM=,∠PBM=90°,∴PM=PB=2,∵PC=4,PA=CM=2,∴PC2=CM2+PM2,∴∠PMC=90°,∵∠BPM=∠BMP=45°,∴∠CNB=∠APB=135°,∴∠APB+∠BPM=180°,∴A,P,M共线,∵BH⊥PM,∴PH=HM,∴BH=PH=HM=1,∴AH=2+1,∴AB2=AH2+BH2=(2+1)2+12=14+4,∴正方形ABCD的面积为14+4.故答案为14+4.三、解答题:本大题共6个小题,满分74分,解答时请写出必要的演推过程.21.先化简,再求值:1﹣÷;其中x=cos30°×,y=(π﹣3)0﹣()﹣1.【分析】直接利用分式的混合运算法则化简,再计算x,y的值,进而代入得出答案.解:原式=1﹣÷=1+•=1+==,∵x=cos30°×=×2=3,y=(π﹣3)0﹣()﹣1=1﹣3=﹣2,∴原式==0.22.如图,在平面直角坐标系中,直线y=﹣x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求△PAB的面积;(3)请把图象中直线y=﹣2x+2在直线y=﹣x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.【分析】(1)解析式联立,解方程组即可求得交点P的坐标;(2)求得A、B的坐标,然后根据三角形面积公式求得即可;(3)根据图象求得即可.解:(1)由解得,∴P(2,﹣2);(2)直线y=﹣x﹣1与直线y=﹣2x+2中,令y=0,则﹣x﹣1=0与﹣2x+2=0,解得x=﹣2与x=1,∴A(﹣2,0),B(1,0),∴AB=3,∴S△PAB===3;(3)如图所示:自变量x的取值范围是x<2.23.如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.(1)求证:△PBE≌△QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.【分析】(1)由ASA证△PBE≌△QDE即可;(2)由全等三角形的性质得出EP=EQ,同理△BME≌△DNE(ASA),得出EM=EN,证出四边形PMQN 是平行四边形,由对角线PQ⊥MN,即可得出结论.【解答】(1)证明:∵四边形ABD是平行四边形,∴EB=ED,AB∥CD,∴∠EBP=∠EDQ,在△PBE和△QDE中,,∴△PBE≌△QDE(ASA);(2)证明:如图所示:∵△PBE≌△QDE,∴EP=EQ,同理:△BME≌△DNE(ASA),∴EM=EN,∴四边形PMQN是平行四边形,∵PQ⊥MN,∴四边形PMQN是菱形.24.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?【分析】(1)由月销售量=500﹣(销售单价﹣50)×10,可求解;(2)设每千克水果售价为x元,由利润=每千克的利润×销售的数量,可列方程,即可求解;(3)设每千克水果售价为m元,获得的月利润为y元,由利润=每千克的利润×销售的数量,可得y与x 的关系式,有二次函数的性质可求解.解:(1)当售价为55元/千克时,每月销售水果=500﹣10×(55﹣50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x﹣40)[500﹣10(x﹣50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m﹣40)[500﹣10(m﹣50)]=﹣10(m﹣70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.25.如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E作直线DC,分别交AM、BN于点D、C,且DA=DE.(1)求证:直线CD是⊙O的切线;(2)求证:OA2=DE•CE.【分析】(1)连接OD,OE,证明△OAD≌△OED,得∠OAD=∠OED=90°,进而得CD是切线;(2)过D作DF⊥BC于点F,得四边形ABFD为矩形,得DF=20A,再证明CF=CE﹣DE,进而根据勾股定理得结论.解:(1)连接OD,OE,如图1,在△OAD和△OED中,,∴△OAD≌△OED(SSS),∴∠OAD=∠OED,∵AM是⊙O的切线,∴∠OAD=90°,∴∠OED=90°,∴直线CD是⊙O的切线;(2)过D作DF⊥BC于点F,如图2,则∠DFB=∠RFC=90°,∵AM、BN都是⊙O的切线,∴∠ABF=∠BAD=90°,∴四边形ABFD是矩形,∴DF=AB=2OA,AD=BF,∵CD是⊙O的切线,∴DE=DA,CE=CB,∴CF=CB﹣BF=CE﹣DE,∵DE2=CD2﹣CF2,∴4OA2=(CE+DE)2﹣(CE﹣DE)2,即4OA2=4DE•CE,∴OA2=DE•CE.26.如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l 的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.【分析】(1)由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,把点B 坐标代入求出a即可.(2)由题意P(m,m2﹣m﹣),求出d2,PF2(用m表示)即可解决问题.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.因为△DFQ的周长=DF+DQ+FQ,DF是定值==2,推出DQ+QF的值最小时,△DFQ的周长最小,再根据垂线段最短解决问题即可.【解答】(1)解:由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,∵抛物线经过B(0,﹣),∴﹣=4a﹣1,∴a=,∴抛物线的解析式为y=(x﹣2)2﹣1.(2)证明:∵P(m,n),∴n=(m﹣2)2﹣1=m2﹣m﹣,∴P(m,m2﹣m﹣),∴d=m2﹣m﹣﹣(﹣3)=m2﹣m+,∵F(2,1),∴PF==,∵d2=m4﹣m3+m2﹣m+,PF2=m4﹣m3+m2﹣m+,∴d2=PF2,∴PF=d.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.∵△DFQ的周长=DF+DQ+FQ,DF是定值==2,∴DQ+QF的值最小时,△DFQ的周长最小,∵QF=QH,∴DQ+DF=DQ+QH,根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,∴DQ+QH的最小值为3,∴△DFQ的周长的最小值为2+3,此时Q(4,﹣)21。

2020年四川省眉山市中考数学试题及参考答案(word解析版)

2020年四川省眉山市中考数学试题及参考答案(word解析版)

眉山市2020年初中学业水平暨高中阶段学校招生考试数学试卷(满分150分,考试时间120分钟)第Ⅰ卷(选择题共48分)一、选择题:本大题共12个小题,每小题4分,共48分.在每个小题给出的四个选项中,只有一项是正确的.1.﹣5的绝对值是()A.5 B.﹣5 C.D.﹣2.下列计算正确的是()A.(x+y)2=x2+y2B.2x2y+3xy2=5x3y3C.(﹣2a2b)3=﹣8a6b3D.(﹣x)5÷x2=x3 3.据世界卫生组织2020年6月26日通报,全球新冠肺炎确诊人数达到941万人,将数据941万人,用科学记数法表示为()A.9.41×102人B.9.41×105人C.9.41×106人D.0.941×107人4.如图所示的几何体的主视图为()A.B.C.D.5.下列说法正确的是()A.一组对边平行另一组对边相等的四边形是平行四边形B.对角线互相垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相垂直且相等的四边形是正方形6.不等式组的整数解有()A.1个B.2个C.3个D.4个7.某校评选先进班集体,从“学习”、“卫生”、“纪律”、“活动参与”四个方面考核打分,各项满分均为100,所占比例如下表:项目学习卫生纪律活动参与所占比例40% 25% 25% 10% 八年级2班这四项得分依次为80,90,84,70,则该班四项综合得分(满分100)为()A.81.5 B.82.5 C.84 D.868.如图,四边形ABCD的外接圆为⊙O,BC=CD,∠DAC=35°,∠ACD=45°,则∠ADB的度数为()A.55°B.60°C.65°D.70°9.一副三角板如图所示摆放,则∠α与∠β的数量关系为()A.∠α+∠β=180°B.∠α+∠β=225°C.∠α+∠β=270°D.∠α=∠β10.已知a2+b2=2a﹣b﹣2,则3a﹣b的值为()A.4 B.2 C.﹣2 D.﹣411.已知二次函数y=x2﹣2ax+a2﹣2a﹣4(a为常数)的图象与x轴有交点,且当x>3时,y随x 的增大而增大,则a的取值范围是()A.a≥﹣2 B.a<3 C.﹣2≤a<3 D.﹣2≤a≤312.如图,正方形ABCD中,点F是BC边上一点,连接AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连接DG.以下四个结论:①∠EAB=∠GAD;②△AFC∽△AGD;③2AE2=AH•AC;④DG⊥AC.其中正确的个数为()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题共102分)二、填空题:本大题共6个小题,每小题4分,共24分.13.分解因式:a3﹣4a2+4a=.14.设x1,x2是方程2x2+3x﹣4=0的两个实数根,则+的值为.15.如图,在Rt△ABC中,∠BAC=90°,AB=2.将△ABC绕点A按顺时针方向旋转至△AB1C1的位置,点B1恰好落在边BC的中点处,则CC1的长为.16.关于x的分式方程+2=的解为正实数,则k的取值范围是.17.如图,等腰△ABC中,AB=AC=10,边AC的垂直平分线交BC于点D,交AC于点E.若△ABD的周长为26,则DE的长为.18.如图,点P为⊙O外一点,过点P作⊙O的切线PA、PB,点A、B为切点,连接AO并延长交PB的延长线于点C,过点C作CD⊥PO,交PO的延长线于点D.已知PA=6,AC=8,则CD 的长为.三、解答题:本大题共8个小题,共78分.19.(8分)计算:(2﹣)0+(﹣)﹣2+2sin45°﹣.20.(8分)先化简,再求值:(2﹣)÷,其中a=﹣3.21.(10分)某数学兴趣小组去测量一座小山的高度,在小山顶上有一高度为20米的发射塔AB,如图所示.在山脚平地上的D处测得塔底B的仰角为30°,向小山前进80米到达点E处,测得塔顶A的仰角为60°,求小山BC的高度.22.(10分)中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是部,中位数是部;(2)扇形统计图中“4部”所在扇形的圆心角为度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.23.(10分)已知一次函数y=kx+b与反比例函数y=的图象交于A(﹣3,2)、B(1,n)两点.(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)点P在x轴上,当△PAO为等腰三角形时,直接写出点P的坐标.24.(10分)“绿水青山就是金山银山”,某村为了绿化荒山,计划在植树节当天种植柏树和杉树.经调查,购买2棵柏树和3棵杉树共需850元;购买3棵柏树和2棵杉树共需900元.(1)求柏树和杉树的单价各是多少元;(2)本次绿化荒山,需购买柏树和杉树共80棵,且柏树的棵数不少于杉树的2倍,要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?25.(10分)如图,△ABC和△CDE都是等边三角形,点B、C、E三点在同一直线上,连接BD,AD,BD交AC于点F.(1)若AD2=DF•DB,求证:AD=BF;(2)若∠BAD=90°,BE=6.①求tan∠DBE的值;②求DF的长.26.(12分)如图1,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知点B坐标为(3,0),点C坐标为(0,3).(1)求抛物线的表达式;(2)点P为直线BC上方抛物线上的一个动点,当△PBC的面积最大时,求点P的坐标;(3)如图2,点M为该抛物线的顶点,直线MD⊥x轴于点D,在直线MD上是否存在点N,使点N到直线MC的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.答案与解析第Ⅰ卷(选择题共48分)一、选择题:本大题共12个小题,每小题4分,共48分.在每个小题给出的四个选项中,只有一项是正确的.1.﹣5的绝对值是()A.5 B.﹣5 C.D.﹣【知识考点】绝对值.【思路分析】根据绝对值的性质求解.【解题过程】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选:A.【总结归纳】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.下列计算正确的是()A.(x+y)2=x2+y2B.2x2y+3xy2=5x3y3C.(﹣2a2b)3=﹣8a6b3D.(﹣x)5÷x2=x3【知识考点】合并同类项;幂的乘方与积的乘方;同底数幂的除法;完全平方公式.【思路分析】各项计算得到结果,即可作出判断.【解题过程】解:原式=x2+2xy+y2,不符合题意;B、原式不能合并,不符合题意;C、原式=﹣8a6b3,符合题意;D、原式=﹣x5÷x2=﹣x3,不符合题意.故选:C.【总结归纳】此题考查了完全平方公式,合并同类项,幂的乘方与积的乘方,以及同底数幂的除法,熟练掌握完全平方公式及运算法则是解本题的关键.3.据世界卫生组织2020年6月26日通报,全球新冠肺炎确诊人数达到941万人,将数据941万人,用科学记数法表示为()A.9.41×102人B.9.41×105人C.9.41×106人D.0.941×107人【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,10的指数n比原来的整数位数少1.【解题过程】解:941万=941 0000=9.41×106,故选:C.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图所示的几何体的主视图为()A.B.C.D.【知识考点】简单几何体的三视图.【思路分析】利用主视图的定义,即从几何体的正面观察得出视图即可.【解题过程】解:从几何体的正面看,是一个矩形,矩形的中间有一条纵向的实线.故选:D.【总结归纳】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.5.下列说法正确的是()A.一组对边平行另一组对边相等的四边形是平行四边形B.对角线互相垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相垂直且相等的四边形是正方形【知识考点】平行四边形的判定;菱形的判定;矩形的判定;正方形的判定.【思路分析】根据平行四边形的判定,菱形的判定,矩形的判定,正方形的判定依次判断可求解.【解题过程】解:A、一组对边平行另一组对边相等的四边形可以是等腰梯形,可以是平行四边形,故选项A不合题意;B、对角线互相垂直平分的四边形是菱形,故选项B符合题意;C、对角线相等的平行四边形是矩形,故选项C不合题意;D、对角线互相垂直平分且相等的四边形是正方形,故选项D不合题意;故选:B.【总结归纳】本题考查了正方形的判定,平行四边形的判定,矩形的判定,菱形的判定,掌握这些判定定理是本题的关键.6.不等式组的整数解有()A.1个B.2个C.3个D.4个【知识考点】一元一次不等式组的整数解.【思路分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,找出整数解即可.【解题过程】解:解不等式x+1≥2x﹣1,得:x≤2,解不等式4x+5>2(x+1),得:x>﹣1.5,则不等式组的解集为﹣1.5<x≤2,所以不等式组的整数解为﹣1,0,1,2,一共4个.故选:D.【总结归纳】此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.某校评选先进班集体,从“学习”、“卫生”、“纪律”、“活动参与”四个方面考核打分,各项满分均为100,所占比例如下表:项目学习卫生纪律活动参与所占比例40% 25% 25% 10% 八年级2班这四项得分依次为80,90,84,70,则该班四项综合得分(满分100)为()A.81.5 B.82.5 C.84 D.86【知识考点】加权平均数.【思路分析】根据题意和加权平均数的计算方法,可以计算出八年级2班四项综合得分(满分100),本题得以解决.【解题过程】解:80×40%+90×25%+84×25%+70×10%=82.5(分),即八年级2班四项综合得分(满分100)为82.5分,故选:B.【总结归纳】本题考查加权平均数,解答本题的关键是明确加权平均数的计算方法.8.如图,四边形ABCD的外接圆为⊙O,BC=CD,∠DAC=35°,∠ACD=45°,则∠ADB的度数为()A.55°B.60°C.65°D.70°【知识考点】圆心角、弧、弦的关系.【思路分析】利用圆心角、弧、弦的关系得到=,再利用圆周角定理得到∠BAC=∠DAC =35°,∠ABD=∠ACD=45°,然后根据三角形内角和计算∠ADB的度数.【解题过程】解:∵BC=CD,∴=,∵∠ABD和∠ACD所对的弧都是,∴∠BAC=∠DAC=35°,∵∠ABD=∠ACD=45°,∴∠ADB=180°﹣∠BAD﹣∠ABD=180°﹣70°﹣45°=65°.故选:C.【总结归纳】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.9.一副三角板如图所示摆放,则∠α与∠β的数量关系为()A.∠α+∠β=180°B.∠α+∠β=225°C.∠α+∠β=270°D.∠α=∠β【知识考点】三角形内角和定理;三角形的外角性质.【思路分析】根据四边形的内角和定理即可得到结论.【解题过程】解:如图,在四边形ABCD中,且∠1=∠α,∠2=∠β,∵∠A+∠1+∠C+∠2=360°,∴∠α+∠β=360°﹣90°﹣45°=225°.故选:B.【总结归纳】本题考查了直角三角形的性质,正确的识别图形是解题的关键.10.已知a2+b2=2a﹣b﹣2,则3a﹣b的值为()A.4 B.2 C.﹣2 D.﹣4【知识考点】因式分解的应用.【思路分析】先将原方程化成非负数和为0的形式,再根据非负数的性质求得a、b,进而代入代数式求得结果.【解题过程】解:∵a2+b2=2a﹣b﹣2,∴a2﹣2a+1+b2+b+1=0,∴,∴a﹣1=0,b+1=0,∴a=1,b=﹣2,∴3a﹣b=3+1=4.故选:A.【总结归纳】本题主要考查了因式分解,关键是通过因式分解,把原方程化为非负数和等于0的形式.11.已知二次函数y=x2﹣2ax+a2﹣2a﹣4(a为常数)的图象与x轴有交点,且当x>3时,y随x的增大而增大,则a的取值范围是()A.a≥﹣2 B.a<3 C.﹣2≤a<3 D.﹣2≤a≤3【知识考点】二次函数图象与系数的关系;抛物线与x轴的交点.【思路分析】根据图象与x轴有交点,得出判别式△≥0,解得a≥﹣2;再求出抛物线的对称轴,结合抛物线开口向上,且当x>3时,y随x的增大而增大,可得a≤3,从而得出答案.【解题过程】解:∵二次函数y=x2﹣2ax+a2﹣2a﹣4(a为常数)的图象与x轴有交点,∴△=(﹣2a)2﹣4×1×(a2﹣2a﹣4)≥0解得:a≥﹣2;∵抛物线的对称轴为直线x=﹣=a,抛物线开口向上,且当x>3时,y随x的增大而增大,∴a≤3,∴实数a的取值范围是﹣2≤a≤3.故选:D.【总结归纳】本题考查了抛物线与x轴的交点和二次函数的图象与性质,掌握抛物线与x轴的交点个数与判别式的关系及二次函数的性质是解题的关键.12.如图,正方形ABCD中,点F是BC边上一点,连接AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连接DG.以下四个结论:①∠EAB=∠GAD;②△AFC∽△AGD;③2AE2=AH•AC;④DG⊥AC.其中正确的个数为()A.1个B.2个C.3个D.4个【知识考点】正方形的性质;相似三角形的判定与性质.【思路分析】由正方形的性质可得∠EAG=∠BAD=90°,∠FAG=∠AFG=∠DAC=∠ACB =45°,AF=AG,AC=AD,可得∠EAB=∠DAG,可判断①;由=,∠FAC=∠DAG,可证△FAC∽△DAG,可判断②;通过证明△AFH∽△ACF,可得,可判断③;由相似三角形的性质可得∠ADG=∠ACB=45°,可得∠AND=90°,可判断④;即可求解.【解题过程】解:∵四边形ABCD,四边形AEFG都是正方形,∴∠EAG=∠BAD=90°,∠FAG=∠AFG=∠DAC=∠ACB=45°,AF=AG,AC=AD,∴∠EAG﹣∠BAG=∠BAD﹣∠BAG,∴∠EAB=∠DAG,故①正确;∵AF=AG,AC=AD,∴=,∵∠FAG=∠CAD=45°,∴∠FAC=∠DAG,∴△FAC∽△DAG,故②正确,∴∠ADG=∠ACB=45°,延长DG交AC于N,∵∠CAD=45°,∠ADG=45°,∴∠AND=90°,∴DG⊥AC,故④正确,∵∠FAC=∠FAH,∠AFG=∠ACF=45°,∴△AFH∽△ACF,∴,∴AF2=AH•AC,∴2AE2=AH•AC,故③正确,故选:D.【总结归纳】本题考查了相似三角形的判定和性质,正方形的性质,熟练运用相似三角形的判定是本题的关键.第Ⅱ卷(非选择题共102分)二、填空题:本大题共6个小题,每小题4分,共24分.13.分解因式:a3﹣4a2+4a=.【知识考点】提公因式法与公式法的综合运用.【思路分析】观察原式a3﹣4a2+4a,找到公因式a,提出公因式后发现a2﹣4a+4是完全平方式,利用完全平方公式继续分解可得.【解题过程】解:a3﹣4a2+4a=a(a2﹣4a+4)=a(a﹣2)2.故答案为:a(a﹣2)2.【总结归纳】本题考查了对一个多项式因式分解的能力.一般地能提公因式先提公因式,然后再考虑公式法.要求灵活运用各种方法进行因式分解.14.设x1,x2是方程2x2+3x﹣4=0的两个实数根,则+的值为.【知识考点】根与系数的关系.【思路分析】先根据根与系数的关系得到x1+x2=﹣,x1x2=﹣2,再把+通分得到,然后利用整体代入的方法计算.【解题过程】解:根据题意得x1+x2=﹣,x1x2=﹣2,所以+===.故答案为.【总结归纳】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.15.如图,在Rt△ABC中,∠BAC=90°,AB=2.将△ABC绕点A按顺时针方向旋转至△AB1C1的位置,点B1恰好落在边BC的中点处,则CC1的长为.【知识考点】旋转的性质.【思路分析】由旋转的性质得出△ABB1是等边三角形,求出CA的长,则可得出答案.【解题过程】解:∵在Rt△ABC中,∠BAC=90°,将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,∴AB1=BC,BB1=B1C,AB=AB1,∴BB1=AB=AB1,∴△ABB1是等边三角形,∴∠BAB1=∠B=60°,∴∠CAC1=60°,∵将△ABC绕点A按顺时针方向旋转至△AB1C1的位置,∴CA=C1A,∴△AC1C是等边三角形,∴CC1=CA,∵AB=2,∴CA=2,∴CC1=2.故答案为:2.【总结归纳】此题主要考查了旋转的性质,直角三角形的性质,等边三角形的判定与性质等知识,得出△ABB1是等边三角形是解题关键.16.关于x的分式方程+2=的解为正实数,则k的取值范围是.【知识考点】分式方程的解.【思路分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【解题过程】解:方程+2=两边同乘(x﹣2),得1+2(x﹣2)=k﹣1,解得,x=,∵≠2,∴k≠2,由题意得,>0,解得,k>﹣2,∴k的取值范围是k>﹣2且k≠2.故答案为:k>﹣2且k≠2.【总结归纳】本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤方法是解题的关键.17.如图,等腰△ABC中,AB=AC=10,边AC的垂直平分线交BC于点D,交AC于点E.若△ABD的周长为26,则DE的长为.【知识考点】线段垂直平分线的性质;等腰三角形的性质.【思路分析】根据题意求得BC=16,作AM⊥BC于M,根据等腰三角形的性质得到BM=8,根据勾股定理求得AM,根据线段垂直平分线的性质得出△ADC是等腰三角形,易证得△ABC ∽△DAC,根据相似三角形对应高的比等于相似比,即可求得DE.【解题过程】解:作AM⊥BC于M,∵边AC的垂直平分线交BC于点D,交AC于点E,∴∠AED=90°,AE=CE=AC==5,AD=CD,∴∠DAC=∠C,∵△ABD的周长为26,∴AB+BD+AD=AB+BD+CD=AB+BC=26,∵AB=AC=10,∴BC=16,∠B=∠C,∴∠B=∠DAC,∵∠ACB=∠DCA,∴△ABC∽△DAC,∴=,∵AB=AC,∴BM=BC=8,∴AM===6,∴=,∴DE=,故答案为.【总结归纳】本题考查了线段垂直平分线的性质,等腰三角形的性质,三角形相似的判定和性质,根据三角形周长求得BC的长是解题的关键.18.如图,点P为⊙O外一点,过点P作⊙O的切线PA、PB,点A、B为切点,连接AO并延长交PB的延长线于点C,过点C作CD⊥PO,交PO的延长线于点D.已知PA=6,AC=8,则CD 的长为.【知识考点】切线的性质.【思路分析】连接OB,如图,利用切线长定理得到PB=PA=6,利用切线的性质得到OB⊥PC,OA⊥PA,再利用勾股定理计算出PC=10,则BC=4,设⊙O的半径为r,则OA=OB=r,OC =8﹣r,在Rt△BCO中利用勾股定理可求出r=3,所以OA=3,OC=5,然后证明△COD∽△POA,再利用相似比求出CD.【解题过程】解:连接OB,如图,∵PA、PB为⊙O的切线,∴PB=PA=6,OB⊥PC,OA⊥PA,∴∠CAP=∠CBO=90°,在Rt△APC中,PC===10,∴BC=PC﹣PB=4,设⊙O的半径为r,则OA=OB=r,OC=8﹣r,在Rt△BCO中,42+r2=(8﹣r)2,解得r=3,∴OA=3,OC=5,在Rt△OPA中,OP===3,∵CD⊥PO,∴∠CDO=90°,∵∠COD=∠POA,∠CDO=∠PAO,∴△COD∽△POA,∴CD:PA=OC:OP,即CD:6=5:3,∴CD=2.故答案为2.【总结归纳】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了相似三角形的判定与性质.三、解答题:本大题共8个小题,共78分.19.(8分)计算:(2﹣)0+(﹣)﹣2+2sin45°﹣.【知识考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【思路分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可求出值.【解题过程】解:原式=1+4+2×﹣2=5+﹣2=5﹣.【总结归纳】此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.20.(8分)先化简,再求值:(2﹣)÷,其中a=﹣3.【知识考点】分式的化简求值.【思路分析】根据分式的减法和除法的法则可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解题过程】解:(2﹣)÷====,当a=﹣3时,原式==.【总结归纳】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.(10分)某数学兴趣小组去测量一座小山的高度,在小山顶上有一高度为20米的发射塔AB,如图所示.在山脚平地上的D处测得塔底B的仰角为30°,向小山前进80米到达点E处,测得塔顶A的仰角为60°,求小山BC的高度.【知识考点】解直角三角形的应用﹣仰角俯角问题.【思路分析】设BC为x米,则AC=(20+x)米,通过解直角△DBC和直角△ACE列出关于x 的方程,利用方程求得结果.【解题过程】解:设BC为x米,则AC=(20+x)米,由条件知:∠DBC=∠AEC=60°,DE=80米.在直角△DBC中,tan60°==,则DC=x米.∴CE=(x﹣80)米.在直角△ACE中,tan60°===.解得x=10+40.答:小山BC的高度为(10+40)米.【总结归纳】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.22.(10分)中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是部,中位数是部;(2)扇形统计图中“4部”所在扇形的圆心角为度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.【知识考点】扇形统计图;条形统计图;中位数;众数;列表法与树状图法.【思路分析】(1)根据读3部的人数和所占的百分比,可以求得本次调查的人数,然后即可得到众数和中位数;(2)根据统计图中的数据,可以得到扇形统计图中“4部”所在扇形的圆心角的度数;(3)根据(1)中读2部的人数,可以将条形统计图补充完整;(4)根据题意,可以画出相应的树状图,从而可以得到相应的概率.【解题过程】解:(1)本次调查的人数为:10÷25%=40(人),读2部的学生有:40﹣2﹣14﹣10﹣8=6(人),故本次调查所得数据的众数是1部,中位数是(2+2)÷2=2(部),故答案为:1,2;(2)扇形统计图中“4部”所在扇形的圆心角为:360°×=72°,故答案为:72;(3)由(1)知,读2部的学生有6人,补全的条形统计图如右图所示;(4)《西游记》、《三国演义》、《水浒传》、《红楼梦》分别用字母A、B、C、D表示,树状图如下图所示:一共有16种可能性,其中他们恰好选中同一名著的的可能性有4种,故他们恰好选中同一名著的概率是,即他们恰好选中同一名著的概率是.【总结归纳】本题考查列表法与树状图法、条形统计图、扇形统计图、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.23.(10分)已知一次函数y=kx+b与反比例函数y=的图象交于A(﹣3,2)、B(1,n)两点.(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)点P在x轴上,当△PAO为等腰三角形时,直接写出点P的坐标.【知识考点】反比例函数综合题.【思路分析】(1)利用待定系数法求解即可.(2)如图设直线AB交y轴于C,则C(0,﹣4),根据S△AOB=S△OCA+S△OCB求解即可.(3)分三种情形:①AO=AP,②OA=OP,③PA=PO分别求解即可.【解题过程】解:(1)∵反比例函数y=经过点A(﹣3,2),∴m=﹣6,∵点B(1,n)在反比例函数图象上,∴n=﹣6.∴B(1,﹣6),把A,B的坐标代入y=kx+b,则有,解得,∴一次函数的解析式为y=﹣2x﹣4,反比例函数的解析式为y=﹣.(2)如图设直线AB交y轴于C,则C(0,﹣4),∴S△AOB=S△OCA+S△OCB=×4×3+×4×1=8.(3)由题意OA==,当AO=AP时,可得P1(﹣6,0),当OA=OP时,可得P2(﹣,0),P4(,0),当PA=PO时,过点A作AJ⊥x轴于J.设OP3=P3A=x,在Rt△AJP3中,则有x2=22+(3﹣x)2,解得x=,∴P3(﹣,0),综上所述,满足条件的点P的坐标为(﹣6,0)或(﹣,0)或(,0)或(﹣,0).【总结归纳】本题属于反比例函数综合题,考查了反比例函数的性质,一次函数的性质,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.24.(10分)“绿水青山就是金山银山”,某村为了绿化荒山,计划在植树节当天种植柏树和杉树.经调查,购买2棵柏树和3棵杉树共需850元;购买3棵柏树和2棵杉树共需900元.(1)求柏树和杉树的单价各是多少元;(2)本次绿化荒山,需购买柏树和杉树共80棵,且柏树的棵数不少于杉树的2倍,要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?【知识考点】二元一次方程组的应用;一元一次不等式的应用;一次函数的应用.【思路分析】(1)设柏树的单价为x元/棵,杉树的单价是y元/棵,根据“购买2棵柏树和3棵杉树共需850元;购买3棵柏树和2棵杉树共需900元”列出二元一次方程组,求解即可;(2)设购买柏树a棵,则杉树为(80﹣a)棵,购树总费用为w元,根据题意求出w与a的函数关系式,然后根据总费用和两种树的棵数关系列出不等式组,求出a的取值范围,再根据a是正整数确定出购买方案.【解题过程】解:(1)设柏树的单价为x元/棵,杉树的单价是y元/棵,根据题意得:,解得,答:柏树的单价为200元/棵,杉树的单价是150元/棵;(2)设购买柏树a棵,则杉树为(80﹣a)棵,购树总费用为w元,根据题意:a≥2(80﹣a),解得,w=200a+150(80﹣a)=50a+12000,∵50>0,∴w随a的增大而增大,又∵a为整数,∴当a=54时,w最小=14700,此时,80﹣a=26,即购买柏树54棵,杉树26棵时,总费用最小为14700元.【总结归纳】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.25.(10分)如图,△ABC和△CDE都是等边三角形,点B、C、E三点在同一直线上,连接BD,AD,BD交AC于点F.(1)若AD2=DF•DB,求证:AD=BF;(2)若∠BAD=90°,BE=6.①求tan∠DBE的值;②求DF的长.【知识考点】三角形综合题.【思路分析】(1)证明△ADF∽△BDA,推出∠ABD=∠FAD,再证明△ADC≌△BFA(ASA)可得结论.(2)①首先证明CD=AC,推出EC=BC,求出BG,DG即可解决问题.②利用勾股定理求出BD,证明△CDF∽△ABF,可得==,推出=,即可解决问题.【解题过程】(1)证明:∵AD2=DF•DB,∴=,∵∠ADF=∠BDA,∴△ADF∽△BDA,∴∠ABD=∠FAD,∵△ABC,△DCE都是等边三角形,∴AB=AC,∠BAC=∠ACB=∠DCE=60°,∴∠ACD=60°,∴∠ACD=∠BAF,∴△ADC≌△BFA(ASA),∴AD=BF.(2)①解:过点D作DG⊥BE于G.∵∠BAD=90°,∠BAC=60°,∴∠DAC=30°,∵∠ACD=60°,∴∠ADC=90°,∴DC=AC,∴CE=BC,∵BE=6,∴CE=2,BC=4,∴CG=EG=1,BG=5,DG=,∴tan∠DBE==.②在Rt△BDG中,∵∠BGD=90°,DG=,BG=5,∴BD===2,∵∠ABC=∠DCE=60°,∴CD∥AB,∴△CDF∽△ABF,∴==,∴=,∴DF=【总结归纳】本题属于三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找相似三角形或全等三角形解决问题,属于中考压轴题.26.(12分)如图1,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知点B坐标为(3,0),点C坐标为(0,3).(1)求抛物线的表达式;(2)点P为直线BC上方抛物线上的一个动点,当△PBC的面积最大时,求点P的坐标;(3)如图2,点M为该抛物线的顶点,直线MD⊥x轴于点D,在直线MD上是否存在点N,使点N到直线MC的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.【知识考点】二次函数综合题.【思路分析】(1)利用待定系数法可求解析式;(2)过点P作PH⊥x轴于H,交BC于点G,先求出BC的解析式,设点P(m,﹣m2+2m+3),则点G(m,﹣m+3),由三角形面积公式可得S△PBC=×PG×OB=×3×(﹣m2+3m)=﹣(m﹣)2+,由二次函数的性质可求解;(3)设直线MC与x轴交于点E,过点N作NQ⊥MC于Q,先求出点A,点M坐标,可求MC 解析式,可得DE=4=MD,由等腰直角三角形的性质可得MQ=NQ=MN,由两点距离公式可列(|4﹣n|)2=4+n2,即可求解.【解题过程】解:(1)∵点B(3,0),点C(0,3)在抛物线y=﹣x2+bx+c图象上,∴,解得:,∴抛物线解析式为:y=﹣x2+2x+3;(2)∵点B(3,0),点C(0,3),∴直线BC解析式为:y=﹣x+3,如图,过点P作PH⊥x轴于H,交BC于点G,。

2020年河北省中考数学试题(解析版)

2020年河北省中考数学试题(解析版)

2020年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在平面内作已知直线m 的垂线,可作垂线的条数有( )A.0条B.1条C.2条D.无数条2.墨迹覆盖了等式“(0x ≠)”中的运算符号,则覆盖的是( ) A.+B.-C.×D.÷3.对于①3(13)x xy x y -=-,②2(3)(1)23x x x x +-=+-,从左到右的变形,表述正确的是( ) A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是( )A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a 元/千克,发现这四个单价的中位数恰好也是众数,则a =( )A.9B.8C.7D.66.如图1,已知ABC ∠,用尺规作它的角平分线.第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ; 第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ; 第三步:画射线BP .射线BP 即为所求. 下列正确的是( )A.a ,b 均无限制B.0a >,12b DE >的长 C.a 有最小限制,b 无限制D.0a ≥,12b DE <的长7.若a b ≠,则下列分式化简正确的是( )A.22a ab b+=+ B.22a ab b-=- C.22a a b b= D.1212aab b = 8.在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A.四边形NPMQB.四边形NPMRC.四边形NHMQD.四边形NHMR9.若()()229111181012k--=⨯⨯,则k =( )A.12B.10C.8D.610.如图,将ABC ∆绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的CDA ∆与ABC ∆构成平行四点A ,C 分别转到了点C ,A 处, 而点B 转到了点D 处. ∵CB AD =,∴四边形ABCD 是平行四边形.小明为保证嘉淇的推理更严谨,想在方框中“∵CB AD =,”和“∴四边形……”之间作补充.下列正确的是( )A.嘉淇推理严谨,不必补充B.应补充:且AB CD =,C.应补充:且//AB CDD.应补充:且OA OC =,11.若k 为正整数,则()kk kk k k ++⋅⋅⋅+=个( ) A.2kkB.21k k+C.2kkD.2kk+12.如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错误..的是( )A.从点P 向北偏西45°走3km 到达lB.公路l 的走向是南偏西45°C.公路l 的走向是北偏东45°D.从点P 向北走3km 后,再向西走3km 到达l13.已知光速为300 000千米秒,光经过t 秒(110t ≤≤)传播的距离用科学记数法表示为10na ⨯千米,则n 可能为( )A.5B.6C.5或6D.5或6或714.有一题目:“已知;点O 为ABC ∆的外心,130BOC ∠=︒,求A ∠.”嘉嘉的解答为:画ABC ∆以及它的外接圆O ,连接OB ,OC ,如图.由2130BOC A ∠=∠=︒,得65A ∠=︒.而淇淇说:“嘉嘉考虑的不周全,A ∠还应有另一个不同的值.” 下列判断正确的是( )A.淇淇说的对,且A ∠的另一个值是115°B.淇淇说的不对,A ∠就得65°C.嘉嘉求的结果不对,A ∠应得50°D.两人都不对,A ∠应有3个不同值15.如图,现要在抛物线(4)y x x =-上找点(,)P a b ,针对b 的不同取值,所找点P 的个数,三人的说法如下,甲:若5b =,则点P 的个数为0; 乙:若4b =,则点P 的个数为1; 丙:若3b =,则点P 的个数为1. 下列判断正确的是( )A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对16.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是( )A.1,4,5B.2,3,5C.3,4,5D.2,2,4二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.已知:182222a b -=-=,则ab =_________. 18.正六边形的一个内角是正n 边形一个外角的4倍,则n =_________.19.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作m T (m 为1~8的整数).函数ky x=(0x <)的图象为曲线L .(1)若L 过点1T ,则k =_________;(2)若L 过点4T ,则它必定还过另一点m T ,则m =_________;(3)若曲线L 使得18~T T 这些点分布在它的两侧,每侧各4个点,则k 的整数值有_________个.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.已知两个有理数:-9和5.(1)计算:(9)52-+; (2)若再添一个负整数m ,且-9,5与m 这三个数的平均数仍小于m ,求m 的值.21.有一电脑程序:每按一次按键,屏幕的A 区就会自动加上2a ,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和-16,如图.如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由.22.如图,点O 为AB 中点,分别延长OA 到点C ,OB 到点D ,使OC OD =.以点O 为圆心,分别以OA ,OC 为半径在CD 上方作两个半圆.点P 为小半圆上任一点(不与点A ,B 重合),连接OP 并延长交大半圆于点E ,连接AE ,CP .(1)①求证:AOE POC ∆∆≌;②写出∠1,∠2和C ∠三者间的数量关系,并说明理由.(2)若22OC OA ==,当C ∠最大时,直接..指出CP 与小半圆的位置关系,并求此时EOD S 扇形(答案保留π).23.用承重指数W 衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W 与木板厚度x (厘米)的平方成正比,当3x =时,3W =. (1)求W 与x 的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x (厘米),Q W W =-厚薄.①求Q 与x 的函数关系式; ②x 为何值时,Q 是W 薄的3倍?【注:(1)及(2)中的①不必写x 的取值范围】24.表格中的两组对应值满足一次函数y kx b =+,现画出了它的图象为直线l ,如图.而某同学为观察k ,b对图象的影响,将上面函数中的k 与b 交换位置后得另一个一次函数,设其图象为直线l '.x-1 0 y-21(1)求直线l 的解析式;(2)请在图上画出..直线l '(不要求列表计算),并求直线l '被直线l 和y 轴所截线段的长; (3)设直线y a =与直线l ,l '及y 轴有三个不同的交点,且其中两点关于第三点对称,直接..写出a 的值. 25.如图,甲、乙两人(看成点)分别在数轴-3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动. ①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位; ②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位; ③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P ;(2)从图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n 次,且他最终..停留的位置对应的数为m ,试用含n 的代数式表示m ,并求该位置距离原点O 最近时n 的值; (3)从图的位置开始,若进行了k 次移动游戏后,甲与乙的位置相距2个单位,直接..写出k 的值. 26.如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN -匀速移动,到达点N 时停止;而点Q 在AC边上随P 移动,且始终保持APQ B ∠=∠.(1)当点P 在BC 上时,求点P 与点A 的最短距离;(2)若点P 在MB 上,且PQ 将ABC ∆的面积分成上下4:5两部分时,求MP 的长;(3)设点P 移动的路程为x ,当03x ≤≤及39x ≤≤时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角APQ ∠扫描APQ ∆区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若94AK =,请直接..写出点K 被扫描到的总时长. 2020年河北省初中毕业生升学文化课考试数学答案卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1-10小题各3分,11~16小题各2分,每小题给出的四个选项中只有一个是符合题目要求的)题号 1 2 3 4 5 6 7 8 选项 D D C D B B D A 题号 9 10 11 12 13 14 15 16 选项 BBAACACB卷Ⅱ(非选择题,共78分)二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题各有3个空,每空2分)17.6 18.12 19.-16;5;7三、解答題(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(1)-2 (2)1m =-21.(1)2252a +;166a --(2)22254(1612)(23)0a a a ++--=-≥,和不能为负数 22.(1)①证明略; ②21C ∠=∠+∠ (2)43π 23.(1)213W x =(2)①2211(6)33Q x x =--124x =-②由题可知:2112433x x -=⨯解得:12x =;26x =-(舍) ∴当2cm x =时,Q 是W 薄的3倍. 24.(1)l :31y x =+(2)l ':3y x =+(3)a 的值为52或175或7 25.(1)14P =(2)256m n =- 当0m =时,解得256n = ∵n 为整数∴当4n =时,距离原点最近 (3)3k =或5 26.(1)min 1tan 32d BC C =⋅= (2)APQ ABC ∆∆∽∴2APQ ABCS AP AB S ∆∆⎛⎫= ⎪⎝⎭即23AP AB = ∴103AP =,43MP =(3)当03x ≤≤时,24482525d x =+ 当39x ≤≤时,33355d x =-+(4)23t s =。

2020年浙江省温州市中考数学试题(解析版)

2020年浙江省温州市中考数学试题(解析版)
7.如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为()
A.1B.2C. D.
【答案】D
【解析】
【分析】
连接OB,由题意可知,∠OBD=90°;再说明△OAB是等边三角形,则∠AOB =60°;再根据直角三角形的性质可得∠ODB=30°,最后解三角形即可求得BD的长.
6.山茶花是温州市的市花,品种多样,“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录,统计如下表.
株数(株)
7
9
12
2
花径(cm)
6.5
6.6
6.7
6.8
这批“金心大红”花径的众数为()
A.6.5cmB.6. 6cmC.6.7cmD.6.8cm
【答案】C
【解析】
【分析】
根据众数的定义:一组数据中出现次数最多的数据即可得出答案.
18.如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.
(1)求证:△ABC≌△DCE;
(2)连结AE,当BC=5,AC=12时,求AE的长.
【答案】(1)见解析;(2)13
【解析】
【分析】
根据题意可知,本题考察平行的性质,全等三角形的判定和勾股定理,根据判定定理,运用两直线平行内错角相等再通过AAS以及勾股定理进行求解.
∴ ,GE=BF=PH=10,
∵∠ABG=45°,∠ABC=90°,∴∠CBH=45°,
∴∠BCH=45°,∴BH=CH,
设FP=BH=CH=x,则MP=x-2,CP=x+10,
∵∠1=∠2,∠AEF=∠CPM=90°,

2020年中考数学试卷(含答案及试题解析)

2020年中考数学试卷(含答案及试题解析)

2020年中考数学试卷一、选择题(本大题共有10个小题,每小题3分,共30分) 1.(3分)(2020•荆州)有理数﹣2的相反数是( ) A .2B .12C .﹣2D .−122.(3分)(2020•荆州)下列四个几何体中,俯视图与其它三个不同的是( )A .B .C .D .3.(3分)(2020•荆州)在平面直角坐标系中,一次函数y =x +1的图象是( )A .B .C .D .4.(3分)(2020•荆州)将一张矩形纸片折叠成如图所示的图形,若∠CAB =30°,则∠ACB 的度数是( )A .45°B .55°C .65°D .75°5.(3分)(2020•荆州)八年级学生去距学校10km 的荆州博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车学生的速度为xkm /h ,则可列方程为( )A .102x −10x =20 B .10x −102x =20C .10x−102x=13D .102x−10x=136.(3分)(2020•荆州)若x 为实数,在“(√3+1)□x ”的“□”中添上一种运算符号(在“+,﹣,×,÷”中选择)后,其运算的结果为有理数,则x 不可能是( ) A .√3+1B .√3−1C .2√3D .1−√37.(3分)(2020•荆州)如图,点E 在菱形ABCD 的AB 边上,点F 在BC 边的延长线上,连接CE ,DF ,对于下列条件:①BE =CF ;②CE ⊥AB ,DF ⊥BC ;③CE =DF ;④∠BCE =∠CDF .只选取其中一条添加,不能确定△BCE ≌△CDF 的是( )A .①B .②C .③D .④8.(3分)(2020•荆州)如图,在平面直角坐标系中,Rt △OAB 的斜边OA 在第一象限,并与x 轴的正半轴夹角为30°.C 为OA 的中点,BC =1,则点A 的坐标为( )A .(√3,√3)B .(√3,1)C .(2,1)D .(2,√3)9.(3分)(2020•荆州)定义新运算“a *b ”:对于任意实数a ,b ,都有a *b =(a +b )(a ﹣b )﹣1,其中等式右边是通常的加法、减法、乘法运算,例4*3=(4+3)(4﹣3)﹣1=7﹣1=6.若x *k =x (k 为实数)是关于x 的方程,则它的根的情况为( ) A .有一个实数根 B .有两个相等的实数根 C .有两个不相等的实数根D .没有实数根10.(3分)(2020•荆州)如图,在6×6的正方形网格中,每个小正方形的边长都是1,点A ,B ,C 均在网格交点上,⊙O 是△ABC 的外接圆,则cos ∠BAC 的值为( )A .√55B .2√55C .12D .√32二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2020•荆州)若a =(π﹣2020)0,b =﹣(12)﹣1,c =|﹣3|,则a ,b ,c 的大小关系为 .(用“<”号连接)12.(3分)(2020•荆州)若单项式2x m y 3与3xy m +n 是同类项,则√2m +n 的值为 . 13.(3分)(2020•荆州)已知:△ABC ,求作:△ABC 的外接圆.作法:①分别作线段BC ,AC 的垂直平分线EF 和MN ,它们相交于点O ;②以点O 为圆心,OB 的长为半径画圆.如图,⊙O 即为所求,以上作图用到的数学依据有: .(只需写一条)14.(3分)(2020•荆州)若标有A ,B ,C 的三只灯笼按图所示悬挂,每次摘取一只(摘B 前需先摘C ),直到摘完,则最后一只摘到B 的概率是 .15.(3分)(2020•荆州)“健康荆州,你我同行”,市民小张积极响应“全民健身动起来”号召,坚持在某环形步道上跑步.已知此步道外形近似于如图所示的Rt △ABC ,其中∠C =90°,AB 与BC 间另有步道DE 相连,D 地在AB 正中位置,E 地与C 地相距1km .若tan ∠ABC =34,∠DEB =45°,小张某天沿A →C →E →B →D →A 路线跑一圈,则他跑了 km .16.(3分)(2020•荆州)我们约定:(a ,b ,c )为函数y =ax 2+bx +c 的“关联数”,当其图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”.若关联数为(m ,﹣m ﹣2,2)的函数图象与x 轴有两个整交点(m 为正整数),则这个函数图象上整交点的坐标为 .三、解答题(本大题共有8个小题,共72分)17.(8分)(2020•荆州)先化简,再求值:(1−1a )÷a 2−1a 2+2a+1,其中a 是不等式组{a −2≥2−a ①2a −1<a +3②的最小整数解. 18.(8分)(2020•荆州)阅读下列“问题”与“提示”后,将解方程的过程补充完整,求出x 的值.【问题】解方程:x 2+2x +4√x 2+2x −5=0. 【提示】可以用“换元法”解方程. 解:设√x 2+2x =t (t ≥0),则有x 2+2x =t 2 原方程可化为:t 2+4t ﹣5=0 【续解】19.(8分)(2020•荆州)如图,将△ABC 绕点B 顺时针旋转60°得到△DBE ,点C 的对应点E 恰好落在AB 的延长线上,连接AD . (1)求证:BC ∥AD ;(2)若AB =4,BC =1,求A ,C 两点旋转所经过的路径长之和.20.(8分)(2020•荆州)6月26日是“国际禁毒日”,某中学组织七、八年级全体学生开展了“禁毒知识”网上竞赛活动.为了解竞赛情况,从两个年级各随机抽取了10名同学的成绩(满分为100分),收集数据为:七年级90,95,95,80,90,80,85,90,85,100;八年级85,85,95,80,95,90,90,90,100,90.整理数据:分数人数年级80859095100七年级22321八年级124a1分析数据:平均数中位数众数方差七年级89b9039八年级c90d30根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)通过数据分析,你认为哪个年级的成绩比较好?请说明理由;(3)该校七、八年级共有600人,本次竞赛成绩不低于90分的为“优秀”.估计这两个年级共有多少名学生达到“优秀”?21.(8分)(2020•荆州)九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数y=2|x|的图象与性质共探究过程如下:(1)绘制函数图象,如图1.列表:下表是x与y的几组对应值,其中m=;x…﹣3﹣2﹣1−1212123…y (2)312442m23…描点:根据表中各组对应值(x,y),在平面直角坐标系中描出了各点;连线:用平滑的曲线顺次连接各点,画出了部分图象.请你把图象补充完整;(2)通过观察图1,写出该函数的两条性质;①;②;(3)①观察发现:如图2.若直线y=2交函数y=2|x|的图象于A,B两点,连接OA,过点B作BC∥OA交x轴于C.则S四边形OABC=;②探究思考:将①中“直线y=2”改为“直线y=a(a>0)”,其他条件不变,则S四边形OABC=;③类比猜想:若直线y=a(a>0)交函数y=k|x|(k>0)的图象于A,B两点,连接OA,过点B作BC∥OA交x轴于C,则S四边形OABC=.22.(10分)(2020•荆州)如图,在矩形ABCD中,AB=20,点E是BC边上的一点,将△ABE沿着AE折叠,点B刚好落在CD边上点G处;点F在DG上,将△ADF沿着AF 折叠,点D刚好落在AG上点H处,此时S△GFH:S△AFH=2:3,(1)求证:△EGC∽△GFH;(2)求AD的长;(3)求tan∠GFH的值.23.(10分)(2020•荆州)为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨.这批防疫物资将运往A地240吨,B地260吨,运费如下表(单位:元/吨).A B目的地生产厂甲2025乙1524(1)求甲、乙两厂各生产了这批防疫物资多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元.求y与x 之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费均降低m元(0<m≤15且m为整数)时,按(2)中设计的调运方案运输,总运费不超过5200元.求m的最小值.24.(12分)(2020•荆州)如图1,在平面直角坐标系中,A(﹣2,﹣1),B(3,﹣1),以O为圆心,OA的长为半径的半圆O交AO延长线于C,连接AB,BC,过O作ED∥BC 分别交AB和半圆O于E,D,连接OB,CD.(1)求证:BC是半圆O的切线;(2)试判断四边形OBCD的形状,并说明理由;(3)如图2,若抛物线经过点D且顶点为E.①求此抛物线的解析式;②点P是此抛物线对称轴上的一个动点,以E,D,P为顶点的三角形与△OAB相似,问抛物线上是否存在一点Q.使S△EPQ=S△OAB?若存在,请直接写出Q点的横坐标;若不存在,说明理由.2020年中考数学试卷参考答案与试题解析一、选择题(本大题共有10个小题,每小题3分,共30分) 1.(3分)(2020•荆州)有理数﹣2的相反数是( ) A .2B .12C .﹣2D .−12【解答】解:有理数﹣2的相反数是:2. 故选:A .2.(3分)(2020•荆州)下列四个几何体中,俯视图与其它三个不同的是( )A .B .C .D .【解答】解:选项A 的俯视图是三角形,选项B 、C 、D 的俯视图均为圆. 故选:A .3.(3分)(2020•荆州)在平面直角坐标系中,一次函数y =x +1的图象是( )A .B .C .D .【解答】解:一次函数y =x +1中,令x =0,则y =1;令y =0,则x =﹣1, ∴一次函数y =x +1的图象经过点(0,1)和(﹣1,0), ∴一次函数y =x +1的图象经过一二三象限, 故选:C .4.(3分)(2020•荆州)将一张矩形纸片折叠成如图所示的图形,若∠CAB =30°,则∠ACB的度数是( )A .45°B .55°C .65°D .75°【解答】解:如图所示:∵将一张矩形纸片折叠成如图所示的图形, ∴ED ∥F A ,∠EBC =∠CBA ,∴∠EBC =∠ACB ,∠CAB =∠DBA =30°, ∵∠EBC +∠CBA +∠ABD =180°, ∴∠ACB +∠ACB +30°=180°, ∴∠ACB =75°, 故选:D .5.(3分)(2020•荆州)八年级学生去距学校10km 的荆州博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车学生的速度为xkm /h ,则可列方程为( ) A .102x −10x =20 B .10x −102x =20C .10x−102x=13D .102x−10x=13【解答】解:设骑车学生的速度为xkm /h ,则乘车学生的速度为2xkm /h , 依题意,得:10x−102x=13.故选:C .6.(3分)(2020•荆州)若x 为实数,在“(√3+1)□x ”的“□”中添上一种运算符号(在“+,﹣,×,÷”中选择)后,其运算的结果为有理数,则x 不可能是( ) A .√3+1B .√3−1C .2√3D .1−√3【解答】解:A.(√3+1)﹣(√3+1)=0,故本选项不合题意;B.(√3+1)(√3−1)=2,故本选项不合题意;C.(√3+1)与2√3无论是相加,相减,相乘,相除,结果都是无理数,故本选项符合题意;D.(√3+1)(1−√3)=﹣2,故本选项不合题意.故选:C.7.(3分)(2020•荆州)如图,点E在菱形ABCD的AB边上,点F在BC边的延长线上,连接CE,DF,对于下列条件:①BE=CF;②CE⊥AB,DF⊥BC;③CE=DF;④∠BCE=∠CDF.只选取其中一条添加,不能确定△BCE≌△CDF的是()A.①B.②C.③D.④【解答】解:∵四边形BCD是菱形,∴BC=CD,AB∥CD,∴∠B=∠DCF,①∵添加BE=CF,∴△BCE≌△CDF(SAS),②∵添加CE⊥AB,DF⊥BC,∴∠CEB=∠F=90°,∴△BCE≌△CDF(AAS),③∵添加CE=DF,不能确定△BCE≌△CDF;④∵添加∠BCE=∠CDF,∴△BCE≌△CDF(ASA),故选:C.8.(3分)(2020•荆州)如图,在平面直角坐标系中,Rt△OAB的斜边OA在第一象限,并与x轴的正半轴夹角为30°.C为OA的中点,BC=1,则点A的坐标为()A.(√3,√3)B.(√3,1)C.(2,1)D.(2,√3)【解答】解:如图,∵Rt△OAB的斜边OA在第一象限,并与x轴的正半轴夹角为30°.∴∠AOD=30°,∴AD=12OA,∵C为OA的中点,∴AD=AC=OC=BC=1,∴OA=2,∴OD=√3,则点A的坐标为:(√3,1).故选:B.9.(3分)(2020•荆州)定义新运算“a*b”:对于任意实数a,b,都有a*b=(a+b)(a﹣b)﹣1,其中等式右边是通常的加法、减法、乘法运算,例4*3=(4+3)(4﹣3)﹣1=7﹣1=6.若x*k=x(k为实数)是关于x的方程,则它的根的情况为()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【解答】解:∵x*k=x(k为实数)是关于x的方程,∴(x+k)(x﹣k)﹣1=x,整理得x2﹣x﹣k2﹣1=0,∵△=(﹣1)2﹣4(﹣k2﹣1)=4k 2+5>0,∴方程有两个不相等的实数根. 故选:C .10.(3分)(2020•荆州)如图,在6×6的正方形网格中,每个小正方形的边长都是1,点A ,B ,C 均在网格交点上,⊙O 是△ABC 的外接圆,则cos ∠BAC 的值为( )A .√55B .2√55C .12D .√32【解答】解:如图,作直径BD ,连接CD , 由勾股定理得,BD =√22+42=2√5, 在Rt △BDC 中,cos ∠BDC =CD BD =25=2√55, 由圆周角定理得,∠BAC =∠BDC , ∴cos ∠BAC =cos ∠BDC =2√55, 故选:B .二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2020•荆州)若a =(π﹣2020)0,b =﹣(12)﹣1,c =|﹣3|,则a ,b ,c 的大小关系为 b <a <c .(用“<”号连接)【解答】解:∵a =(π﹣2020)0=1,b =﹣(12)﹣1=﹣2,c =|﹣3|=3,∴b<a<c.故答案为:b<a<c.12.(3分)(2020•荆州)若单项式2x m y3与3xy m+n是同类项,则√2m+n的值为2.【解答】解:根据题意得:m=1,m+n=3,解得n=2,所以2m+n=2+2=4,√2m+n=√4=2.故答案是:2.13.(3分)(2020•荆州)已知:△ABC,求作:△ABC的外接圆.作法:①分别作线段BC,AC的垂直平分线EF和MN,它们相交于点O;②以点O为圆心,OB的长为半径画圆.如图,⊙O即为所求,以上作图用到的数学依据有:线段的垂直平分线的性质.(只需写一条)【解答】解:∵点O为AC和BC的垂直平分线的交点,∴OA=OC=OB,∴⊙O为△ABC的外接圆.故答案为:线段的垂直平分线的性质.14.(3分)(2020•荆州)若标有A,B,C的三只灯笼按图所示悬挂,每次摘取一只(摘B前需先摘C),直到摘完,则最后一只摘到B的概率是23.【解答】解:画树状图如图:共有3个可能的结果,最后一只摘到B 的结果有2个, ∴最后一只摘到B 的概率为23;故答案为:23.15.(3分)(2020•荆州)“健康荆州,你我同行”,市民小张积极响应“全民健身动起来”号召,坚持在某环形步道上跑步.已知此步道外形近似于如图所示的Rt △ABC ,其中∠C =90°,AB 与BC 间另有步道DE 相连,D 地在AB 正中位置,E 地与C 地相距1km .若tan ∠ABC =34,∠DEB =45°,小张某天沿A →C →E →B →D →A 路线跑一圈,则他跑了 24 km .【解答】解:过D 点作DF ⊥BC , 设EF =xkm ,则DF =xkm ,BF =43xkm , 在Rt △BFD 中,BD =√BF 2+DF 2=53xkm , ∵D 地在AB 正中位置, ∴AB =2BD =103xkm , ∵tan ∠ABC =34, ∴cos ∠ABC =45, ∴x+43x+1103x =45,解得x =3,则BC=8km,AC=6km,AB=10km,小张某天沿A→C→E→B→D→A路线跑一圈,他跑了8+10+6=24(km).故答案为:24.16.(3分)(2020•荆州)我们约定:(a,b,c)为函数y=ax2+bx+c的“关联数”,当其图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”.若关联数为(m,﹣m ﹣2,2)的函数图象与x轴有两个整交点(m为正整数),则这个函数图象上整交点的坐标为(1,0)、(2,0)或(0,2).【解答】解:根据题意,令y=0,将关联数(m,﹣m﹣2,2)代入函数y=ax2+bx+c,则有mx2+(﹣m﹣2)x+2=0,△=(﹣m﹣2)2﹣4×2m=(m﹣2)2>0,∴mx2+(﹣m﹣2)x+2=0有两个根,由求根公式可得x=m+2±√(−m−2)2−8m2mx=m+2±|m−2|2mx1=m+2+(m−2)2m=1,此时m为不等于0的任意数,不合题意;x2=m+2+2−m2m=42m,当m=1或2时符合题意;x2=2或1;x3=m+2−m+22m=42m,当m=1或2时符合题意;x3=2或1;x4=m+2−2+m2m=1,此时m为不等于0的任意数,不合题意;所以这个函数图象上整交点的坐标为(2,0),(1,0);令x=0,可得y=c=2,即得这个函数图象上整交点的坐标(0,2).综上所述,这个函数图象上整交点的坐标为(2,0),(1,0)或(0,2);故答案为:(2,0),(1,0)或(0,2).三、解答题(本大题共有8个小题,共72分)17.(8分)(2020•荆州)先化简,再求值:(1−1a)÷a 2−1a 2+2a+1,其中a 是不等式组{a −2≥2−a ①2a −1<a +3②的最小整数解. 【解答】解:原式=a−1a •(a+1)2(a+1)(a−1)=a+1a . 解不等式组{a −2≥2−a ①2a −1<a +3②中的①,得a ≥2.解不等式②,得a <4. 则2≤a <4.所以a 的最小整数值是2, 所以,原式=2+12=32. 18.(8分)(2020•荆州)阅读下列“问题”与“提示”后,将解方程的过程补充完整,求出x 的值.【问题】解方程:x 2+2x +4√x 2+2x −5=0. 【提示】可以用“换元法”解方程. 解:设√x 2+2x =t (t ≥0),则有x 2+2x =t 2 原方程可化为:t 2+4t ﹣5=0 【续解】【解答】解:(t +5)(t ﹣1)=0, t +5=0或t ﹣1=0, ∴t 1=﹣5,t 2=1,当t =﹣5时,√x 2+2x =−5,此方程无解;当t =1时,√x 2+2x =1,则x 2+2x =1,配方得(x +1)2=2,解得x 1=﹣1+√2,x 2=﹣1−√2;经检验,原方程的解为x 1=﹣1+√2,x 2=﹣1−√2.19.(8分)(2020•荆州)如图,将△ABC 绕点B 顺时针旋转60°得到△DBE ,点C 的对应点E 恰好落在AB 的延长线上,连接AD . (1)求证:BC ∥AD ;(2)若AB=4,BC=1,求A,C两点旋转所经过的路径长之和.【解答】(1)证明:由题意,△ABC≌△DBE,且∠ABD∠CBE=60°,∴AB=DB,∴△ABD是等边三角形,∴∠DAB=60°,∴∠CBE=∠DAB,∴BC∥AD.(2)解:由题意,BA=BD=4,BC=BE=1,∠ABD=∠CBE=60°,∴A,C两点旋转所经过的路径长之和=60⋅π⋅4180+60⋅π⋅1180=5π3.20.(8分)(2020•荆州)6月26日是“国际禁毒日”,某中学组织七、八年级全体学生开展了“禁毒知识”网上竞赛活动.为了解竞赛情况,从两个年级各随机抽取了10名同学的成绩(满分为100分),收集数据为:七年级90,95,95,80,90,80,85,90,85,100;八年级85,85,95,80,95,90,90,90,100,90.整理数据:分数人数年级80859095100七年级22321八年级124a1分析数据:平均数中位数众数方差七年级 89 b 90 39 八年级c90d30根据以上信息回答下列问题:(1)请直接写出表格中a ,b ,c ,d 的值;(2)通过数据分析,你认为哪个年级的成绩比较好?请说明理由;(3)该校七、八年级共有600人,本次竞赛成绩不低于90分的为“优秀”.估计这两个年级共有多少名学生达到“优秀”?【解答】解:(1)观察八年级95分的有2人,故a =2; 七年级的中位数为90+902=90,故b =90;八年级的平均数为:112[85+85+95+80+95+90+90+90+100+90]=90,故c =90;八年级中90分的最多,故d =90;(2)七、八年级学生成绩的中位数和众数相同,但八年级的平均成绩比七年级高,且从方差看,八年级学生成绩更整齐,综上,八年级的学生成绩好;(3)∵600×1320=390(人),∴估计该校七、八年级这次竞赛达到优秀的有390人.21.(8分)(2020•荆州)九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数y =2|x|的图象与性质共探究过程如下: (1)绘制函数图象,如图1.列表:下表是x 与y 的几组对应值,其中m = 1 ; x … ﹣3﹣2 ﹣1 −12121 2 3… y…2312442m23…描点:根据表中各组对应值(x ,y ),在平面直角坐标系中描出了各点; 连线:用平滑的曲线顺次连接各点,画出了部分图象.请你把图象补充完整; (2)通过观察图1,写出该函数的两条性质; ① 函数的图象关于y 轴对称 ;②当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小;(3)①观察发现:如图2.若直线y=2交函数y=2|x|的图象于A,B两点,连接OA,过点B作BC∥OA交x轴于C.则S四边形OABC=4;②探究思考:将①中“直线y=2”改为“直线y=a(a>0)”,其他条件不变,则S四边形OABC=4;③类比猜想:若直线y=a(a>0)交函数y=k|x|(k>0)的图象于A,B两点,连接OA,过点B作BC∥OA交x轴于C,则S四边形OABC=2k.【解答】解:(1)当x<0时,xy=﹣2,而当x>0时,xy=2,∴m=1,故答案为:1;补全图象如图所示:(2)故答案为:①函数的图象关于y轴对称,②当x<0时,y随x的增大而增大,当x >0时,y随x的增大而减小;(3)如图,①由A,B两点关于y轴对称,由题意可得四边形OABC是平行四边形,且S四边形OABC=4S△OAM=4×12|k|=2|k|=4,②同①可知:S四边形OABC=2|k|=4,③S四边形OABC=2|k|=2k,故答案为:4,4,2k.22.(10分)(2020•荆州)如图,在矩形ABCD中,AB=20,点E是BC边上的一点,将△ABE沿着AE折叠,点B刚好落在CD边上点G处;点F在DG上,将△ADF沿着AF 折叠,点D刚好落在AG上点H处,此时S△GFH:S△AFH=2:3,(1)求证:△EGC∽△GFH;(2)求AD的长;(3)求tan∠GFH的值.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=∠C=90°,由折叠对称知:∠AGE=∠B=90°,∠AHF=∠D=90°,∴∠GHF=∠C=90°,∠EGC+∠HGF=90°,∠GFH+∠HGF=90°,∴∠EGC=∠GFH,∴△EGC∽△GFH.(2)解:∵S △GFH :S △AFH =2:3,且△GFH 和△AFH 等高, ∴GH :AH =2:3,∵将△ABE 沿着AE 折叠,点B 刚好落在CD 边上点G 处, ∴AG =AB =GH +AH =20, ∴GH =8,AH =12, ∴AD =AH =12.(3)解:在Rt △ADG 中,DG =√AG 2−AD 2=√202−122=16, 由折叠的对称性可设DF =FH =x ,则GF =16﹣x , ∵GH 2+HF 2=GF 2, ∴82+x 2=(16﹣x )2, 解得:x =6, ∴HF =6,在Rt △GFH 中,tan ∠GFH =GH HF =86=43. 23.(10分)(2020•荆州)为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨.这批防疫物资将运往A 地240吨,B 地260吨,运费如下表(单位:元/吨).目的地 生产厂 AB甲 20 25 乙1524(1)求甲、乙两厂各生产了这批防疫物资多少吨?(2)设这批物资从乙厂运往A 地x 吨,全部运往A ,B 两地的总运费为y 元.求y 与x 之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费均降低m 元(0<m ≤15且m 为整数)时,按(2)中设计的调运方案运输,总运费不超过5200元.求m 的最小值.【解答】解:(1)设这批防疫物资甲厂生产了a 吨,乙厂生产了b 吨,则: {a +b =5002a −b =100,解得{a =200b =300,即这批防疫物资甲厂生产了200吨,乙厂生产了300吨;(2)由题意得:y=20(240﹣x)+25[260﹣(300﹣x)]+15x+24(300﹣x)=﹣4x+11000,∵{x≥0240−x≥0300−x≥0x−40≥0,解得:40≤x≤240,又∵﹣4<0,∴y随x的增大而减小,∴当x=240时,可以使总运费最少,∴y与x之间的函数关系式为y=﹣4x+11000;使总运费最少的调运方案为:甲厂的200吨物资全部运往B地,乙厂运往A地240吨,运往B地60吨;(3)由题意和(2)的解答得:y=﹣4x+11000﹣500m,当x=240时,y最小=﹣4×240+11000﹣500m=10040﹣500m,∴10040﹣500m≤5200,解得:m≥9.68,而0<m≤15且m为整数,∴m的最小值为10.24.(12分)(2020•荆州)如图1,在平面直角坐标系中,A(﹣2,﹣1),B(3,﹣1),以O为圆心,OA的长为半径的半圆O交AO延长线于C,连接AB,BC,过O作ED∥BC 分别交AB和半圆O于E,D,连接OB,CD.(1)求证:BC是半圆O的切线;(2)试判断四边形OBCD的形状,并说明理由;(3)如图2,若抛物线经过点D且顶点为E.①求此抛物线的解析式;②点P是此抛物线对称轴上的一个动点,以E,D,P为顶点的三角形与△OAB相似,问抛物线上是否存在一点Q.使S△EPQ=S△OAB?若存在,请直接写出Q点的横坐标;若不存在,说明理由.【解答】(1)证明:如图1,设AB 与y 轴交于M ,∵A (﹣2,﹣1),B (3,﹣1),∴AB ∥x 轴,且AM =2,OM =1,AB =5, ∴OA =OC =√5,∵DE ∥BC ,O 是AC 的中点, ∴OE 是△ABC 的中位线, ∴AE =12AB ,BC =2OE , ∴E (12,﹣1),∴EM =12,∴OE =√OM 2+ME 2=√12+(12)2=√52, ∴BC =2OE =√5,在△ABC 中,∵AC 2+BC 2=(2√5)2+(√5)2=25,AB 2=52=25, ∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°, ∴BC ⊥AC ,∵AC 为半圆O 的直径,∴BC 是半圆O 的切线;(2)解:四边形OBCD 是平行四边形,理由是: 如图1,由(1)得:BC =OD =OA =√5, ∵OD ∥BC ,∴四边形OBCD 是平行四边形;(3)解:①如图2,由(1)知:OD =OA =√5,E 是AB 的中点,且E (12,﹣1),OE =√52,过D 作DN ⊥y 轴于N ,则DN ∥EM ,∴△ODN ∽△OEM , ∴ON OM=DN EM=OD OE,即ON 1=DN12=√5√52,∴ON =2,DN =1, ∴N (﹣1,2),设此抛物线的解析式为:y =a (x −12)2﹣1, 把N (﹣1,2)代入得:2=a (﹣1−12)2﹣1, 解得:a =43,∴此抛物线的解析式为:y =43(x −12)2﹣1,即y =43x 2−43x −23; ②存在,过D 作DG ⊥EP 于G ,设Q 的横坐标为x ,∵DG =1+12=32,EG =2+1=3,∴DE =√DG 2+EG 2=√(32)2+32=3√52,tan ∠DEG =DG EG =323=12,∵tan ∠OAM =OM AM =12,且∠DEG 和∠OAM 都是锐角, ∴∠DEG =∠OAM ,如图3,当△EPD ∽△AOB 时,EPAO=DE AB,即√5=3√525,∴EP =32,∵S △AOB =12AB ⋅OM =12×5×1=52, ∵S △EPQ =S △OAB , ∴12⋅EP ⋅|x −12|=52,即12×32×|x −12|=52,解得:x =236或−176;如图4,当△OAB ∽△DEP 时,AB EP=OA DE,即5EP=√53√52,∴EP =152, 同理得:12⋅152⋅|x −12|=52,解得:x =76或−16;综上,存在符合条件的点Q ,Q 点的横坐标为236或−176或76或−16.。

四川省凉山州2020年中考数学试题(解析版)

四川省凉山州2020年中考数学试题(解析版)
∴BD=BC+CD=6+2=8cm;
当AD= AC=2cm时,CD=AC-AD=4cm
∴BD=BC+CD=6+4=10cm;
故选C.
【点睛】此题主要考查线段之间的关系,解题的关键是熟知线段的和差关系.
9.下列命题是真命题的是()
A.顶点在圆上的角叫圆周角
B.三点确定一个圆
C.圆的切线垂直于半径
D.三角形的内心到三角形三边的距离相等
【详解】如图,过点O作 , ,设圆的半径为r,
∴△OBM与△ODN是直角三角形, ,
∵等边三角形ABC和正方形ADEF都内接于 ,
∴ , ,
∴ , ,
∴ , ,
∴ .
故答案选B.
【点睛】本题主要考查了圆的垂径定理知识点应用,结合等边三角形和正方形的性质,利用三角函数求解是解题的关键.
12.二次函数 的图象如图所示,有如下结论:① ;② ;③ ;④ (m为实数).其中正确结论的个数是()
【答案】D
【解析】
【分析】
根据圆周角的定义、圆的定义、切线的定义,以及三角形内心的性质,分别进行判断,即可得到答案.
【详解】解:A、顶点在圆上,并且角的两边与圆相交的角叫圆周角,故A错误;
B、不在同一条直线上的三点确定一个圆,故B错误;
C、圆的切线垂直于过切点的半径,故C错误;
D、三角形的内心到三角形三边的距离相等,故D正确;
综上,正确结论的个数有4个.
故选:D.
【点睛】本题考查了二次函数的图象与性质、二次函数与其系数间的关系等知识,属于常考题型,熟练掌握二次函数的图象与性质是解题的关键.
第Ⅱ卷(共90分)
二、填空题(每题5分,满分20分,将答案填在答题纸上)

2020年广东省中考数学试题及参考答案(word解析版)

2020年广东省中考数学试题及参考答案(word解析版)

2020年广东省初中学业水平考试数学(满分为120分,考试用时为90分钟)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.9的相反数是()A.﹣9 B.9 C.D.﹣2.一组数据2,4,3,5,2的中位数是()A.5 B.3.5 C.3 D.2.53.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)4.若一个多边形的内角和是540°,则该多边形的边数为()A.4 B.5 C.6 D.75.若式子在实数范围内有意义,则x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x≠﹣26.已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8 B.2C.16 D.47.把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2 B.y=(x﹣1)2+1 C.y=(x﹣2)2+2 D.y=(x﹣1)2﹣38.不等式组的解集为()A.无解B.x≤1 C.x≥﹣1 D.﹣1≤x≤19.如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1 B.C.D.210.如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个二、填空题(本大题7小题,每小题4分,共28分)11.分解因式:xy﹣x=.12.如果单项式3x m y与﹣5x3y n是同类项,那么m+n=.13.若+|b+1|=0,则(a+b)2020=.14.已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为.15.如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)24 72 18 x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.答案与解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.9的相反数是()A.﹣9 B.9 C.D.﹣【知识考点】相反数.【思路分析】根据相反数的定义即可求解.【解题过程】解:9的相反数是﹣9,故选:A.【总结归纳】此题主要考查相反数的定义,比较简单.2.一组数据2,4,3,5,2的中位数是()A.5 B.3.5 C.3 D.2.5【知识考点】中位数.【思路分析】中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.【解题过程】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.【总结归纳】本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)【知识考点】关于x轴、y轴对称的点的坐标.【思路分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【解题过程】解:点(3,2)关于x轴对称的点的坐标为(3,﹣2).故选:D.【总结归纳】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.若一个多边形的内角和是540°,则该多边形的边数为()A.4 B.5 C.6 D.7【知识考点】多边形内角与外角.【思路分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解题过程】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.【总结归纳】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.若式子在实数范围内有意义,则x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x≠﹣2【知识考点】二次根式有意义的条件.【思路分析】根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.【解题过程】解:∵在实数范围内有意义,∴2x﹣4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.【总结归纳】此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8 B.2C.16 D.4【知识考点】三角形中位线定理.【思路分析】根据中位线定理可得DF=AC,DE=BC,EF=AC,继而结合△ABC的周长为16,可得出△DEF的周长.【解题过程】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=AC,DE=BC,EF=AC,故△DEF的周长=DE+DF+EF=(BC+AB+AC)=16=8.故选:A.【总结归纳】此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2 B.y=(x﹣1)2+1 C.y=(x﹣2)2+2 D.y=(x﹣1)2﹣3【知识考点】二次函数图象与几何变换.【思路分析】先求出y=(x﹣1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.【解题过程】解:二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x﹣2)2+2.故选:C.【总结归纳】本题主要考查的是函数图象的平移,求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.不等式组的解集为()A.无解B.x≤1 C.x≥﹣1 D.﹣1≤x≤1【知识考点】解一元一次不等式组.【思路分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解题过程】解:解不等式2﹣3x≥﹣1,得:x≤1,解不等式x﹣1≥﹣2(x+2),得:x≥﹣1,则不等式组的解集为﹣1≤x≤1,故选:D.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1 B.C.D.2【知识考点】正方形的性质;翻折变换(折叠问题).【思路分析】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3﹣x,由直角三角形的性质可得:2(3﹣x)=x,解方程求出x即可得出答案.【解题过程】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.【总结归纳】本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【知识考点】二次函数图象与系数的关系;抛物线与x轴的交点.【思路分析】根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解题过程】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.【总结归纳】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.二、填空题(本大题7小题,每小题4分,共28分)11.分解因式:xy﹣x=x(y﹣1).【知识考点】因式分解﹣提公因式法.【思路分析】直接提取公因式x,进而分解因式得出答案.【解题过程】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).【总结归纳】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.【知识考点】34:同类项.【思路分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.【解题过程】解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.【总结归纳】本题考查同类项的定义,正确根据同类项的定义得到m,n的值是解题的关键.13.若+|b+1|=0,则(a+b)2020=1.【知识考点】16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【思路分析】根据非负数的意义,求出a、b的值,代入计算即可.【解题过程】解:∵+|b+1|=0,∴a﹣2=0且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.【总结归纳】本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b的值是解决问题的关键.14.已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为7.【知识考点】33:代数式求值.【思路分析】由x=5﹣y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)﹣4xy计算可得.【解题过程】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2=15﹣8=7,故答案为:7.【总结归纳】本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含式子x+y、xy及整体代入思想的运用.15.如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为45°.【知识考点】KG:线段垂直平分线的性质;L8:菱形的性质;N2:作图—基本作图.【思路分析】根据∠EBD=∠ABD﹣∠ABE,求出∠ABD,∠ABE即可解决问题.【解题过程】解:∵四边形ABCD是菱形,∴AD=AB,∴∠ABD=∠ADB=(180°﹣∠A)=75°,由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°,故答案为45°.【总结归纳】本题考查作图﹣基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.【知识考点】M5:圆周角定理;MP:圆锥的计算.【思路分析】求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.【解题过程】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:,而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=,解得,r=,故答案为:.【总结归纳】本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2﹣2.【知识考点】KP:直角三角形斜边上的中线;M8:点与圆的位置关系.【思路分析】如图,连接BE,BD.求出BE,BD,根据DE≥BD﹣BE求解即可.【解题过程】解:如图,连接BE,BD.由题意BD==2,∵∠MBN=90°,MN=4,EM=NE,∴BE=MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2﹣2.故答案为2﹣2.【总结归纳】本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.【知识考点】4J:整式的混合运算—化简求值.【思路分析】根据整式的混合运算过程,先化简,再代入值求解即可.【解题过程】解:(x+y)2+(x+y)(x﹣y)﹣2x2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=,y=时,原式=2××=2.【总结归纳】本题考查了整式的混合运算﹣化简求值,解决本题的关键是先化简,再代入值求解.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)24 72 18 x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【知识考点】用样本估计总体.【思路分析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.【解题过程】解:(1)x=120﹣(24+72+18)=6;(2)1800×=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【总结归纳】本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.【知识考点】KD:全等三角形的判定与性质;KI:等腰三角形的判定.【思路分析】先证△BDF≌△CEF(AAS),得出BF=CF,DF=EF,则BE=CD,再证△ABE≌△ACD(AAS),得出AB=AC即可.【解题过程】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.【总结归纳】本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.【知识考点】二元一次方程组的解;解二元一次方程组;一元二次方程的解;根与系数的关系.【思路分析】(1)关于x,y的方程组与的解相同.实际就是方程组的解,可求出方程组的解,进而确定a、b的值;(2)将a、b的值代入关于x的方程x2+ax+b=0,求出方程的解,再根据方程的两个解与2为边长,判断三角形的形状.【解题过程】解:(1)由题意得,关于x,y的方程组的相同解,就是程组的解,解得,,代入原方程组得,a=﹣4,b=12;(2)当a=﹣4,b=12时,关于x的方程x2+ax+b=0就变为x2﹣4x+12=0,解得,x1=x2=2,又∵(2)2+(2)2=(2)2,∴以2、2、2为边的三角形是等腰直角三角形.【总结归纳】本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.【知识考点】直角梯形;圆周角定理;切线的判定与性质;解直角三角形.【思路分析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2,则OB=,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.【解题过程】(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,,∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF===2,∴AB=DF=2,∴OB=,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH==.【总结归纳】本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.【知识考点】B7:分式方程的应用;C9:一元一次不等式的应用.【思路分析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90﹣a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.【解题过程】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.【总结归纳】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=2;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.【知识考点】GB:反比例函数综合题.【思路分析】(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD,即可求解;(3)确定直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),即可求解.【解题过程】解:(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2,故答案为2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD=×8﹣×2=3;(3)设点D(m,),则点B(4m,),∵点G与点O关于点C对称,故点G(8m,0),则点E(4m,),设直线DE的表达式为:y=sx+n,将点D、E的坐标代入上式得,解得,故直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),故FG=8m﹣5m=3m,而BD=4m﹣m=3m=FG,则FG∥BD,故四边形BDFG为平行四边形.【总结归纳】本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.【知识考点】HF:二次函数综合题.【思路分析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.【解题过程】解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,∴CO∥DE,∴,∵BC=CD,BO=3,∴=,∴OE=,∴点D横坐标为﹣,∴点D坐标(﹣,+1),设直线BD的函数解析式为:y=kx+b,由题意可得:,解得:,∴直线BD的函数解析式为y=﹣x+;(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,∵直线BD:y=﹣x+与y轴交于点C,∴点C(0,),∴OC=,∵tan∠CBO==,∴∠CBO=30°,如图2,过点A作AK⊥BD于K,∴AK=AB=2,∴DK===2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO=∠PBO=30°,∴BN=PN=2,BP=2PN,∴PN=,BP=,当△BAD∽△BPQ,∴,∴BQ==2+,∴点Q(1﹣,0);当△BAD∽△BQP,∴,∴BQ==4﹣,∴点Q(﹣1+,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=BN=2,当△BAD∽△BPQ,∴,∴,∴BQ=2+2∴点Q(1﹣2,0);当△BAD∽△PQB,∴,∴BQ==2﹣2,∴点Q(5﹣2,0);综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).【总结归纳】本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。

2020年辽宁省沈阳市中考数学试题及参考答案(word解析版)

2020年辽宁省沈阳市中考数学试题及参考答案(word解析版)

2020年辽宁省沈阳市中考数学试题及参考答案与解析(试题满分120分,考试时间120分钟)一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.下列有理数中,比0小的数是()A.﹣2 B.1 C.2 D.32.2020年5月,中科院沈阳自动化所主持研制的“海斗一号”万米海试成功,下潜深度超10900米,刷新我国潜水器最大下潜深度记录.将数据10900用科学记数法表示为()A.1.09×103B.1.09×104C.10.9×103D.0.109×1053.如图是由四个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.4.下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.(2a)3=8a3D.a3÷a=a35.如图,直线AB∥CD,且AC⊥CB于点C,若∠BAC=35°,则∠BCD的度数为()A.65°B.55°C.45°D.35°6.不等式2x≤6的解集是()A.x≤3 B.x≥3 C.x<3 D.x>37.下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯8.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定9.一次函数y=kx+b(k≠0)的图象经过点A(﹣3,0),点B(0,2),那么该图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,在矩形ABCD中,AB=,BC=2,以点A为圆心,AD长为半径画弧交边BC于点E,连接AE,则的长为()A.B.π C.D.二、填空题(每小题3分,共18分)11.因式分解:2x2+x=.12.二元一次方程组的解是.13.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为S甲2=2.9,S乙2=1.2,则两人成绩比较稳定的是(填“甲”或“乙”).14.如图,在平面直角坐标系中,O是坐标原点,在△OAB中,AO=AB,AC⊥OB于点C,点A在反比例函数y=(k≠0)的图象上,若OB=4,AC=3,则k的值为.15.如图,在平行四边形ABCD中,点M为边AD上一点,AM=2MD,点E,点F分别是BM,CM中点,若EF=6,则AM的长为.16.如图,在矩形ABCD中,AB=6,BC=8,对角线AC,BD相交于点O,点P为边AD上一动点,连接OP,以OP为折痕,将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F.若△PDF为直角三角形,则DP的长为.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:2sin60°+(﹣)﹣2+(π﹣2020)0+|2﹣|.18.(8分)沈阳市图书馆推出“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A表示,女生用B表示;乙班男生用a表示,两名女生分别用b1,b2表示).19.(8分)如图,在矩形ABCD中,对角线AC的垂直平分线分别与边AB和边CD的延长线交于点M,N,与边AD交于点E,垂足为点O.(1)求证:△AOM≌△CON;(2)若AB=3,AD=6,请直接写出AE的长为.四、(每小题8分,共16分).20.(8分)某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=,n=;(2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为度;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.21.(8分)某工程队准备修建一条长3000m的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少米?五、(本题10分)22.(10分)如图,在△ABC中,∠ACB=90°,点O为BC边上一点,以点O为圆心,OB长为半径的圆与边AB相交于点D,连接DC,当DC为⊙O的切线时.(1)求证:DC=AC;(2)若DC=DB,⊙O的半径为1,请直接写出DC的长为.六、(本题10分)23.(10分)如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A的坐标为(4,4),点B的坐标为(6,0),动点P从O开始以每秒1个单位长度的速度沿y轴正方向运动,设运动的时间为t秒(0<t<4),过点P作PN∥x轴,分别交AO,AB于点M,N.(1)填空:AO的长为,AB的长为;(2)当t=1时,求点N的坐标;(3)请直接写出MN的长为(用含t的代数式表示);(4)点E是线段MN上一动点(点E不与点M,N重合),△AOE和△ABE的面积分别表示为S1和S2,当t=时,请直接写出S1•S2(即S1与S2的积)的最大值为.七、(本题12分)24.(12分)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,①求证:PA=DC;②求∠DCP的度数;(2)如图2,当α=120°时,请直接写出PA和DC的数量关系.(3)当α=120°时,若AB=6,BP=,请直接写出点D到CP的距离为.八、(本题12分)25.(12分)如图1,在平面直角坐标系中,O是坐标原点,抛物线y=x2+bx+c经过点B(6,0)和点C(0,﹣3).(1)求抛物线的表达式;(2)如图2,线段OC绕原点O逆时针旋转30°得到线段OD.过点B作射线BD,点M是射线BD上一点(不与点B重合),点M关于x轴的对称点为点N,连接NM,NB.①直接写出△MBN的形状为;②设△MBN的面积为S1,△ODB的面积为是S2.当S1=S2时,求点M的坐标;(3)如图3,在(2)的结论下,过点B作BE⊥BN,交NM的延长线于点E,线段BE绕点B 逆时针旋转,旋转角为α(0°<α<120°)得到线段BF,过点F作FK∥x轴,交射线BE于点K,∠KBF的角平分线和∠KFB的角平分线相交于点G,当BG=2时,请直接写出点G的坐标为.参考答案与解析一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.下列有理数中,比0小的数是()A.﹣2 B.1 C.2 D.3【知识考点】有理数大小比较.【思路分析】根据有理数的大小比较的法则分别进行比较即可.【解题过程】解:由于﹣2<0<1<2<3,故选:A.【总结归纳】此题考查了有理数的大小比较,掌握正数大于0,负数小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小.2.2020年5月,中科院沈阳自动化所主持研制的“海斗一号”万米海试成功,下潜深度超10900米,刷新我国潜水器最大下潜深度记录.将数据10900用科学记数法表示为()A.1.09×103B.1.09×104C.10.9×103D.0.109×105【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解题过程】解:将10900用科学记数法表示为1.09×104.故选:B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是由四个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】利用主视图的定义,即从几何体的正面观察得出视图即可.【解题过程】解:从几何体的正面看,底层是三个小正方形,上层的中间是一个小正方形.故选:D.【总结归纳】此题主要考查了简单组合体的三视图,正确把握观察角度是解题关键.4.下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.(2a)3=8a3D.a3÷a=a3【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.【解题过程】解:A、a2+a3,不是同类项,无法合并,不合题意;B、a2•a3=a5,故此选项错误;C、(2a)3=8a3,正确;D、a3÷a=a2,故此选项错误;故选:C.【总结归纳】此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握相关运算法则是解题关键.5.如图,直线AB∥CD,且AC⊥CB于点C,若∠BAC=35°,则∠BCD的度数为()A.65°B.55°C.45°D.35°【知识考点】垂线;平行线的性质.【思路分析】由三角形内角和定理可求∠ABC的度数,由平行线的性质可求解.【解题过程】解:∵AC⊥CB,∴∠ACB=90°,∴∠ABC=180°﹣90°﹣∠BAC=90°﹣35°=55°,∵直线AB∥CD,∴∠ABC=∠BCD=55°,故选:B.【总结归纳】本题考查了平行线的性质,垂线的性质,三角形内角和定理,掌握平行线的性质是本题的关键.6.不等式2x≤6的解集是()A.x≤3 B.x≥3 C.x<3 D.x>3【知识考点】解一元一次不等式.【思路分析】不等式左右两边同时除以2,不等号方向不变,即可求出不等式的解集.【解题过程】解:不等式2x≤6,左右两边除以2得:x≤3.故选:A.【总结归纳】此题考查了一元一次不等式的解法,熟练运用不等式的性质是解不等式的关键.7.下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯【知识考点】随机事件.【思路分析】根据事件发生的可能性大小判断.【解题过程】解:A、从一个只有白球的盒子里摸出一个球是白球,是必然事件;B、任意买一张电影票,座位号是3的倍数,是随机事件;C、掷一枚质地均匀的硬币,正面向上,是随机事件;D、汽车走过一个红绿灯路口时,前方正好是绿灯,是随机事件;故选:A.【总结归纳】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【知识考点】根的判别式.【思路分析】根据根的判别式即可求出答案.【解题过程】解:由题意可知:△=(﹣2)2﹣4×1×1=0,故选:B.【总结归纳】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的判别式,本题属于基础题型.9.一次函数y=kx+b(k≠0)的图象经过点A(﹣3,0),点B(0,2),那么该图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【知识考点】函数的图象;一次函数图象与系数的关系;待定系数法求一次函数解析式.【思路分析】(方法一)根据点的坐标,利用待定系数法可求出一次函数解析式,再利用一次函数图象与系数的关系可得出一次函数y=x+2的图象经过第一、二、三象限,即该图象不经过第四象限;(方法二)描点、连线,画出函数y=kx+b(k≠0)的图象,观察函数图象,即可得出一次函数y=kx+b(k≠0)的图象不经过第四象限.【解题过程】解:(方法一)将A(﹣3,0),B(0,2)代入y=kx+b,得:,解得:,∴一次函数解析式为y=x+2.∵k=>0,b=2>0,∴一次函数y=x+2的图象经过第一、二、三象限,即该图象不经过第四象限.故选:D.(方法二)依照题意,画出函数图象,如图所示.观察函数图象,可知:一次函数y=kx+b(k≠0)的图象不经过第四象限.故选:D.【总结归纳】本题考查了待定系数法求一次函数解析式、一次函数图象与系数的关系以及函数图象,解题的关键是:(方法一)根据点的坐标,利用待定系数法求出一次函数解析式;(方法二)画出函数图象,利用数型结合解决问题.10.如图,在矩形ABCD中,AB=,BC=2,以点A为圆心,AD长为半径画弧交边BC于点E,连接AE,则的长为()A.B.π C.D.【知识考点】矩形的性质;弧长的计算.【思路分析】根据矩形的性质和三角函数的定义得到∠BAE=30°,根据弧长公式即可得到结论.【解题过程】解:∵四边形ABCD是矩形,∴AD=BC=2,∠B=90°,∴AE=AD=2,∵AB=,∴cos∠BAE==,∴∠BAE=30°,∴∠EAD=60°,∴的长==,故选:C.【总结归纳】本题考查了弧长的计算,矩形的性质,熟练掌握弧长公式是解题的关键.二、填空题(每小题3分,共18分)11.因式分解:2x2+x=.【知识考点】因式分解﹣提公因式法.【思路分析】原式提取公因式即可.【解题过程】解:原式=x(2x+1).故答案为:x(2x+1).【总结归纳】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.二元一次方程组的解是.【知识考点】解二元一次方程组.【思路分析】方程组利用加减消元法求出解即可.【解题过程】解:,①+②得:3x=6,解得:x=2,把x=2代入①得:y=3,则方程组的解为.故答案为:.【总结归纳】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为S 2=2.9,S乙2=1.2,则两人成绩比较稳定的是(填“甲”或“乙”).甲【知识考点】方差.【思路分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解题过程】解:∵甲=7=乙,S甲2=2.9,S乙2=1.2,∴S甲2>S乙2,∴乙的成绩比较稳定,故答案为:乙.【总结归纳】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.如图,在平面直角坐标系中,O是坐标原点,在△OAB中,AO=AB,AC⊥OB于点C,点A 在反比例函数y=(k≠0)的图象上,若OB=4,AC=3,则k的值为.【知识考点】反比例函数图象上点的坐标特征;等腰三角形的性质;勾股定理.【思路分析】利用等腰三角形的性质求出点A的坐标即可解决问题.【解题过程】解:∵AO=AB,AC⊥OB,∴OC=BC=2,∵AC=3,∴A(2,3),把A(2,3)代入y=,可得k=6,故答案为6.【总结归纳】本题考查反比例函数图象上的点的性质,等腰三角形的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.如图,在平行四边形ABCD中,点M为边AD上一点,AM=2MD,点E,点F分别是BM,CM中点,若EF=6,则AM的长为.【知识考点】三角形中位线定理;平行四边形的性质.【思路分析】根据三角形中位线定理和平行四边形的性质即可得到结论.【解题过程】解:∵点E,点F分别是BM,CM中点,∴EF是△BCM的中位线,∵EF=6,∴BC=2EF=12,∵四边形ABCD是平行四边形,∴AD=BC=12,∵AM=2MD,∴AM=8,故答案为:8.【总结归纳】本题考查了平行四边形的性质,三角形中位线定理,熟练掌握平行四边形的性质是解题的关键.16.如图,在矩形ABCD中,AB=6,BC=8,对角线AC,BD相交于点O,点P为边AD上一动点,连接OP,以OP为折痕,将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F.若△PDF为直角三角形,则DP的长为.【知识考点】勾股定理;矩形的性质;翻折变换(折叠问题).【思路分析】分两种情况讨论,当∠DPF=90°时,过点O作OH⊥AD于H,由平行线分线段成比例可得OH=AB=3,HD=AD=4,由折叠的性质可得∠APO=∠EPO=45°,可求OH=HP=3,可得PD=1;当∠PFD=90°时,由勾股定理和矩形的性质可得OA=OC=OB=OD=5,通过证明△OFE∽△BAD,可得,可求OF的长,通过证明△PFD∽△BAD,可得,可求PD的长.【解题过程】解:如图1,当∠DPF=90°时,过点O作OH⊥AD于H,∵四边形ABCD是矩形,∴BO=OD,∠BAD=90°=∠OHD,AD=BC=8,∴OH∥AB,∴,∴OH=AB=3,HD=AD=4,∵将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F,∴∠APO=∠EPO=45°,又∵OH⊥AD,∴∠OPH=∠HOP=45°,∴OH=HP=3,∴PD=HD﹣HP=1;当∠PFD=90°时,∵AB=6,BC=8,∴BD===10,∵四边形ABCD是矩形,∴OA=OC=OB=OD=5,∴∠DAO=∠ODA,∵将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F,∴AO=EO=5,∠PEO=∠DAO=∠ADO,又∵∠OFE=∠BAD=90°,∴△OFE∽△BAD,∴,∴,∴OF=3,∴DF=2,∵∠PFD=∠BAD,∠PDF=∠ADB,∴△PFD∽△BAD,∴,∴,∴PD=,综上所述:PD=或1,故答案为或1.【总结归纳】本题考查了翻折变换,矩形的性质,勾股定理,相似三角形的判定和性质,利用分类讨论思想解决问题是本题的关键.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:2sin60°+(﹣)﹣2+(π﹣2020)0+|2﹣|.【知识考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【思路分析】原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值.【解题过程】解:原式=2×+9+1+2﹣=+12﹣=12.【总结归纳】此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.18.(8分)沈阳市图书馆推出“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A表示,女生用B表示;乙班男生用a表示,两名女生分别用b1,b2表示).【知识考点】列表法与树状图法.【思路分析】画树状图展示所有6种等可能的结果,找出抽出的两名学生性别相同的结果数,然后根据概率公式求解.【解题过程】解:画树状图为:共有6种等可能的结果,其中抽出的两名学生性别相同的结果数为3,所以抽出的两名学生性别相同的概率==.【总结归纳】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.19.(8分)如图,在矩形ABCD中,对角线AC的垂直平分线分别与边AB和边CD的延长线交于点M,N,与边AD交于点E,垂足为点O.(1)求证:△AOM≌△CON;(2)若AB=3,AD=6,请直接写出AE的长为.【知识考点】全等三角形的判定;线段垂直平分线的性质;矩形的性质.【思路分析】(1)利用线段垂直平分线的性质以及矩形的性质,即可得到判定△AOM≌△CON 的条件;(2)连接CE,设AE=CE=x,则DE=6﹣x,再根据勾股定理进行计算,即可得到AE的长.【解题过程】解:(1)∵MN是AC的垂直平分线,∴AO=CO,∠AOM=∠CON=90°,∵四边形ABCD是矩形,∴AB∥CD,∴∠M=∠N,在△AOM和△CON中,,∴△AOM≌△CON(AAS);(2)如图所示,连接CE,∵MN是AC的垂直平分线,∴CE=AE,设AE=CE=x,则DE=6﹣x,∵四边形ABCD是矩形,∴∠CDE=90°,CD=AB=3,∴Rt△CDE中,CD2+DE2=CE2,即32+(6﹣x)2=x2,解得x=,即AE的长为.故答案为:.【总结归纳】本题主要考查了矩形的性质以及全等三角形的判定,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等.四、(每小题8分,共16分).20.(8分)某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=,n=;(2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为度;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.【知识考点】用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)根据其他垃圾的吨数和所占的百分比可以求得m的值,然后根据条形统计图中的数据,即可得到n的值;(2)根据统计图中的数据,可以得到可回收物的吨数,然后即可将条形统计图补充完整;(3)根据统计图中的数据,可以计算出厨余垃圾所对应的扇形圆心角的度数;(4)根据统计图中的数据,可以计算出该市2000吨垃圾中约有多少吨可回收物.【解题过程】解:(1)m=8÷8%=100,n%=×100%=60%,故答案为:100,60;(2)可回收物有:100﹣30﹣2﹣8=60(吨),补全完整的条形统计图如右图所示;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为:360°×=108°,故答案为:108;(4)2000×=1200(吨),即该市2000吨垃圾中约有1200吨可回收物.【总结归纳】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8分)某工程队准备修建一条长3000m的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少米?【知识考点】分式方程的应用.【思路分析】求的是工效,工作总量是3000m,则是根据工作时间来列等量关系.关键描述语是提前2天完成,等量关系为:原计划时间﹣实际用时=2,根据等量关系列出方程.【解题过程】解:设原计划每天修建盲道xm,则﹣=2,解得x=300,经检验,x=300是所列方程的解,答:原计划每天修建盲道300米.【总结归纳】本题主要考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.五、(本题10分)22.(10分)如图,在△ABC中,∠ACB=90°,点O为BC边上一点,以点O为圆心,OB长为半径的圆与边AB相交于点D,连接DC,当DC为⊙O的切线时.(1)求证:DC=AC;(2)若DC=DB,⊙O的半径为1,请直接写出DC的长为.【知识考点】切线的判定与性质.【思路分析】(1)如图,连接OD,由切线的性质可得∠ODC=90°,可得∠BDO+∠ADC=90°,由直角三角形的性质和等腰三角形的性质可证∠A=∠ADC,可得DC=AC;(2)由等腰三角形的性质可得∠DCB=∠DBC=∠BDO,由三角形内角和定理可求∠DCB=∠DBC=∠BDO=30°,由直角三角形的性质可求解.【解题过程】证明:(1)如图,连接OD,∵CD是⊙O的切线,∴CD⊥OD,∴∠ODC=90°,∴∠BDO+∠ADC=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠A=∠ADC,∴CD=AC;(2)∵DC=DB,∴∠DCB=∠DBC,∴∠DCB=∠DBC=∠BDO,∵∠DCB+∠DBC+∠BDO+∠ODC=180°,∴∠DCB=∠DBC=∠BDO=30°,∴DC=OD=,故答案为:.【总结归纳】本题考查了切线的判定和性质,圆的有关知识,等腰三角形的性质,直角三角形的性质,灵活运用这些性质解决问题是本题的关键.六、(本题10分)23.(10分)如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A的坐标为(4,4),点B的坐标为(6,0),动点P从O开始以每秒1个单位长度的速度沿y轴正方向运动,设运动的时间为t秒(0<t<4),过点P作PN∥x轴,分别交AO,AB于点M,N.(1)填空:AO的长为,AB的长为;(2)当t=1时,求点N的坐标;(3)请直接写出MN的长为(用含t的代数式表示);(4)点E是线段MN上一动点(点E不与点M,N重合),△AOE和△ABE的面积分别表示为S1和S2,当t=时,请直接写出S1•S2(即S1与S2的积)的最大值为.【知识考点】三角形综合题.【思路分析】(1)利用两点间距离公式求解即可.(2)求出直线AB的解析式,利用待定系数法即可解决问题.(3)求出PN,PM即可解决问题.(4)如图,当t=时,MN==4,设EM=m,则EN=4﹣m.构建二次函数利用二次函数的性质即可解决问题.【解题过程】解:(1)∵A(4,4),B(6,0),∴OA==4,AB==2.故答案为4,2.(2)设直线AB的解析式为y=kx+b,将A(4,4),B(6,0)代入得到,,解得,∴直线AB的解析式为y=﹣2x+12,由题意点N的纵坐标为1,令y=1,则1=﹣2x+12,∴x=,∴N(,1).(3)当0<t<4时,令y=t,代入y=﹣2x+12,得到x=,∴N(,t),∵∠AOB=∠AOP=45°,∠OPM=90°,∴OP=PM=t,∴MN=PN﹣PM=﹣t=.故答案为.(4).如图,当t=时,MN==4,设EM=m,则EN=4﹣m.由题意S1•S2=•m×4×(4﹣m)×4=﹣4m2+16m=﹣4(m﹣2)2+16,∵﹣4<0,∴m=2时,S1•S2有最大值,最大值为16.故答案为16.【总结归纳】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质等知识,解题的关键是学会利用参数解决问题,学会构建二次函数解决最值问题,属于中考压轴题.七、(本题12分)24.(12分)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,①求证:PA=DC;②求∠DCP的度数;(2)如图2,当α=120°时,请直接写出PA和DC的数量关系.(3)当α=120°时,若AB=6,BP=,请直接写出点D到CP的距离为.【知识考点】几何变换综合题.【思路分析】(1)①证明△PBA≌△DBC(SAS)可得结论.②利用全等三角形的性质解决问题即可.(2)证明△CBD∽△ABP,可得==解决问题.(3)分两种情形,解直角三角形求出AD即可解决问题.【解题过程】(1)①证明:如图①中,∵AB=AC,PB=PD,∠BAC=∠BPD=60°,∴△ABC,△PBD是等边三角形,∴∠ABC=∠PBD=60°,∴∠PBA=∠DBC,∵BP=BD,BA=BC,∴△PBA≌△DBC(SAS),∴PA=DC.②解:如图①中,设BD交PC于点O.∵△PBA≌△DBC,∴∠BPA=∠BDC,∵∠BOP=∠COD,∴∠OBP=∠OCD=60°,即∠DCP=60°.(2)解:结论:CD=PA.理由:如图②中,∵AB=AC,PB=PD,∠BAC=∠BPD=120°,∴BC=BA,BD=BP,∴==,∵∠ABC=∠PBD=30°,∴∠ABP=∠CBD,∴△CBD∽△ABP,∴==,∴CD=PA.(3)过点D作DM⊥PC于M,过点B作BN⊥CP交CP的延长线于N.如图3﹣1中,当△PBA是钝角三角形时,在Rt△ABN中,∵∠N=90°,AB=6,∠BAN=60°,∴AN=AB•cos60°=3,BN=AB•sin60°=3,∵PN===2,∴PA=3﹣2=1,由(2)可知,CD=PA=,∵∠BAP=∠BDC,∴∠DCA=∠PBD=30°,∵DM⊥PC,∴DM=CD=如图3﹣2中,当△ABN是锐角三角形时,同法可得PA=2+3=5,CD=5,DM=CD=,综上所述,满足条件的DM的值为或.故答案为或.【总结归纳】本题属于几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题注意一题多解.八、(本题12分)25.(12分)如图1,在平面直角坐标系中,O是坐标原点,抛物线y=x2+bx+c经过点B(6,0)和点C(0,﹣3).(1)求抛物线的表达式;(2)如图2,线段OC绕原点O逆时针旋转30°得到线段OD.过点B作射线BD,点M是射线BD上一点(不与点B重合),点M关于x轴的对称点为点N,连接NM,NB.①直接写出△MBN的形状为;②设△MBN的面积为S1,△ODB的面积为是S2.当S1=S2时,求点M的坐标;(3)如图3,在(2)的结论下,过点B作BE⊥BN,交NM的延长线于点E,线段BE绕点B 逆时针旋转,旋转角为α(0°<α<120°)得到线段BF,过点F作FK∥x轴,交射线BE于点K,∠KBF的角平分线和∠KFB的角平分线相交于点G,当BG=2时,请直接写出点G的坐标为.【知识考点】二次函数综合题.【思路分析】(1)将点B,点C坐标代入解析式,可求b,c的值,即可求抛物线的表达式;(2)①如图2,过点D作DH⊥OB,由旋转的性质可得OD=3,∠COD=30°,由直角三角形的性质可得OH=OH=,DH=OH=,由锐角三角函数可求∠HBD=30°,由对称性可得BN=BM,∠MBH=∠NBH=30°,可证△BMN是等边三角形;②由三角形面积公式可求S2,S1,由等边三角形的面积公式可求MN的长,由对称性可求MR=NR=,由直角三角形的性质可求BR=3,可得OR=3,即可求点M坐标;(3)如图3中,过点F作FH⊥BG交BG的延长线于H.想办法证明△BFK是等边三角形,推出BG⊥x轴即可解决问题.【解题过程】解:(1)∵抛物线y=x2+bx+c经过点B(6,0)和点C(0,﹣3),∴,解得:,∴抛物线解析式为:y=x2﹣;(2)①如图2,过点D作DH⊥OB于H,设MN与x轴交于点R,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档