生物传感器

合集下载

生物传感器的设计与应用研究

生物传感器的设计与应用研究

生物传感器的设计与应用研究生物传感器作为一种能够将生物反应转化为可测量信号的装置,在生物医学、环境监测、食品安全等众多领域发挥着日益重要的作用。

它融合了生物学、化学、物理学以及电子学等多学科的知识和技术,为我们提供了一种快速、灵敏、准确且便捷的检测手段。

一、生物传感器的设计原理生物传感器的设计主要基于生物识别元件与信号转换元件的有效结合。

生物识别元件可以是酶、抗体、核酸、微生物等,它们能够特异性地识别目标分析物。

例如,酶能够催化特定的化学反应,抗体能够与特定的抗原结合。

信号转换元件则负责将生物识别过程中产生的变化转化为电信号、光信号或热信号等易于测量和分析的形式。

常见的信号转换元件包括电化学传感器(如电位传感器、电流传感器)、光学传感器(如荧光传感器、吸光传感器)和压电传感器等。

以电化学酶传感器为例,其设计通常是将酶固定在电极表面。

当目标底物与酶发生反应时,会产生电子转移或物质浓度的变化,从而导致电极上的电流或电位发生改变。

通过测量这种电流或电位的变化,就可以定量分析目标底物的浓度。

二、生物传感器的设计关键技术1、生物识别元件的固定化将生物识别元件稳定且有效地固定在传感器表面是确保传感器性能的关键。

常用的固定化方法包括物理吸附、共价结合、包埋等。

这些方法需要在保持生物活性的同时,实现高负载量和长期稳定性。

2、信号放大策略为了提高传感器的检测灵敏度,需要采用合适的信号放大策略。

例如,使用纳米材料(如金纳米粒子、碳纳米管)可以增加电极的表面积,从而提高电流响应。

此外,酶催化循环、核酸扩增技术等也可用于信号放大。

3、抗干扰能力在实际应用中,样品中可能存在多种干扰物质,影响传感器的准确性。

因此,在设计生物传感器时,需要考虑如何提高其抗干扰能力,例如通过选择特异性高的生物识别元件、优化传感器的工作条件或采用合适的屏蔽技术。

4、微型化与集成化为了满足现场即时检测和便携化的需求,生物传感器需要不断向微型化和集成化方向发展。

什么是生物传感器

什么是生物传感器

1.什么是生物传感器?主要由哪几部分组成,分别有什么功能.生物传感器的定义:生物传感器是一种精致的分析器件,它结合一种生物或者生物衍生的敏感器件与一只理化换能器,能给产生间断或连续的数字电信号,信号强度与被分析物成比例。

组成:生物敏感膜(分子识别元件),换能器作用过程是,待分析物与生物敏感膜发生反应,产生物理、化学量的变化,物理化学量的变化传递给换能器,转换为可被计算机识别的电信号。

生物敏感膜的种类:酶,全细胞,组织,细胞器,免疫物质,具有生物亲和能力的物质,核算,模拟酶。

以上生物敏感膜均是人工膜,而非天然生物膜换能器:其作用是将各种生物的、化学的和物理的信息转化成电信号。

可以用作转化的信息有,离子变化,电阻、电导变化,光学变化,质量变化,力学变化,气体分压变化。

2.什么是酶联免疫测定法?描述其两种检测方法,可画图说明.并举一两个例子。

夹心法:先将抗体固定在膜的表面,加入待检测的抗原,与固定抗体结合,因为抗原至少含有两个结合点,可以再结合一个被酶标记的抗体,加入底物,根据标记到抗体上的酶与底物的颜色,荧光,氧化还原电位等信号检测待测抗原的量。

竞争法:将与待测抗原全部覆盖到固定膜上,然后加入待测样品和酶标记的抗体,待反应完全后冲洗固定膜,再检测固定膜上的抗体的量,因为样品中的抗原已被冲走,剩下的抗体是与样品中抗原竞争时结合到被固定抗原上的抗体量。

3.DNA的三级结构?一级结构:脱氧核糖核苷酸的排列顺序二级结构:根据碱基互补配对形成的双螺旋连。

现在已发现的螺旋分为B型,A型,C型,Z型,它们在螺距,直径,每个螺旋的碱基数和旋转的方向上不同。

三级结构:DNA双螺旋继续扭曲变形,并与蛋白质分子结合形成核小体,压缩进染色体内。

4.生物敏感元件的固定化方法有哪几种?分别有什么特点.酶和DNA分别常用哪几种固定方法.5.NH3电极属于第一代生物传感器的哪种基础电极,说明其作用原理.6.分析裸电极上Fe(CN)63-/4-的循环伏安曲线,并指出由其能得到什么信息。

生物传感器概述及应用

生物传感器概述及应用

膜或电极电荷状态的变化
膜电位法、电极电位法
质量变化
压电元件法
阻抗变化
电导率法
热变化(热效应)
热敏电阻法
光谱特性变化(光效应)
光纤和光电倍增管
将识别元件上进行的生化反应中消耗或生成的化学物质,或产生的光或热等转换为可用信号,并呈现一定的比例关系。
感受器是生物传感器的心脏。制备分两方面工作,一是选择最佳载体材料(需活化);二是在载体表面固定化亲和配基(非共价和共价) 换能器感知固定化配基与待测物结合产生的微小变化,其质量好坏决定了传感器的灵敏度。
酶具有识别特定分子的能力
1962年,
酶与电极结合起来测定酶的底物
固定化葡萄糖氧化酶(GOD)+氧电极
葡萄糖电极
196
1956, L.C. Clark : oxygen electrode 1962, L.C. Clark : biosensor concept (electrochemical sensor + enzyme transducers as membrane = enzyme electrode)
oxygen electrode enzyme electrode
酶 辅酶 维生素 抗原 抗体
生物功能膜(酶、微生物、细胞器、组织、细胞、抗原、抗体)
待测物质
扩散作用
固定化生物敏感膜层
分子识别
生物学反应
电信号
换能器
生物传感器的分子识别元件
分子识别元件
生物活性单元
酶膜
各种酶类
微生物传感器可用于测量发酵工业中的原材料和代谢产物。还用于微生物细胞数目的测定。利用这种电化学微生物细胞数传感器可以实现菌体浓度连续、在线的测定。

生物传感器

生物传感器

生物传感器生物传感器是利用电化学、光学或热学等原理构成对某种或某些特定分子如糖、氨基酸、DNA、激素等有特定响应的检测器,它由对被测物有高选择性的分子识别能力的膜和能把膜上进行的生物化学反应中消耗或生成的化学物质或产生的光、热转变为电信号的换能器所构成。

生物传感器并不专指用于生物技术领域的传感器,它的应用领域还包括环境监测、医疗卫生喝食品检验等。

生物传感器是用生物活性材料与物理化学换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测方法与监控方法也是物质分子水平的快速、微量分析方法。

生物传感器克服了过去分析酶法试剂费用高和化学分析繁琐复杂的缺点,但是专一性强、分析速度快、准确度高、操作系统比较简单、成本低,有的生物传感器能够可靠地指示微生物培养系统内的供氧状况和副产物的产生。

21世纪是生命科学的世纪,随着“人类基因组工作草图”的完成、纳米生物技术和纳米微电子加工技术的出现,使得无论在原理上还是加工技术上,都将为生物传感器的发展带来巨大的变革。

生物传感器作为一类特殊的化学传感器,它是以生物活性单元作为生物敏感基元,对被测目标物具有高度选择性的检测器。

它通过各种物理、化学型信号转换器捕捉目标物与敏感基元之间的反应,然后,将反应的程度用离散或连续的电信号表达出来,从而得出被测物的浓度。

固定化微生物也越来越多地被用作生物传感器的敏感材料,于是产生了微物传感器。

微生物传感器主要由两部分组成——固定化微生物膜和转换器,将这两部分组合在一起便构成了微生物传感器。

微生物传感器与酶传感器相比,价格更便宜、使用时间更长、稳定性更好,微生物传感器是由固定微生物膜及电化学装置组成,微生物膜的固定化法与酶的固定方式相同。

微生物的菌株比分离提纯的酶的价格低得多,因而制成的传感器便于推广普及。

微生物细胞内的酶在适当环境下活性不易降低,因此微生物传感器的寿命更长。

即使微生物体内的酶的催化活性已经丧失,也还可以因细胞的增殖使之再生。

生物传感器.pptx

生物传感器.pptx

返回
上页
下页
图库
10.1.2 生物传感器的类型
生物传感器可以根据其分子识别元件的敏感物 质分为:酶传感器、微生物传感器、组织传感 器、细胞传感器和免疫传感器。还可以根据换 能器和测声型生物传感器等。生物传感器的分 类如图10-1所示。
返回
上页
下页
图库

图10-1 生物传感器的基本结构
返回
上页
下页
生物传感器通常将生物物质固定在高分子膜等 固体载体上,例如酶、微生物组织、动物细胞、 底物、抗原、抗体等,被识别的生物分子作用 于生物功能性人工膜(生物传感器)时,将会 产生生理变化或化学变化,换能器将此信号转 换为电信号,从而检测出待测物质。转换包括 电化学反应、热反应、光反应等,输出为可处 理的电信号。人们把这类固定化的生物物质: 酶、抗原、抗体、激素等,或生物体本身:细 胞、细胞体(器)、组织作为敏感元件的传感 器,称为生物分子传感器或简称生物传感器。
返回
上页
下页
图库
10.3.2 生物场效应晶体管结构类型
一 生物场效应晶体管有分离型和结合型 二 结合型生物场效应晶体管 三 酶场效应晶体管差分输出
返回
上页
下页
图库
10.3.3 应用研究实例
1 尿素测定 2 NAD+-NADH测定 3 肌酸酐测定 4 青霉素测定 5 甲醛测定 6 有机磷农药测定 7 活细胞场效应晶体管 8 昆虫触角天线场效应晶体管 9 其他用途
返回
上页
下页
图库
▪ DNA在固体电极上的固定化方法: ▪ (1)吸附法 ▪ (2)共价键结合法 ▪ (3)自组装膜法
返回
上页
下页
图库
10.2.3 电化学传感器中的标识物

电化学生物传感器的分类

电化学生物传感器的分类

电化学生物传感器的分类
1. 酶电化学生物传感器呀,就像一个极其敏锐的侦探!你看,检测血糖的血糖仪不就是个很好的例子嘛。

它通过酶来识别和转化目标物质,精准得很呢!
2. 免疫电化学生物传感器呢,就如同战士一样坚守着!新冠抗体检测试剂不就是这样嘛,专门去识别那些特定的抗原。

3. 微生物电化学生物传感器呀,嘿,这可神奇了,就好像训练有素的小部队!比如可以检测水质中细菌的传感器,那可真是厉害得很!
4. 组织电化学生物传感器啊,这就像是一个微观的分析大师!像检测脑组织功能的那些传感器就是典型的例子呢。

5. 细胞电化学生物传感器,哇哦,这简直是对细胞的专属关注者嘛!活细胞分析传感器不就是在时刻关注着细胞的一举一动嘛。

6. 核酸电化学生物传感器,可不就是基因的探秘者嘛!基因检测不就是运用它来探索那些神秘的遗传信息呀。

7. 离子电化学生物传感器,像是对离子的敏锐追踪者!比如检测血液中钙离子浓度的传感器,精准得让人惊叹呀。

8. 气体电化学生物传感器,这就是气体的猎手呀!像检测氧气浓度的传感器,那是非常重要的呢!我觉得电化学生物传感器的分类真的好丰富好神奇,每个都有独特的用途和价值,太牛啦!。

生物传感器

生物传感器

在食品分析的应用
• 食品成分分析
• 食品添加剂的分析 • 农药和抗生素残留量分析 • 微生物和生物毒素的检验 • 食品鲜度的检测
在环境监测中的应用
•水质分析:一个典型应用是测定生化需氧量 (BOD),传统方法测BOD需5天,且操作复杂。 1977年Karube等首次报道了BOD微生物传感器, 只需15分钟即能测出结果,连续使用寿命达17天;
优点:酶易被分离,贮存较稳定,所以目前被广泛 的应用。
缺点:1.酶的特异性不高,如它不能区分结构上稍有差异的
梭曼与沙林。
2.酶在测试的过程中因被消耗而需要不断的更换。
2、组织传感器(Tissue Sensor)
测定项目 谷氨酸 组织膜 木瓜 基础电极 CO2 稳定性/ 天 7 线性范围 2×10-4~1.3×102mol/L 3.4×10-5~1.5×103mol/L 1×10-4~1.1×102mol/L
生物传感器的特点
(1) 测定范围广泛。
(2)生物传感器使用时一般不需要样品的预处理,样品中的被测组分的分离和 检测同时完成,且测定时一般不需加入其它试剂。 (3) 采用固定化生物活性物质作敏感基元(催化剂),价值昂贵的试剂可以 重复多次使用。 (4)测定过程简单迅速。 (5) 准确度和灵敏度高。一般相对误差不超过1%。 (6)由于它的体积小,可以实现连续在线监测,容易实现自动分析。 (7) 专一性强,只对特定的底物起反应,而且不受颜色、浊度的影响。 (8)可进入生物体内。 (9)传感器连同测定仪的成本远低于大型的分析仪器,便于推广普及。
• (2)一般不需进行样品的预处理,它利用本身具备 的优异选择性把样品中被测组分的分离和检测 统一为一体,测定时一般不需另加其他试剂,使 测定过程简便迅速,容易实现自动分析

生物传感器

生物传感器

(一)电位型电极
1 离子选择电极 离子选择性电极是一类对特定的离子呈选择 性响应的电极,具有快速、灵敏、可靠、价廉等 优点,因此应用范围很广.离子选择性电极作为 生物传感器的信号转换器只是它的一种应用,在 生物医学领域也常直接用它测定体液中的一些成 分(如H+,K+,Na+,Ca2+等)。 2 氧化还原电极 氧化还原电极是不同于离子选择电极的另一 类电位型电极。
上面介绍的各种名称都是类别的名称,每一类 又都包含许多种具体的生物传感器。 例如,仅酶电极一类,根据所用酶的不同就有 几十种,如葡萄糖电极、尿素电极、尿酸电极、 胆固醇电极、乳酸电极、丙酮酸电极等等。 就是葡萄糖电极也并非只有一种,有用pH电极 或碘离子电极作为转换器的电位型葡萄糖电极, 有用氧电极或过氧化氢电极作为转换器的电流 型葡萄糖电极等。实际上还可再细分。
2 酶的固定化技术
固定化酶(Immobilized Enzyme)是20世纪60年代发展起来的— 项新技术。以往使用的酶绝大多数是水溶性的酶。这些水溶性酶 催化结束后,极难回收,因而阻碍了酶工业的进一步发展。60年 代后,在酶学研究领域内涌现出固定化酶。它是通过物理的或化 学的手段,将酶束缚于水不溶的载体上,或将酶柬缚在一定的空 间内,限制酶分子的自由流动,但能使酶充分发挥催化作用;过 去曾称其为水不溶酶或固相酶。1971年第一届国际酶工程会上正 式建议采用固定化酶的名称。 从60年代起,固定化酶的研究发展很快,起初人们把注意力 集中在酶的固定化方法研究上,近年来,不但固定化方法和载体 开发有了长足发展,并且已转向它在工业、医药、化学分析、亲 和层析、环境保护、能源开发以及理论研究等方面的应用研究。
(二)电流型电极
电化学生物传感器中采用电流型电极为信号转 换器的趋势日益增加,这是因为这类电极和电 位型电极相比有以下优点: (1)电极的输出直接和被测物的浓度呈线性关系, 不像电位型电极那样和被测物浓度的对数呈线 性关系。 (2)电极输出值的读数误差所对应的待测物浓度 的相对误差比电位型电极的小。 (3)电极的灵敏度比电位型电极的高。

生物传感器与医学应用

生物传感器与医学应用

生物传感器的类型
▪ 压电生物传感器
1.压电生物传感器是基于压电效应,将生物分子间的相互作用 转化为电信号,实现生物分子检测的传感器。 2.该类型传感器具有灵敏度高、稳定性好等优点,可用于检测 生物分子浓度和活性。 3.压电生物传感器在生物医学、环境监测等领域有广泛的应用 前景。
▪ 热学生物传感器
1.热学生物传感器是通过测量生物分子结合过程中释放的热能 ,实现生物分子检测的传感器。 2.该类型传感器具有无需标记、非破坏性等优点,可用于实时 监测生物分子间的相互作用。 3.热学生物传感器在药物筛选、疾病诊断等领域有重要的应用 价值。
康复医学中的应用
1.生物传感器能实时监测患者的生理指标,为康复治疗提供依 据。 2.通过监测患者的运动和功能恢复情况,评估康复治疗效果。 3.生物传感器技术有助于提高康复治疗的针对性和效率。
在医学中的应用
▪ 远程医疗与健康监测
1.生物传感器可实现远程实时监测,为远程医疗提供便利。 2.患者可在家中自测生理指标,将数据实时传输给医生,提高 医疗效率。 3.生物传感器技术有助于降低医疗成本,提高医疗资源的普及 率。
▪ 生物传感器与可穿戴设备
1.生物传感器可集成于可穿戴设备中,实时监测用户的生理指 标。 2.可穿戴设备结合生物传感器技术,可实现健康监测、运动跟 踪等功能。 3.随着技术的进步,生物传感器在可穿戴设备中的应用将更加 广泛,提高人们的健康水平。
生物传感器与医学应用
生物传感器的优势
生物传感器的优势
生物传感器概述
▪ 生物传感器的应用领域
1.生物传感器在医学、环境监测、食品安全等领域有广泛应用。 2.在医学领域,生物传感器可用于疾病诊断、药物筛选、生物分子相互作用研究等。

生物传感器

生物传感器

生物传感器导言生物传感器是一种具有生物识别功能的器件,可以通过生物体的特定信号或变化来检测和测量外部环境、生理活动或生物分子等信息。

生物传感器的应用领域广泛,涵盖了生物医学、环境监测、食品安全等多个领域,具有重要的研究和应用价值。

生物传感器的类型生物传感器按照传感元件的特性和信号来源可以分为多种类型,其中常见的包括电化学传感器、免疫传感器、DNA传感器、细胞传感器等。

这些传感器通过不同机制与生物体相关的物质相互作用,转化成可输出的信号。

•电化学传感器:利用生物体内或生物体产生的电活性物质引起电流变化的原理进行检测,如葡萄糖传感器等。

•免疫传感器:通过生物体内抗原和抗体的结合反应来检测特定物质,常用于检测病原体、荷尔蒙等。

•DNA传感器:基于DNA分子结构的特异性识别原理,用于检测DNA序列、病毒等。

•细胞传感器:利用细胞与外部环境的相互作用来监测环境中的毒素、微生物等。

生物传感器的应用生物传感器在医学、环境监测、食品安全等领域有着广泛的应用,主要表现在以下方面:•医学领域:生物传感器可用于检测药物浓度、疾病标志物、生理参数等,有望提高医学诊断和治疗的准确性和效率。

•环境监测:生物传感器可以检测环境中的污染物、重金属等有害物质,为环境保护和监测提供技术支持。

•食品安全:生物传感器可用于检测食品中的有害物质、微生物等,保障食品安全,减少食品中毒事件发生。

生物传感器的发展趋势随着生物技术和纳米技术的不断发展,生物传感器的灵敏度、稳定性和便携性不断提升,未来生物传感器的发展趋势主要包括以下几个方面:•多功能一体化:未来生物传感器将趋向于多功能一体化,同时具备多种检测功能,提高传感器的综合性能。

•微型化和便携化:生物传感器将逐渐向微型化、便携化发展,方便快速实时检测需要。

•智能化:结合人工智能和大数据分析,生物传感器将具备智能化的特性,提高信号处理和数据分析的效率和准确性。

结语生物传感器作为一种具有生物体识别功能的重要器件,对医学、环境监测、食品安全等方面具有重要的应用意义。

生物传感器

生物传感器
⑴采用固定化生物活性物质作催化剂,价值昂贵的试剂可以重复多次使用,克服了过去酶法分析试剂费用高 和化学分析繁琐复杂的缺点。
⑵专一性强,只对特定的底物起反应,而且不受颜色、浊度的影响。
⑶分析速度快,可以在一分钟得到结果。
⑷准确度高,一般相对误差可以达到1%
⑸操作系统比较简单,容易实现自动分析
⑹成本低,在连续使用时,每例测定仅需要几分钱人民币。
环境污染问题日益严重,人们迫切希望拥有一种能对污染物进行连续、快速、在线监测的仪器,生物传感器 满足了人们的要求。已有相当部分的生物传感器应用于环境监测中。
⑴水环境监测
生化需氧量(BOD)是一种广泛采用的表征有机污染程度的综合性指标。在水体监测和污水处理厂的运行控制 中,生化需氧量也是最常用、最重要的指标之一。常规的BOD测定需要5d的培养期,而且操作复杂,重复性差, 耗时耗力,干扰性大,不适合现场监测。SiyaWakin等人利用一种毛孢子菌(Trichosporoncutaneum)和芽孢杆 菌(Bacilluslicheniformis)制作一种微生物BOD传感器。该BOD生物传感器能同时精确测量葡萄糖和谷氨酸的 浓度。测量范围为0.5~40mg/L,灵敏度为5.84nA/mgL。该生物传感器稳定性好,在58次实验中,标准偏差仅为 0.0362。所需反应时间为5~lOmin。
生物传感器在食品分析中的应用包括食品成分、食品添加剂、有害毒物及食品鲜度等的测定分析。
生物传感器⑴食品成分分析在食品工业中,葡萄糖的含量是衡量水果成熟度和贮藏寿命的一个重要指标。已 开发的酶电极型生物传感器可用来分析白酒、苹果汁、果酱和蜂蜜中的葡萄糖。其它糖类,如果糖,啤酒、麦芽 汁中的麦芽糖,也有成熟的测定传感器。
DNA传感器是生物传感器中报道最多的一种,用于临床疾病诊断是DNA传感器的最大优势,它可以帮助医生从 DNA,RNA、蛋白质及其相互作用层次上了解疾病的发生、发展过程,有助于对疾病的及时诊断和治疗。此外,进 行药物检测也是DNA传感器的一大亮点。Brabec等人利用DNA传感器研究了常用铂类抗癌药物的作用机理并测定了 血液中该类药物的浓度。

生物传感器

生物传感器

二、酶生物传感器 应用固定化酶 固定化酶作为敏感元件的生物传感器 应用固定化酶作为敏感元件的生物传感器 酶电极 酶场效应管传感器 酶生物传感器 酶热敏电阻传感器 酶光纤传感器 (一)、酶电极传感器 一、 定义: 固定化酶与离子选择电极 气敏电极、 与离子选择电极、 定义:由固定化酶与离子选择电极、气敏电极、氧化还原 电极等电化学电极 电化学电极组合而成的生物传感器 电极等电化学电极组合而成的生物传感器 电流型酶电极 酶电极 电势型酶电极
二、生物敏感材料的固定化技术 生物传感器制作的核心部分 1、固定化的目的:将生物敏感物质限制在一定的空间,但 、固定化的目的:将生物敏感物质限制在一定的空间, 又不妨碍被分析物的自由扩散 2、固定化的方法 、 1)吸附法 ) 用非水溶性载体物理吸附 离子结合, 物理吸附或 用非水溶性载体物理吸附或离子结合,使蛋白质分子固定 化的方法。 化的方法。 物理吸附:通过极性键、氢键、 物理吸附:通过极性键、氢键、疏水力或 π 电子的相互作 用将生物组分吸附在不溶性的惰性载体上。 用将生物组分吸附在不溶性的惰性载体上。 离子交换吸附法:选用具有离子交换性质的载体, 离子交换吸附法:选用具有离子交换性质的载体,在适宜 条件下, 的PH条件下,使生物分子与离子交换剂通过离子键结合, 条件下 使生物分子与离子交换剂通过离子键结合, 形成固定化层。 形成固定化层。
待测物 的浓度
放大、 放大、输出 检测处理电路
电信号
二、生物传感器的分类及特点 )、分类 (一)、分类 酶传感器 免疫传感器
光生物传感器
热生物传感器
微生物传感器 生物传感器 生物传 半导体生物 感器 信号转换器) 组织传感器 (信号转换器) 传感器 敏感物质) (敏感物质) 电ቤተ መጻሕፍቲ ባይዱ学生物 细胞传感器 传感器 基因传感器 声波生物 传感器

生物传感器及其应用

生物传感器及其应用

电场
压电晶体式
气体
等离子体共振式 磁场
12
(1) 将化学变化转变成电信号 以酶传感器为例,酶催化特定底物发生反应,从
而使特定生成物的量有所增减,用能把这类物质的 量的改变转换为电信号的装置和固定化酶耦合,即构 成酶传感器。
常用转换装置有氧电极、过氧化氢。
13
(2)将热变化转换成电信号 固定化的生物材料与相应的被测物作用时常

还原型辅酶
燃料电极
电流式
31
(2)微生物传感器特点
微生物较酶易获得,价格相对较低; 稳定性好,连续使用时间可达一个月左右; 响应时间比酶传感器长,多数在10分钟左右; 特异性较酶传感器差。
32
(3)微生物传感器实例
例1:谷氨酸传感器 谷氨酸脱羧酶催化谷氨酸的反应为:
HOOC-(CH2)2-CHNH2-COOH 谷氨酸脱羧酶 HOOC-(CH2)2-CH2NH2 + CO2
• 免疫电极(immuno bioelectrode)是以免疫物质 (抗原或抗体)作为敏感元件的电化学生物传感 器。
• 免疫物质的高特异性识别使免疫电极具有很高的 特异性。
• 根据测定过程是否需要标记物可分为直接免疫电 极(direct immuno electrode)和间接免疫电极 (indirect immuno electrode)。
葡萄糖传感器示意图
电解质溶液
记录仪
Pb Pt
聚四氟乙稀膜
氧电极
固定化葡萄糖氧化酶膜
葡萄糖 酶催化反应 电极旁O2浓度↓电化学反应 电流值↓→葡萄糖浓度
酶膜上
氧电极上
主要性能:测量范围:1~500 mg/L 响应时间:10~30 s 使用寿命:60~100 day

生物传感器

生物传感器

(4).酶的固定化技术
固定化酶使酶的利用率、稳定性与 机械强度等方面均较可溶性酶有所提高, 使用固定化酶为酶电极的制备提供了良 好的条件.
1.惰性载体——物理吸附法
此法是酶分子通过极性键、氢键、 疏水力或π电子相互作用等吸附于不溶性 载体上.常用的载体有:多孔玻璃、活 性炭、氧化铝、石英砂、纤维素酯(包 括硝酸纤维素、醋酸纤维素)、葡聚糖、 琼脂精、聚氯乙烯、聚苯乙烯等,已用 此法固定化的酶如:脂肪酶、α-D葡萄 糖苷酶、过氧化物酶等.
3)酶浓度 每毫升酶蛋白溶液所含某酶的活力 单位数称某酶浓度. 一定重量或一定体积酶制剂所具有 的酶活力单位数叫做总活力.在酶的提 纯过程中,总活力逐渐下降,比活力逐 渐提高.
4)转换值
也称分子活力或摩尔活力.其定义是1摩尔酶在 最适条件下,1min内所转化的底物的摩尔数.转化 值的单位为min-1.转换值的倒数是一个催化循环所 需要的时间.
4. 生物传感器的分类
(1).根据生物传感器的输出 信号方式分类
a.生物亲合型传感器
被测物质与分子识别元件上的敏感物质具有生物亲 合作用,即二者能特异地相结合,同时引起敏感材料的 分子结构和/或固定介质发生变化。例如:电荷温度光学 性质等的变化。反应式可表示为:
S(底物)+R(受体) == SR
b.代谢型或催化型传感器 另一类是底物(被测物)与分子识 别元件上的敏感物质相作用并生成产物, 信号转换器将底物的消耗或产物的增加 转变为输出信号,这类传感器称为代谢 型或催化型传感器,其反应形式可表示 为
二. 生物传感器的信号转换
生物传感器中的信号转换器是将分子识别元 件进行识别时所产生的化学的或物理的变化转 换成可用信号的装置.生物传感器的信号转换 器已有许多种,其中到目前为止用得最多的且 比较成熟的是电化学电极,用它组成的生物传 感器称为电化学生物传感器. 电化学电极可用作生物传感器的信号转换器的 电化学电极,一般可以分为两种类型。电位型 电极和电流型电极.

生物传感器

生物传感器

1.3 主要应用
1.在食品加工中的应用 生物传感器在食品分析中的应用包括对食品成分、食品添加剂、 有害毒物及食品鲜度等的测定分析。
在食品中 分析白酒、苹果汁、果酱和蜂蜜中葡萄糖的含量
例 如
在工业中 可用于测定食品中的亚硫酸盐含量
2.在医学中
在临床医学中,酶生物传感器是最早研制且应用最多的一种传感器,目前已成 功应用于血糖、乳酸、维生素C、尿酸、尿素、谷氨酸、转氨酶等物质的检测中。
在军事医学中,生物传感器已应用于监测多种细菌、病毒及毒素。
在法医学中,生物传感器可用作DNA鉴定和亲子认证等。
传感器原理与应用
酶生物传感器又分为电位型酶生物传感器和电流型酶 生物传感器两类。
电位型酶生物传感器可检测出参与反应的物质的浓度; 电流型酶生物传感器可得到被测物质的浓度。
葡萄糖传感器(见图6-19)是第一支酶生物传感器,它是由葡萄糖氧化酶膜和克拉克 型氧电极或过氧化氢电极组成的。葡萄糖传感器也可采用光化学法进行检测。
传感器原理与应用
1.1 结构及工作原理
生物传感器由分子识别部分(敏感元件)和转换 部分(换能器)构成。
转换部分把分子识别部分表达的信号转换为电信 号,它主要包括电化学器件、光学器件、热敏器件、 声波器件、压敏器件等。
图6-18 生物传感器结构
ห้องสมุดไป่ตู้
1.2 常用生物传感器
1.酶生物传感器
酶生物传感器就是将酶作为生物敏感基元,通过各种 物理、化学信号转换器捕捉目标物与敏感基元之间的反应 所产生的与目标物浓度成比例关系的可测信号,实现对目 标物定量测定的分析仪器。
图6-19 葡萄糖传感器
图6-20 葡萄糖传感器工作原理
图6-21 葡萄糖传感器工作过程

生物传感器

生物传感器
• 半导体生物传感器(semiconductbiosensor) • 光生物传感器(opticalbiosensor)
• 热生物传感器(calorimetricbiosensor)
• 压电晶体生物传感器(piezoelectricbiosensor)
3.3 以待测物与分子识别元件的相互作用方式进行分类
5.3 发酵工业
(1)原材料及代谢产物的测定 微生物传感器可用于测量发酵工业中的原材料和代谢产 物。测量的装置基本上都是由适合的微生物电极与氧电极组 成,原理是利用微生物的同化作用耗氧,通过测量氧电极电 流的变化量来测量氧气的减少量,从而达到测量底物浓度的 目的。 (2)微生物细胞数目的测定 人们发现在阳极表面上,菌体可以直接被氧化并产生电流。 这种电化学系统可以应用于细胞数目的侧定。侧定结果与常 规的细胞计数法测定的数值相近。利用这种电化学微生物细 胞数传感器可以实现菌体浓度连续、在线的测定。
• 生物亲合型生物传感器(affinitybiosensor)
4.1 速度快,成本低 采用固定化酶膜作为分析工具, 酶法分析试剂可 以反复使用数千次, 其分析成本大大降低,分析速度快, 不到20s可以获得准确的分析结果 4.2 专一性强 生物传感器只对特定的底物起反应,而且不受颜色 和浊度的影响, 因此一般不需要进行样品的预处理, 干 扰少
我国自主研发生物传感器产品及跨国企业集团在中国推出的产品
共存并相互竞争。
一些掌握生物传感器技术的跨国大企业集团,看好被称为“世界
工厂”的中国市场,采取技术输出的途径,吸收我国的技术力量 和销售途径,在我国市场上进行生物传感器的开发、产品制造和 销售。
一部份海外留学归国的生物传感器专门人才也将自己的成果在中
生 物 传 感 器

生物传感器的原理与应用

生物传感器的原理与应用

生物传感器的原理与应用生物传感器是一种利用生物体内特定的生物分子与目标物质发生特异性识别与反应的装置,它可以将生物分子的信号转换为可测量的电信号或光信号。

通过检测这些信号变化,生物传感器可以实现对特定物质的快速、准确、灵敏的检测。

本文将介绍生物传感器的工作原理和常见应用。

一、生物传感器的工作原理生物传感器的工作原理可以分为三个主要步骤:识别、转换和检测。

1. 识别:生物传感器通过识别分子间的特异性相互作用来实现目标物质的选择性识别。

这种特异性相互作用可以是抗体与抗原、酶与底物、核酸与互补序列之间的结合等。

2. 转换:识别过程中,生物传感器将生物分子的信号转换为可测量的物理或化学信号。

常用的信号转换方式包括光学、电化学、电子学和质谱学等。

3. 检测:转换后的信号被测量和分析,从而确定目标物质的存在和浓度。

检测过程一般利用仪器或设备来实现,如光谱仪、电化学工作站、生物芯片等。

二、生物传感器的应用领域生物传感器在众多领域中都有着广泛的应用,以下列举了其中的几个主要应用领域。

1. 环境监测:生物传感器可以用于监测水、空气、土壤等环境中的有害物质,如重金属离子、农药残留等。

这对于环境保护与生态安全具有重要意义。

2. 医学诊断:生物传感器在医学诊断中有着广泛的应用,可以用于检测人体内的生物标志物,如血糖、胆固醇、肿瘤标志物等。

它能够提供快速、准确的诊断结果,帮助医生进行病情分析和治疗决策。

3. 食品安全:生物传感器可以用于快速检测食品中的有害物质,如农药残留、食品添加剂等。

通过对食品进行实时监测,可以确保食品安全,保障公众健康。

4. 生物工程:生物传感器在生物工程领域中具有重要作用。

它可以用于监测发酵过程中的代谢产物,优化生产条件,提高生产效率。

5. 临床药物研发:生物传感器在临床药物研发中的应用越来越广泛。

它可以用于药物与受体的相互作用研究、药物筛选、药代动力学研究等。

这些应用可以加快药物研发过程,降低成本,提高研发效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多肽分子以预先设计的方式固定在玻片、硅片、
聚丙烯酰胺凝胶、尼龙膜等载体上组成密集分子 排列,当荧光标记的靶分子与芯片上的探针分子 结合后,通过激光共聚焦扫描或电荷偶联摄影像 机(CCD)对荧光信号的强度进行检测,从而判
断样品中靶分子的数量。
(2)生物芯片的分类: 生物芯片根据芯片上的探针不同,可分为蛋
分子识别,发生生物学反应,产生的信息继而被
相应的物理或化学换能器转变成可定量和可处理
的电信号,再经二次仪表放大并输出,便可知道
待测物浓度。
生物传感器的分子识别元件 分子识别元件 酶膜 全细胞膜 生物活性材料 各种酶类 细菌、真菌、动植物细胞
组织膜
细胞器膜 微生物膜 免疫功能膜
动植物组织切片
线粒体,叶绿体 微生物 抗体、抗原、酶标抗原等
迄今为止的研究认为纳米技术分为三种概念:
(1)1986年美国科学家德雷克斯勒博士在
《创造的机器》一书中提出的分子纳米技术。根
据这一概念,可以使组合分子的机器实用化,从
而可以任意组合所有种类的分子,可以制造出任 何种类的分子结构。这种概念的纳米技术还未取 得重大进展。 ( 2 )把纳米技术定位为微加工技术的极限。
也就是通过纳米精度的“加工”来人工形成纳米
大小的结构的技术。
(3)从生物的角度出发而提出的。本来,生物在 细胞和生物膜内就存在纳米级的结构。
二、纳米生物前沿技术
(1)生物分子微分析技术 (Microanalysis of
Biomolecules)
许多的生物分子相当微小,其大小通常就在纳 米范围,因此若能利用纳米尺度的检测设备或系 统,将有助于进一步观察及探讨生物分子、细胞 表面与细胞内分子层级的活动及变化。
例如以微组装快速流体混合器(Microfabricated
Rapid Fluid Mixer)与荧光检测技术研究蛋白质
构造在不同环境不同时间的连续变化情形、以纳
米检测数组仪(Nanofabricated detector arrays)
检测细胞功能、以及发展纳米级传感器以分析神
经传导物质。
(2)分子模板技术 (Molecular Templates)
在生物分子的辨识上,可利用分子形状互补 的特性,由于不同的生物分子往往具有不同的特 殊形状,此时它就像一把形状特殊的钥匙,如果 想要把这个分子从众多不同分子中分离出来,只
要有个正确的锁就可以,也就是说只要先在某种
材料上弄出一个可以和分子特殊形状相对应的模 板,即可用来检测或分离特定分子。此外,经由 设计特殊的分子模板,可达成如控制生化反应、 纳米结构效应等功能。
四、生物传感器的特点:
(1)采用固定化生物活性物质作催化剂,价
值昂贵的试剂可以重复多次使用,克服了过去酶 法分析试剂费用高和化学分析繁琐复杂的缺点。 (2)专一性强,只对特定的底物起反应,而 且不受颜色、浊度的影响。 (3)分析速度快
(4)准确度高,一般相对误差可以达到1%
(5)操作系统比较简单 ,容易实现自动分析
于计算机问世以来的总运算量,储存容量也非常 大,超过目前所有计算机的储存量,但所耗的能 量极低,只有一台普通计算机的十亿分之一。
白芯片和基因芯片。如果芯片上固定的是肽或蛋
白,则称为肽芯片或蛋白芯片。如果芯片上固定 的分子是寡核苷酸探针或靶DNA,则称为基因芯 片。基因芯片有寡核苷酸芯片和cDNA芯片,包括 二种模式:一是将靶DNA固定于支持物上,适合
于大量不同靶DNA的分析,二是将大量探针分子
固定于支持物上,适合于对同一靶DNA进行不同 探针序列的分析。
纳米生物前沿技术
一、纳米技术 纳米结构通常是指尺寸在100纳米以下的微 小结构。1981年扫描隧道显微镜发明后,诞生了 一门以0.1到100纳米长度为研究范围,研究分子 世界,最终目标是直接以原子或分子来构造具有 特定功能的产品的学科。在这种水平上对物质和 材料进行研究处理的技术称为纳米技术。纳米技 术其实是一种用单个原子,分子制造物质的科学 技术。
微数组芯片复杂得多,依其应用范围可再细分为: 样品前处理芯片、反应型芯片及分析型芯片等三 大类。
(7)生物分子马达 (Biomolecular Motors) 分子马达是一种分子机械,它是分子尺度(纳 米尺度)下的一种复合体,能够作为机械零件的最 小实体。驱动是通过外部的刺激(如化学、电化学、 光化学等方法),使分子结构或模型发生较大变化, 且这种变化是可以被控制及调整,具有可预期的规 则性,进而使整个体系在理论上具有对外机械作功 的可能性。生物分子马达的相关研究,目前遭遇到 的最大困难在于作用时的稳定性问题,这些生物分 子仅能够在狭窄的温度范围与离子强度下运作,在 有机溶液或空气中都无法作用。
来就显得格外重要。通常本技术会通过开发或使
用纳米尺度的仪器或设备达到分离特殊细胞的目
的。例如从混合组织中分离被病毒感染的细胞、
恶性肿瘤细胞、免疫细胞、胚胎细胞、干细胞及 微生物等;或构建亚细胞(Subcellular)等级细 胞分类及分析系统。
(6)生物传感器及生物芯片 (Biosensor/Biochip) 生物传感器的原理是利用待测分析物与生物物
(3)生物选择性表面技术 (Bioselective Surfaces)
此技术是指在微纳米尺度下改变材料表面几何
与化学性质,以控制细胞在材料表面的贴附、生长、 运动等,进而调控细胞与组织的生理状况。例如以 微影图案基质(Micropatterned substrates)控制神 经细胞的生长、透过生物选择性表面技术重建血脑 屏障(Blood-brain barrier)、以生物互动表面 (Biointeractive surfaces)分析真菌生长等。
生物芯片以使用功能区分,可分为微阵列芯片
(Microarray chip)与微流体芯片(Microfluidic
chip)两大类。 微阵列芯片是将成千上万的微型生物传感器有 如数组般排列在不同材质的载体上,如玻璃、尼 龙、硅芯片或塑料等材质,借着生物传感器上的
生物探针与样品中的特定对象进行生化反应,再
电生物传感器、光学生物传感器、声波道生物传
感器、酶电极生物传感器、介体生物传感器等。 (3)按照生物敏感物质相互作用的类型分类, 可分为亲和型和代谢型两种。

三、生物敏感膜
生物敏感膜又称分子识别元件,是生物传感器
的关键元件,它直接决定传感器的功能与质量。 依所选材料不同,可以有酶膜、全细胞膜、组织 膜、细胞器膜、微生物膜、免疫功能膜和杂合膜 等,待测物质经扩散作用进入生物活性材料,经
(8)核酸计算机 (DNA computer)
DNA计算机的应用原理是基于DNA分子中的
密码相当于数据的储存,DNA分子间可以在酵素 作用下瞬间完成生化反应,从一种基因代码变成 另一种基因代码。如果将反应前的基因代码作为 输入数据,反应后的基因代码即为运算结果。
DNA计算机运算速度极快,几天的运算量就相当
(6)成本低。 (7)有的生物传感器能够可靠地指示微生物培 养系统内的供氧状况和副产物的产生。在产物控 制中能得到许多复杂的物理化学传感器综合作用 才能获得的信息。同时它们还指明了增加产物获 得率的方向。
五、生物芯片
(1)生物芯片
生物芯片是指将大量核酸
片段(寡核苷酸/PNA、cDNA、基因组DNA)或
(4)分子过滤技术 (Molecular Filtration) 通常指的是利用孔径在纳米级大小的透膜、 微管、多孔材料等来有效过滤大小不等的分子, 以达到分离与浓缩等目的。例如以胶原蛋白
(Collagen)覆于硅芯片表面的过滤装置、以
纳米结构进行酵素传输等。
(5)特殊细胞分离技术 (Sparse Cell Isolation) 有些细胞特别表现出和其它细胞不同的特性 与特殊的生理功能,而这类细胞的数目比例往往 很小,因此能否有效将它们从其它细胞中分离出
经换能器将反应结果转换成讯号输出 。若以载体 上排列物质来区分种类,可以分为基因芯片、蛋 白质芯片、细胞芯片及组织芯片等。
微流体芯片亦称为实验室芯片(Lab-on-a-chip)
是利用微机电技术将一般实验室所使用的分离纯
化混合,以及酵素反应等装置微小化到芯片上,
以进行生化反应、过程控制或分析,其构造远较
生物传感器原理
一、生物传感器的原理
传感器主要由信号感受器和信号转换器组成,它
能够感受一定的信号并将这种信号转换成信息处
理系统便于接收和处理的信号(如电信号和光信
号)。 生物传感器与传统的各种物理传感器和化学 传感器的最大区别,在于生物传感器的感受器中 含有生命物质。
例如,将一定的植物细胞或动物细胞作为感觉器,
质产生的特异反应,将反应所产生的特性,配合光
学、电学、热学、声学、压力、质量变化等相对应 的换能器(Transducer),将反应转换成可处理的 讯号输出。生物传感器的基本结构包括:生物物质 层、换能器、讯号处理系统、讯号输出系统。根据
感测物质的种类可将生物传感器的种类区分为:酵
素传感器、免疫传感器、受体传感器、微生物传感 器、细胞传感器、组织传感器及核酸传感器等。
可以制成各种细胞传感器;用生物组织作感受器
可制成组织传感器(或称为组织电极);将一些
特定的细胞器从细胞里分离出来作为感受器,可 制成细胞器传感器;将微生物作为感受器可制成 生物传感器;而将生物分子如蛋白质、核酸等作 为感受器。
二、生物传感器的分类
(1)按照其感受器中所采用的生命物质分类,
可分为:微生物传感器、免疫传感器、组织传感 器、细胞传感器、酶传感器、DNA传感器等。 (2)按照传感器器件检测的原理分类 ,可分 为:热敏生物传感器、场效应管生物传感器、压
相关文档
最新文档