焊接热影响区的组织和性能
(完整版)焊接热影响区的组织和性能

图4-37 Hmax与CE的关系
钢种HT50~HT100 板厚25~50mm, E=17KJ/cm,t8/5=6.5s
图4-38 Hmax与t8/5及Pcm的关系 钢材:18MnMoNb 板厚16~36mm
t8/5(s)
(2) 析出脆化
图4-47 析出物的间距λ与位错运动及脆性的关系
(三)调质钢HAZ软化
1.调质钢HAZ软化
图4-48 调质钢HAZ的硬度分布 A-焊前淬火+低温回火 B-焊前淬火+高温回火 C-焊前退火
图4-49
图4-50
2.热处理强化合金焊接HAZ软化
Thanks
国产低合金钢公式
(二)焊接热影响区脆化
1. 粗晶脆化
晶粒长大影响因素:
化学成分、组织状态、加热温度、时间
碳化物形成元素:Ti、Nb、Mo、V、W
lg( D 4
D04 )
2 lg E
l
0.129
/E 1.587
10 3
92.64
焊接HAZ晶粒尺寸与焊接线能量的关系
图4-41 碳锰钢HAZ的脆化分布
24 16 15 20
5
A(C) 0.75 0.25tgh[20(C 0.12)]
(4-24)
适用于 C含量0.034~0.254%范围内的钢 A(C)-碳的适应系数
2. 碳当量及冷却时间t8/5与HAZ最高硬度Hmax的关系
Hmax=1274Pcm+45
Hmax=559CE+100
图4-36 Hmax与Pcm的关系
埋弧自动焊 电渣焊
氧乙炔气焊 真空电子束焊
各区的平均尺寸(mm)
焊接热影响区讲解

T
E
r02
e 4at
2 t
T
E / 2( ct)1/ 2
e
y0 4at
上二式未考虑初始温度和表面散热的影响。
当 T 0 可求得最高温度 Tm: t
点热源 线热源
0.234E
Tm cr02
0.242E / Tm cy0
相变温度以上停留时间tH的计算
根据理论与实验求得的时间停留时间tH:
冷却速度(ωc)和冷却时间(t8/5、t8/3、t100)
冷却速度是决定焊接HAZ组织性能的主要参数。
焊接热循环是焊接接头经受热作用的里程,研究 它对于应力变形、接头组织和力学性能等是十分重要 的,是提高焊接质量的重要途径。
ห้องสมุดไป่ตู้ 焊接热循环参数的数值模拟
峰值温度Tm(最高温度)的计算
厚大焊件(点热源) 薄板(线热源)
厚大焊件(点热源) T E
2 t
薄板(线热源)
T
E / 2( ct)1/ 2
厚大焊件
c
2
(Tc
T0 )2 E
薄板
c
2 c
(Tc T0)3
(E / )2
如焊件厚度在8~25mm,确定冷却速度应上式进行修 正:
c
K
2 (Tc T0)2
E
K f ( )
E
c(Tc T0)
冷却时间的计算
1 500
T0
2
1 800
T0
2
cr
E
2c
1 500 T0
1 800 T0
理论经验公式
三维传热
t8 / 5
(0.67
5104T0)E
1 500
第五章 焊接热影响区的组织和性能

第五章焊接热影响区的组织和性能焊接分为三大类:熔化焊、压力焊和钎焊。
其中熔化焊是最常见最广泛的焊接方法。
而本书讨论的焊接冶金主要是以熔化焊为基础进行讨论的。
所谓熔化焊是采用一种高温热源使两种同质或非同质的材料利用原子间或分子间的分散与聚合而形成一个整体的过程。
这个热源贯穿于焊接过程的始终:一部分热量用于加热焊件和母材,一部分用于热损失(飞溅、周围介质等)。
用于加热母材和焊材的热功率称为有效功率,其实这部分热量:一部分用于熔化金属形成焊缝,另一部分用于热传导而流失于母材形成HAZ (包含熔合线)。
HAZ:熔焊时在集中热源的作用下,焊缝两侧发生组织和性能变化的区域。
焊接接头:焊缝和和热影响区p161 图4-1焊接热影响区示意图前面讨论焊缝的合金化,焊缝金属的脱S、脱O、脱P、H及晶粒的细化等,均是如何控制焊缝的质量,主要是焊缝区的问题。
由于早些年代里,制造焊接结构所采用的钢种是低碳钢,焊缝是至关重要的环节。
HAZ一般不会出现什么问题,但随着科学技术和生产规模的发展,各种高温、耐压、耐蚀、低温容器、深水潜艇、宇航设备以及核电站锅炉、管道等不断建造,各种高强钢、高合金钢以及某些特种材料(Al合金、钛合金、镍基合金、复合材料和陶瓷等)也得到广泛的应用,这种情况下,焊接的质量不仅仅取决于焊缝,同时取决于HAZ,有时HAZ存在的问题比起焊缝更为复杂。
如:如今大型水电站,尤其高水头电站(包括抽水蓄能电站)的建造要求提供流量大、承压高的输水压力管道,如果采用普通钢材,必须增加管壁的厚度,无疑给压力钢管的制造、运输和安装带来极大的困难。
随之发展起来的适用于压力钢管的焊接结构用高强钢,如700MPa,800Mpa级钢具有很高的屈服强度和抗拉强度,同普通钢相比,可以大大减少压力钢管壁的厚度,克服了普通钢的局限性,(WEL—TEN80 WCF—62(80))它具有良好的低温冲击韧性也为钢管的可靠运行提供了保证,但它焊接时,易出现HAZ软化(投影)或产生裂纹。
四、焊接热影响区(2010)

1 熔合区(半熔化区)
焊缝与母材相邻的部位,是液- 固相结合的部位。化学成分、组织、 性能非常不均匀,是产生裂纹、脆性 破坏的发源地。
t8/5:焊缝从800℃冷却到500℃所用的时间;
t8/3:焊缝从800℃冷却到300℃所用的时间;
t100:焊缝从Tm冷却到100℃所用的时间。
影响焊接热影响区的冷却速度的因素(1)
(1)被焊金属的热物理性质: 金属的导热系数越大,冷却速 度就越快。 (2)钢板的厚度: 钢板的尺寸越大、越厚,冷 却速度就越快(图5-66)。但板厚 超过25mm后,冷却速度趋于一 定值。
焊接热影响区的最新划分方法(图4-35)
表 4— 12 部位(名称) 完全混合区
焊缝及热影响区新的划分及建议 所包括的范围(定义) 现在通用的划分 填充金属与母材金属完全均匀混合形 成化学成分均一的焊缝金属 焊缝金属 焊缝金属的外侧部分,母材金属与填 充金属不完全混合的地方 明显的完全熔化边界 熔合区 焊缝边界的外侧母材部分,晶粒边界 有不同程度的熔化(0%~100%) 固相母材发生组织变化的区域 热影响区
(3)钢板的初始温度对HAZ冷却速度的影响
初始温度越高,冷却速度越慢(图5-67)。
预热对减缓600℃以下的冷 却速度特别显著,是控制淬硬 组织、避免产生冷裂纹的重要 手段。
(4)焊接规范对HAZ冷却速度的影响 HAZ的冷却速度受焊接电流、电弧 电压、焊接速度等的影响,冷却速度随 着焊接线能量的增加而降低(图5-68)。 焊接接头的形状对冷却速度也有影 响。角焊缝、 T 字接头的冷却速度比对 接焊缝的冷却速度要快得多。 调整焊接线能量、预热、缓冷等措 施都可以降低焊缝的冷却速度。
2.30 焊接热影响区的组织和性能 PPT.pptx

成参差不齐的分界面
组织:组织性能不均,母材一侧晶
粒大
性能:性能不均,对接头的强度、 图2 焊接热影响区的分布特征
韧性影响大,是裂纹、脆
1—熔合区 2—过热区 3—相变量结晶 区 4—不完全重结晶区 5—母材 6—
性破坏发源地
淬火区7—部分淬火区 8—回火区
2、过热区(粗晶区)
温度:1100℃(晶粒开始急剧长大的温度)
4、不完全重结晶区(不完全正火 区)
温度:Ac1~Ac3之间(700~850 ℃)
特征:一部分组织发生了相变重结 晶过程,形成晶粒细小的铁
素体+珠光体,另一部分未 相变的铁素体长大成为粗大
铁素体。 组织:组织不均,原始的铁素体晶粒和细晶粒的混合区 性能:力 Nhomakorabea性能差。
图5 焊接热影响区的分布特征 1—熔合区 2—过热区 3—相变量结晶 区 4—不完全重结晶区 5—母材 6— 淬火区7—部分淬火区 8—回火区
一、焊接热影响区的组织和性能
1.概念:在焊接过程中,母材因受热影响(但未熔化)而 发生金相组织和力学性能变化的区域。
2.热影响区的组织分布 : 1).正火区 2).过热区 3).再结晶区 4).不完全重结晶区
对于低碳钢,一些淬硬倾向不大的钢(16Mn.15MnTi等)除过 热区外其它各区组织基本相同. 低碳钢过热区主要是魏氏组织W
一、焊接热影响区的组织和性能
图1 焊接热影响区的温度分布与状态图的关系 a)热影响区的组织分布 b)铁碳状态图 c)热循环 (图中Tm—峰值温度 TG—晶粒长大温度)
(一)不易淬火钢的热影响区组织
根据热影响区组织特征分四个区:
1、熔合区(半熔化区)
温度:固液相线之间,范围很窄
第十章 焊接热影响区的组织和性能

焊接热影响区的软化
焊接热影响区的性能控制
1、焊接热影响区的硬化
母材的淬硬倾向(内因) HAZ的硬度 化学成分 HAZ的冷却速度(外因) 焊接规范
焊接热影响区的最高硬度Hmax:
高低取决于
Hmax(HV10)= 140 + 1089 Pcm- 8.2 t 8 / 5
缝相当于低碳钢过热区的部位,得到粗大的马氏体,
而相当于正火区的部位则得到细小的马氏体。当焊
件母材的淬透性不是太高时,还会出现贝氏体、索
氏体等正火组织与马氏体共存的混合组织。
2、 不完全淬火区
母材被加热到Ac1~Ac3温度之间的热影响区,
相当于不易淬火钢的不完全重结晶区。在快速加热
条件下,铁素体很少溶入奥氏体,而珠光体、贝氏
熔焊时在高温热源作用下,靠近焊缝两侧 一定范围内发生组织和性能变化的区域称
为“焊接热影响区” 。
图10-1 焊接接头示意图 1-焊缝;2-熔合区;3-热影响区;4-母材
第一节 焊接热循环 第二节 焊接热循环下的金属组织转变特点 第三节 焊接热影响区的组织与性能
第一节 焊接热循环
一、研究焊接热循环的意义 二、焊接热循环的参数及特征 三、焊接热循环参数的计算
材料淬硬倾向的评价指标 — 碳当量
钢中含碳量显著影响奥氏体的稳定性,对淬硬倾向影响最大。
含碳量越高,越容易得到马氏体组织,且马氏体的硬度随含
碳量的增高而增大。 合金元素的影响与其所处的形态有关。溶于奥氏体时提高淬 硬性(和淬透性);而形成不溶碳化物、氮化物时,则可成为 非马氏体相变形核的核心,促进细化晶粒,使淬硬性下降。 碳当量(Carbon Equivalent)是反映钢中化学成分对硬化 程度的影响,它是把钢中合金元素(包括碳)按其对淬硬 (包括冷裂、脆化等)的影响程度折合成碳的相当含量。
焊接热影响区显微组织及性能分析

焊接热影响区显微组织及性能分析当我们进行焊接工艺时,焊接热影响区(HAZ)往往会被忽略。
这个区域受到了高温,快速冷却和热应力的影响,导致了焊接材料性能的改变。
因此,对焊接热影响区的显微组织及性能分析至关重要,以便确保焊接后材料的质量和可靠性。
1. 焊接热影响区的显微组织分析焊接热影响区受到的热影响主要包括多种因素,例如熔池温度、加热速率、冷却速率和焊接残余应力。
这导致了焊接热影响区显微组织的改变。
在焊接中,焊接热影响区可以分为三个区域:粗晶区、细晶区和回火区。
(1) 粗晶区:在这个区域,材料暴露在高温下的时间更长,导致了晶粒的长大。
这进一步导致晶粒间的间隔增加,因此这个区域的强度和韧性都会下降。
(2) 细晶区:这个区域中的晶粒被迅速加热并迅速冷却,导致了晶粒尺寸的减小。
然而,这个区域的强度和韧性仍然会下降。
因为这个区域,晶界比粗晶区更脆弱。
(3) 回火区:当焊接完成后,渐进升温,晶格结构变松弛,导致材料中的应力逐渐减小。
这个区域的显微组织与原始材料相似,因为它经历了温度和压力的缓慢升高。
2. 焊接热影响区的性能分析焊接热影响区的性能分析往往涉及到强度和韧性这两个方面。
焊接热影响区不仅影响焊接点的性能,还对整个结构的性能产生影响。
(1) 焊接强度:焊接热影响区的强度是由显微组织和残余应力共同决定的。
因此,在评估焊接强度时,必须对热影响区进行适当的检测。
(2) 焊接韧性:焊接热影响区的韧性能够反应焊接后材料的冲击韧性和裂纹扩展性。
由于热影响区的强度下降,它的韧性也会受到影响,并可能导致焊接点的脆性断裂。
3. 如何提高焊接后材料的性能为了提高焊接点的性能,需要在选择焊接材料、焊接工艺和焊接参数时进行仔细的选择和控制。
同时,还需要进行适当的后处理,例如回火和淬火,以降低焊接热影响区的残余应力和提高焊接点的强度和韧性。
在焊接材料的选择时,必须选择适用于特定应用的焊接材料。
它的成分、热特性和机械特性等方面必须与基础材料相匹配。
5焊接热影响区的组织和性能

5焊接热影响区的组织和性能焊接热影响区(Heat Affected Zone, HAZ)是指在焊接过程中,未被完全熔化但受到高温加热的区域。
在焊接过程中,高温会引起HAZ的组织和性能发生变化,这可能会对焊接接头的性能和可靠性产生重要影响。
本文将讨论HAZ的组织和性能的变化,并重点介绍几个重要的影响因素。
首先,HAZ的组织变化是由高温引起的。
在焊接过程中,焊接电弧和熔化池的高温作用下,HAZ的温度会迅速升高,达到几百摄氏度甚至更高的温度。
高温会导致HAZ中的晶粒长大、晶格变形和相结构改变。
通常情况下,HAZ中的晶粒比母材中的晶粒要大,且晶格常常发生变形。
晶粒尺寸的增加和晶格变形会导致材料硬度的提高,并可能降低材料的韧性。
其次,HAZ的性能变化是由组织变化引起的。
HAZ中的晶粒长大和晶格变形会导致材料的硬度提高,但与此同时,硬度的增加也会导致韧性的降低。
在一些情况下,HAZ还可能出现脆性相的形成,这会极大地降低焊接接头的可靠性。
此外,HAZ还可能出现裂纹和变形等缺陷,这也会对焊接接头的性能产生严重影响。
因此,在焊接接头设计和制造过程中,必须对HAZ的组织和性能进行充分考虑,以确保焊接接头的质量和可靠性。
HAZ的组织和性能变化受多种因素影响,以下列举几个重要因素:1.焊接热输入:焊接热输入是指在单位长度或单位面积上输送到工件中的热量。
热输入的大小与焊接电压、电流和焊接速度等参数有关。
过高或过低的热输入都会导致HAZ中的晶粒长大和晶格变形,从而影响HAZ的性能。
2.材料的化学成分和微观结构:不同材料的化学成分和微观结构会对HAZ的组织和性能产生重要影响。
一些合金元素的存在可以改变晶粒的生长速率和晶格的变形行为。
此外,材料的粗晶相和弥散相等局部微观结构也会对HAZ的性能产生重要影响。
3.冷却速率:冷却速率是指焊接过程中HAZ冷却的速度。
冷却速率的快慢会影响晶粒生长和晶格变形行为。
通常情况下,快速冷却会导致HAZ 中的晶粒更细小,且硬度更高。
焊接热影响区的组织和性能 PPT

焊接热影响区的组 织和性能
第二章 焊接热影响区的组织
第一节 焊接热循环
第二节 焊接热循环条件下的金属 组织转变特点
第三节 热影响区组织和性能
焊接热影响区:熔焊时在集中热 源的作用下,焊缝两侧发生组织和性 能变化的区域称为“热影响区”
(Heat Affected zone,简称HAZ)
或称“近缝区”(Near Weld Zone) 焊接接头是由两个主要部分组成,即 焊缝和焊接热影响区,如图4-1所示。
3.高温停留时间短 手弧,4~20秒; 埋弧,30~100秒 4.自然条件下连续冷却 5.局部加热
一、焊接时加热过程组织转变特点
1.加热速度对相变点的影响
焊接时的加热速度很快,各种金属的相变温度 发生了很大的变化。加热速度越快,Ac1和Ac3 的温度越高,而且Ac1和Ac3的温差越大。 焊接时,由于采用的焊接方法不同,规范不同,加 热速度可在很大的范围内变化。
表4-9 焊接及热处理条件下的组织百分比
表4-9是45钢和40Cr钢在焊接和热处理时同样冷 却速度条件下的组织百分比。由图 4-21、图4-22和 表4-9可以看出,45钢在焊接条件比在热处理条件下 的CCT曲线稍向右移(主要考虑Ms附近)。说明在相同 冷却速度条件下,焊接时比热处理时的淬硬倾向大。 如冷却速度为30℃/s,焊接时可得到92%马氏体, 而热处理时只得到69%马氏体。
2.加热速度对A均质化影响
加热速度不但对相变点有影响,对A均质化也 有影响.因为A均质化属扩散过程。在快速加 热条件下,来不及完成扩散过程。
3.近缝区的晶粒长大
在焊接条件下,近缝区由于强烈过热使晶粒发 生严重长大,影响焊接接头塑性,韧性,产生热 裂纹,冷裂纹.
二.焊接时冷却过程组织转变特点
焊接热影响区的组织

焊接热影响区大小受许多因素的影响,如焊接方法、板 厚、线能量及施工工艺等。
a)
b)
16Mn钢过热区的粒状贝氏体
a) 熔合区 b)过热粗晶区
对于淬硬倾向较大的钢种,焊接热影响区的组织分布与 母材焊前热处理状态有关。正火或退火状态热影响区 组织分布分为: 完全淬火区
处于Ac3以上的区域,焊后将得到淬火组织,相当于粗 晶区得到粗大马氏体,相当细晶区得到细小的马氏体。
由于不断深入对熔合 区微观形态的研究, 焊接热影响区划分 更明确:
3.2.3 焊接热影响区的组织和性能
由于焊接时母材热影响区上各点距焊缝远近不同, 所经历热循环不同,会出现不同组织,具有不同性能。 因此焊接热影响区的组织和性能是不均匀的。
焊接热影响区的组织分布
对于常用低碳钢和低合金钢 (不易淬火钢),在焊接热 影响区根据组织特征,可分 为四个区。
熔合区(半熔化区)
加热温度处于固液相之间,该区范围窄,但组织合性能 存在较大不均匀性,对接头的强度、韧性有很大影响。
许多情况下,熔合区是产生裂纹、脆性破坏的发源地。
过热区
温度处于固相线下到1100℃ 左右,金属处于过热状态,奥 氏体晶粒严重长大,冷却得到 粗大组织。 韧性很低,通常降低20~30%,刚度较大的结构常产 生脆化和裂纹。 过热区大小与焊接方法、焊接线能量和母材厚度有关。
不完全淬火区
被加热到Ac1~Ac3之间的区域,快速加热条件下, 铁素体很少溶入奥氏体,其它组织转变为奥氏体, 冷却转变为马氏体,铁素体保持不变,并有不同程 度长大,形成马氏体-铁素体组织。
如母材焊前是调制状态,焊接热影响区的组织除上述的 完全淬火区和不完全淬火区外,还可能。在加热温度 在Ac1至调质回火温度的区域发生回火,称为回火区。
焊接热影响区的组织

许多情况下,熔合区是产生裂纹、脆性破坏的发源地。
过热区
温度处于固相线下到1100℃ 左右,金属处于过热状态,奥 氏体晶粒严重长大,冷却得到 粗大组织。 韧性很低,通常降低20~30%,刚度较大的结构常产 生脆化和裂纹。 过热区大小与焊接方法、焊接线能量和母材厚度有关。
3.2.3 焊接热影响区的组织和性能
由于焊接时母材热影响区上各点距焊缝远近不同, 所经历热循环不同,会出现不同组织,具有不同性能。 因此焊接热影响区的组织和性能是不均匀的。
焊接热影响区的组织分布
对于常用低碳钢和低合金钢 (不易淬火钢),在焊接热 影响区根据组织特征,可分 为四个区。
熔合区(半熔化区)
由于不断深入对熔合 区微观形态的研究, 焊接热影响区划分 更明确:
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
不完全淬火区
被加热到Ac1~Ac3之间的区域,快速加热条件下, 铁素体很少溶入奥氏体,其它组织转变为奥氏体, 冷却转变为马氏体,铁素体保持不变,并有不同程 度长大,形成马氏体-铁素体组织。
如母材焊前是调制状态,焊接热影响区的组织除上述的 完全淬火区和不完全淬火区外,还可能。在加热温度 在Ac1至调质回火温度的区域发生回火,称为回火区。
焊接热影响区大小受许多因素的影响,如焊接方法、板 厚、线能量及施工工艺等。
5焊接热影响区的组织与性能

图4-3 距焊缝不同距离各点的热循环 (低碳钢,板厚20mm,手弧焊)
图4-4 不同焊接方法的焊接热循环
1—手弧焊 2—埋弧焊 3—电渣焊
一、焊接热循环的主要参数
• 1.加热速度( WH ) • 2.加热的最高温度( Tm ) • 3.在相变温度以上的停留时间(tH) • 4.冷却速度(Wc)或冷却时间( t8/5 、
少 痴 情 , 多 少柔情 蜜意, 都在红 尘烟雨 中渐渐 飘走。
撑 一 把 油 纸 伞,在 寂寥的 雨巷中 ,哀怨 又彷
第一节 焊接热循环
焊接热循环:焊接过程中热源沿焊件移动时, 焊件上某点温度由低而高,达到最高值后, 又由高而低随时间的变化称为焊接热循环。 它是描述焊接过程中热源对被焊金属的热作 用。距焊缝不同距离的各点,所经历的热循 环是不同的,如图4-3所示。另外,由于焊接 方法不同,热循环曲线的形状也发生较大的 变化。
三.焊接条件下CCT图的建立及其应用
T图的建立:采用焊热热模拟试验装置来 建立某种钢的CCT图.
2.意义:在新钢种投产之前,可预先估计热影 响区的组织性能,或作为制定工艺,焊接线能 量的依据.
T图的应用: 通过CCT图可得到在不同的 冷却速度下的组织,即估计组织及预测性能.
图4-23是16Mn钢的CCT图及组织和硬度的变化。
(二)加热的最高温度(Tm)
金属的组织和性能除化学成分的 影响之外,主要与加热的最高温度Tm 和 冷却速度ωc有关。例如低碳钢和低合 金钢焊接时,在熔合线附近的过热区, 由于温度高(1300~1350℃),晶粒发 生严重长大,从而使韧性严重下降。
(三)在相变温度以上的停留时间(th)
在相变温度Th以上停留的时间越长,越 有利于奥氏体的均质化过程,但温度太高 时(如1100℃以上)即使停留时不长,也会产 生严重的晶粒长大。为便于分析研究,把 高温停留时间th分为加热过程的停留时间t’ 和冷却过程的停留时间t’’,即th =t’十t’’(参见 图4-5)。
焊接热影响区的组织和性能变化

10
二、焊接热热影响区的组织转变特点
1. 焊接热循环的特点
1)加热的温度高 热处理AC3以上100-200℃,例如45号钢AC3:770 ℃ 焊接近缝区:接近熔点,钢的熔点1350 ℃
2)加热的速度快 ➢ 比热处理快几十倍甚至上百倍。
3)高温停留时间短 ➢ 手工电弧焊:4-20S,埋弧焊:20-40S
❖性能:较好的综合性能。
17
➢ 不完全重结晶区Ⅲ(不完全正 火区)
❖温度: Ac3 ~ Ac1 ❖现间象,:金加属热的温内度部结Ac构3到不A发c1之生
变化,只有部分金属经受了
重结晶相变。 ❖组织:原始的铁素体晶粒(
粗大)和细晶粒的混合区。 ❖性能:性能不好
18Байду номын сангаас
过热区
重结晶区
不完全重结 晶区
母材
➢Ac1~ Ac3,室温组织为M+F。
➢在快速加热条件下F很少溶入A,
而P、B、S等转变为A;随后快
冷,形成M+粗大F。
20
(2)焊前为调质状态 BM 回火组织
➢ 完全淬火区
➢ 不完全淬火区
➢ 回火区
➢Ac1~Tt,Tt为焊 前调质时的回火温 度,低于此温度, 组织不变;高于此 温度,出现软化。
21
如Q235、16Mn、15MnV等,可分为如 下四个区:
➢ 熔合区(半熔化区)
➢ TL~TS,化学成分与组织不均匀 分布,过热严重,塑性差,对焊 接接头的强度、韧性都有很大的 影响。是焊接接头的薄弱环节。
15
➢ 过热区Ⅰ(粗晶区)
❖温度: TS - 1100 ℃
❖现象:加热温度高,在固相线附近, 一些难熔质点如碳化物和氮化物等溶 入奥氏体,奥氏体晶粒粗大。
焊接热影响区的组织和性能

焊接热影响区的组织和性能焊接热影响区(HAAZ)是在焊接过程中由于热输入而受到热影响的区域。
在焊接过程中,瞬态温度变化导致了材料的相变和微观结构的改变,这些改变在HAZ中发生,并对HAZ的组织和性能产生重要影响。
下面将详细讨论焊接热影响区的组织和性能。
HAZ的组织主要受到瞬态温度变化的影响。
在焊接过程中,焊缝和周围材料会受到高温热源的加热,使材料达到或超过其变形温度。
在这种高温环境下,材料的晶粒会发生生长、形状改变和巨大的奥氏体晶化。
当焊缝冷却时,发生了相反的变化,晶粒迅速长大并恢复到正常的晶粒尺寸。
这种急剧的温度变化导致了晶粒的细化和球化,称为冷却受限效应。
此外,还可能发生再结晶现象,即材料的原始晶粒会被新的细小晶粒所取代。
HAZ的性能主要取决于材料的相组成和晶粒细化程度。
HAZ之所以存在多种不同的相,是因为热输入导致了材料的相变。
例如,在一些金属中,由于快速冷却,奥氏体晶体可能无法完全转变为马氏体,从而在HAZ内形成马氏体残余;在一些合金中,冷却速率过快可能导致奥氏体中的碳无法扩散到马氏体中去,形成残余奥氏体。
这些残余相的存在会对材料的硬度、韧性、强度和耐腐蚀性等性能产生重要影响。
此外,由于冷却速率的不同,HAZ的晶粒细化程度也会发生变化。
晶粒细化可以提高材料的强度和韧性,但过度细化可能导致材料的脆性增加。
在HAZ中,还可能发生残余应力的积累。
由于焊接过程中的瞬态温度变化,材料会经历瞬时的热膨胀和收缩,导致HA在冷却过程中产生残余应力。
这些残余应力可能对材料产生不均匀的应力分布,进而导致裂纹和变形的产生。
因此,在焊接设计和工艺控制中,需要考虑到HAZ中的残余应力情况,以确保焊接件的性能和可靠性。
总结起来,焊接热影响区的组织和性能受到瞬态温度变化的影响。
热输入导致了晶粒的细化和相变,从而影响了材料的硬度、韧性、强度和耐腐蚀性等性能。
此外,残余应力的积累以及晶粒的冷却受限效应也会对HAZ的性能产生重要影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.不完全淬火区
– a.母材被加热到Acl~Ac3温度之间的热影响区 – b.原铁素体保持不变,有不同程度的长大,形成马氏体 -铁素体的组织
34
2010“中等职业学校骨干教师”焊接专业国家级培训
3.回火区(低于Acl以下的区域)
– a .母材在焊前是调质状态 – b.焊前调质时的回火温度为Tt,低于此温度的部位,其 组织性能不发生变化,高于此温度的部位,组织性能 将发生变化,出现软化现象
13
2010“中等职业学校骨干教师”焊接专业国家级培训
二、焊接时加热过程组织转变的特点
1.加热速度越快,被焊金属的相变点Acl和Ac3的 温度越高,而且Acl和Ac3之间的温差越大,如 图4-19和表4-8所示。含有碳化物合金元素(Cr 、W、Mo、V、Ti、Nb等)的钢,加热速度对 相变温度的影响更大 2.奥氏体均质化程度较低(不利于扩散过程)
21
2010“中等职业学校骨干教师”焊接专业国家级培训
3.原因:
– (1)碳化物合金元素(如Cr、Mo、V、Ti、Nb等) 只有充分溶解在奥氏体的内部,才会增加奥氏体的稳 定性(即增加淬硬倾向) – (2)热处理条件下,有充分的时间使碳化物合金元素 向奥氏体内部溶解 – (3)焊接条件下,加热速度快,高温停留时间短,合 金元素不能充分地溶解在奥氏中,降低了淬硬倾向 – (4)不含碳化物合金元素的钢(如45钢),一方面不 存在碳化物的溶解过程,另一方面在焊接条件下,近 缝区组织粗化,淬硬倾向比热处理条件下要大
29
2010“中等职业学校骨干教师”焊接专业国家级培训
第三节 焊接热影响区的组织和性能
一、焊接热影响区的组织分布
(一)低碳钢和某些低合金钢(不 易淬火钢)的HAZ可分为四个区 (如图4-29所示) 1.熔合区 – a.焊缝与母材相邻的部位(温 度处于固液相线之间) – b.范围很窄,在化学成分上和 组织性能上都有较大的不均 匀性,对焊接接头的强度、 韧性都有很大的影响
17
2010“中等职业学校骨干教师”焊接专业国家级培训
18
2010“中等职业学校骨干教师”焊接专业国家级培训
19
2010“中等职业学校骨干教师”焊接专业国家级培训
20
2010“中等职业学校骨干教师”焊接专业国家级培训
– 由图4-21、图4-22和表4-9可以看出,45钢在焊 接条件下比在热处理条件下的CCT曲线稍向右 移(主要考虑MS点附近)。说明在相同冷却速 度条件下,焊接时比热处理时的淬硬倾向大。 – 相反,40Cr钢在焊接条件下的CCT曲线比热处 理条件下的CCT曲线向左移动,也就是在同样 冷却速度下焊接时比热处理时的淬硬倾向小。
24
2010“中等职业学校骨干教师”焊接专业国家级培训
25
2010“中等职业学校骨干教师”焊接专业国家级培训
26
2010“中等职业学校骨干教师”焊接专业国家级培训
3.影响CCT图的因素 (1)母材化学成分的影响 – 除钴之外,所有固溶于奥氏体的合金元素都使S曲线向 右移,即增加淬硬倾向,并降低Ms点,其中以碳的影 响为最大 (2)冷却速度的影响 – a.随着冷却速度的增高,对于Fe-C合金,A1、A3、A cm 均移向更低的温度,共析成分由C 0.83%转为C 0.4 %~0.8%。 – b.马氏体增大滑移的抗力,不均匀切变就会以孪晶方式 进行,马氏体就由条状变为片状 Nhomakorabea33
2010“中等职业学校骨干教师”焊接专业国家级培训
(二)易淬火钢 1.完全淬火区
– a.处于Ac3以上的区域 – b.钢的淬硬倾向较大,焊后得到淬火组织(马氏体) – c.靠近焊缝附近(相当于低碳钢的过热区),晶粒严重 长大,得到粗大的马氏体;稍远处相当于低碳钢的正 火区的部位得到细小的马氏体
9
2010“中等职业学校骨干教师”焊接专业国家级培训
10
2010“中等职业学校骨干教师”焊接专业国家级培训
(二)短段多层焊焊接热循环 – 1.短段多层焊:每道焊缝长度较短(约为50~ 400mm),未等前层焊缝冷却到较低温度(如 MS点)就开始焊接下一道焊缝,其特点是后焊 一层对先焊层具有缓冷作用,可以防止焊接接 头产生淬硬组织,适于焊接晶粒易长大而又易 于淬硬的钢种 – 2.短段多层焊的热循环如图4-18所示
3
2010“中等职业学校骨干教师”焊接专业国家级培训
基本概念:
1.热影响区(Heat Affected Zone,简称HAZ):熔焊时 在集中热源的作用下,焊缝两侧发生组织和性能变化 的区域 2.焊接接头: 由两个主要部分所组成,焊缝和焊接热影响 区,示意图如图4-1
4
2010“中等职业学校骨干教师”焊接专业国家级培训
3.相变重结晶区(正火区) – a.母材金属加热到Ac3以上的部位,发生重结晶(即铁 素体和珠光体全部转变为奥氏体),在空气中冷却就 会得到均匀而细小的珠光体和铁素体 – b.塑性和韧性都比较好,所处的温度范围约在A3~ 1000℃之间
32
2010“中等职业学校骨干教师”焊接专业国家级培训
4.不完全重结晶区 – a. 处于Acl~Ac3之间范围内的热影响区 – b.处于Acl~Ac3范围内只有一部分组织发生了相变重结 晶过程,成为晶粒细小的铁素体和珠光体,另一部分 始终未能溶入奥氏体的铁素体,成为粗大的铁素体 – c. 晶粒大小不一,组织不均匀,力学性能不均匀 5.母材 – 处于A1以下
– (5)应力应变的影响 – a.有拉伸应力存在时会明显地降低奥氏体的稳定性,使 CCT曲线明显地向左上方偏移 – b.应力和应变都会增加奥氏体的内能,加速扩散过程, 有利扩散型相变的进行 – c.应力应变影响到马氏体转变,拉伸应力可促进马氏体 转变,即MS升高和马氏体转变量增加。切应力也能促 进马氏体转变,正压应力则会阻碍马氏体转变
7
2010“中等职业学校骨干教师”焊接专业国家级培训
(四)冷却速度(ωc)和冷却时间(t8/5、t8/3、t100 等)
1. 冷却速度是一个不易准确描述的变化量,在工程实际 应用中常用冷却时间t8/5、t8/3或t100来表述焊接冷却过程 2. t8/5、t 8/3为焊接冷却过程中温度从800~500 ℃或 800~300 ℃的冷却时间 3. t100为焊后冷却到100 ℃所花时间
22
2010“中等职业学校骨干教师”焊接专业国家级培训
三、焊接条件下的CCT图及其应用
1.图4-23是16Mn钢的CCT图及组织和硬度的变化 图 2.在焊接条件下熔合区附近(Tm=1300~1350℃ )t8/5冷却时间,可以在图上查出相应的组织和 硬度
23
2010“中等职业学校骨干教师”焊接专业国家级培训
(一)焊接热影响区的硬化
1. 淬硬:成分对淬硬倾向的影响 (1)碳当量(表4-14) – a.简称Ceq或CE,反映钢中化学成分对硬化程度的影响,把钢中合 金元素(包括碳)按其对淬硬(包括冷裂、脆化等)的影响程度 折合成碳的相当含量
40
2010“中等职业学校骨干教师”焊接专业国家级培训
– 国际焊接学会推荐的CEПW和日本焊接协会的Ceq(WES) 公式、Pcm公式
11
2010“中等职业学校骨干教师”焊接专业国家级培训
12
2010“中等职业学校骨干教师”焊接专业国家级培训
第二节 焊接热循环条件下的 金属组织转变特点
一、HAZ热循环的特点(五点):
– – – – 1.加热温度高 2.加热速度快 3.高温停留时间短 4.焊接时,一般都是在自然条件下连续冷却,个别情况 下才进行焊后保温或焊后热处理 – 5.局部加热
8
2010“中等职业学校骨干教师”焊接专业国家级培训
二、多层焊焊接热循环的特点
(一)长段多层焊焊接热循环 – 1.长段多层焊:每道焊缝的长度较长(一般1m 以上),焊完第一层再焊第二层时,第一层已 基本冷至较低的温度(一般在100~200℃以下 ),其特点是相邻各层之间有依次热处理的作 用,不适用于淬硬倾向较大的钢种 – 2.焊接热循环的变化如图4-17所示。
37
2010“中等职业学校骨干教师”焊接专业国家级培训
– 以低碳钢为例,热影响区各部分的组织特征归纳如表411所示
38
2010“中等职业学校骨干教师”焊接专业国家级培训
– 焊接热影响区各部位的名称及其所包括的范围如表4-12 所示
39
2010“中等职业学校骨干教师”焊接专业国家级培训
二、焊接热影响区(HAZ)的性能
(二)加热的最高温度(Tm) – 低碳钢和低合金钢焊接时, 在熔合线附近的过热区,由 于温度高(1300~1350℃) ,晶粒发生严重长大,从而 使韧性严重下降
6
2010“中等职业学校骨干教师”焊接专业国家级培训
(三)在相变温度以上的停留时间(t H)
– 高温停留时间t H为焊接加热和冷却过程中在相变温度 以上的停留时间,分为加热过程的停留时间t′和冷却过 程的停留时间t′′ t H=t′+t′′ – t H越长,越有利于奥氏体的均质化过程,但t H越长, 奥氏体晶粒越容易长大;特别是在温度较高时(如 1100℃以上),即使停留时不长,也会产生严重的晶粒 长大。
27
2010“中等职业学校骨干教师”焊接专业国家级培训
(3)峰值温度的影响(峰值温度越高) – a.使过冷奥氏体的稳定性加大 – b.促使奥氏体晶粒粗化 – c.奥氏体的稳定性增大,淬硬倾向增大 (4)晶粒粗化的影响 – 晶粒越粗大,晶界的总面积越少,减少了形核的机会 ,不利于奥氏体的转变
28