测量技术与仪器发展的新趋势——网络化

合集下载

测控技术与仪器的发展及特点分析

测控技术与仪器的发展及特点分析

测控技术与仪器的发展及特点分析测控技术与仪器是现代科技领域中一个重要的分支,其在各个领域中都占据着不可或缺的地位。

测控技术与仪器的发展与特点分析,对于我们更加深入地了解其优缺点,从而更好地应用于现代生产和工程设计中,具有着重要意义。

随着科技的不断进步和社会的不断发展,测控技术与仪器得到了迅速的发展。

从人工实验到计算机控制的自动化实验,再到从传统模拟信号到数字信号处理,测控技术与仪器的发展趋势不断向着精度、速度、自动化等方向不断发展。

现代测控技术与仪器发展的主要特点如下:1.自动化程度高现代测控技术与仪器为实验提供了强大的辅助和控制能力,自动控制能够消除控制参数频繁调整的繁琐和错误,提高实验的准确性和可靠性。

同时,自动控制也可以使实验过程无需人工干预,自动采集和处理数据,提高工作效率和工作效益。

2.精度高测控技术与仪器的精度是医学、工程、科研等领域的重要性能指标。

现代测量技术和仪器随着计算机、传感器等技术的不断发展,其精度的提高也在不断提高。

3.多样性随着物理、化学、生物、环境等相关学科的不断发展,逐渐形成了多种测控技术与仪器,例如,光学测量技术、力学测试技术、化学测试技术、生物测试技术等。

4.集成化现代测量技术与仪器采用数字化、集成化设计,并且将计算机技术和信号处理技术应用于测量仪器中,在提高仪器精度的同时,实现了数据的实时监控和处理。

5.网络化现代测控技术与仪器已经向着网络化、智能化方向快速发展。

通过网络连接,能够使多个仪器之间互相协作,实现数据的共享和实时监控。

二、测控技术与仪器的研究方向1.高速测量技术研究目前,随着科学研究和产业快速发展的需求,高速测量技术逐渐显示出其重要作用。

高速测量技术研究的关键在于提高测量速度和精度。

传统的测量技术相对于非接触式测量技术来说,其测量精度和效率都有局限性,不适用于一些特殊材料的测量。

因此,非接触式测量技术研究引起了广泛的关注。

3.智能化测量技术随着传感器技术、计算机技术、虚拟仪器技术和智能化健康监测技术的发展,智能化测量技术在医疗、生物和环境等领域的应用逐渐成为热点研究领域。

测控技术与仪器在实践中的运用

测控技术与仪器在实践中的运用

测控技术与仪器在实践中的运用一、引言测控技术与仪器是现代科学技术发展的重要组成部分,它们在工程、医学、环境监测等领域都有着广泛的应用。

测控技术与仪器的发展促进了人类社会的进步和发展,为生产和生活带来了巨大的便利。

本文将从测控技术与仪器在实践中的运用这一主题展开论述,以探讨测控技术与仪器在各个领域中的重要性和应用。

二、测控技术与仪器的概念测控技术与仪器是指利用各种工具和设备对被测量对象进行检测、监测、分析和控制的技术和设备。

它们广泛应用于机械工程、材料工程、环境科学、生物医学、电子信息等领域,是实现自动化、智能化的重要手段。

测控仪器是具有测量功能和控制功能的设备,一般包括传感器、执行器、控制器等组成部分。

测控技术是以仪器设备为基础的测量和控制技术,通过测控仪器可以实现对被测量对象的监测和控制,从而实现各种复杂的工程任务和科学实验。

三、测控技术与仪器在工程领域的应用1. 机械加工测控技术与仪器在机械加工领域的应用非常广泛,可以实现对机床、零件尺寸、工艺参数等各个环节的精确监测和控制。

通过测控技术与仪器可以实现数控机床、自动装配线等自动化生产线的运行,大大提高了生产效率和产品质量。

2. 航天航空在航天航空领域,测控技术与仪器的应用尤为重要。

航天器的轨道测控、导航控制、姿态稳定、传感器测量等都需要大量的测控技术与仪器来保障。

飞行器上的惯性测量单元(IMU)、地面站的测控系统等都是测控技术与仪器的重要应用。

3. 汽车制造现代汽车制造离不开测控技术与仪器的应用,例如汽车引擎的控制系统、车身结构的检测、零部件的加工等都需要大量的测控技术与仪器来实现。

汽车制造中,测控技术与仪器可以帮助实现车辆动力系统的智能化控制、车身结构的轻量化设计等。

四、测控技术与仪器在医学领域的应用1. 医学影像医学影像的获取和处理是医学诊断的重要手段,测控技术与仪器在医学影像中有着广泛的应用。

例如X射线、CT、MRI、超声等医学影像技术的测控仪器都起到了重要的作用。

对测控技术与仪器专业认识理解

对测控技术与仪器专业认识理解

随着现代科学技术日新月异的发展,以信息技术产业为支柱的知识经济也随之迅速发展,人类已经逐渐进人信息社会,各种高新技术也愈来愈多地融合渗入到测量领域和仪器仪表行业。

作为测量领域惟一的本科专业,测控技术与仪器已经发展成为当今信息科学技术学科领域的重要分支,是研究信息的获取和预处理,以及对相关要素进行控制的理论与技术;是集光、机、电、自动控制技术、计算机技术与信息技术多学科相互融合和渗透而形成的一门高新技术密集型综合学科。

测控技术与仪器是研究信息的获取和处理,以及对相关要素进行控制的理论与技术;是电子、光学、精密机械、计算机、信息与控制技术多学科互相渗透而形成的一门高新技术密集型综合学科。

它是将自动化系统上的信号加以采集、整理、处理、而后进行显示或者发出控制信号的过程。

测控技术与仪表是适用于各类不同专业的一门实用性非常强的学科,如工业自动化、生产过程自动化、检测技术及仪表、电子仪器及测量技术、计算机过程控制等等。

测控技术与仪器专业是多学科交叉融合的专业,知识面非常的广,涉及测量与测控技术、仪器仪表技术、计算机技术、信息技术、系统与网络技术等多个学科的知识。

测控技术自古以来就是人类生活和生产的重要组成部分。

最初的测控尝试都是来自于生产生活的需要,对时间的测控要求使人类有了日晷这一原始的时钟,对空间的测控要求使人类有了点线面的认识。

现代社会对测控的要求当然不会停留在这些初级阶段,随着科技的发展,测控技术进入了全新的时代。

它可以说是一门边缘学科,它和自动控制、工业自动化、仪器仪表以及计算机专业有着密切的联系,它的专业面广,小到制造车间的检测,大到卫星火箭发射的监控。

1.专业特点本专业以光、机、电、计算机一体化为特色,培养具有现代科学创新意识、知识面宽、基础理论扎实、计算机和外语能力强,可从事计算机应用、电子信息、智能仪器、虚拟仪器、测量与控制等多领域的产品设计制造、科技开发、应用研究、企业管理等多方面的高级工程技术及经营管理人才。

论测控技术与仪器发展现状

论测控技术与仪器发展现状

论测控技术与仪器发展现状【摘要】测控技术与仪器是现代科技领域的重要组成部分,对各个领域的发展起着至关重要的作用。

本文从引言开始,介绍了测控技术与仪器的定义以及其重要性,接着以测控技术的发展历程和目前的应用领域为主线,分析了仪器发展的现状与趋势,探讨了测控技术与仪器发展面临的挑战和机遇。

结论部分提出了测控技术与仪器的未来发展方向,并对其展望进行了总结。

通过本文的阐述,可以深入了解测控技术与仪器的发展现状,以及未来可能的发展趋势,为相关领域的科研人员和从业者提供了重要的参考和启示。

【关键词】测控技术,仪器发展,现状,历程,应用领域,趋势,挑战,机遇,未来发展方向,展望,总结1. 引言1.1 测控技术与仪器的定义测控技术是测量和控制技术的简称,是一种综合应用电子技术、计算机技术和自动化技术的新兴技术领域。

测控技术广泛应用于各种领域,如工业生产、科学研究、环境监测、医疗诊断等。

测控技术通过传感器采集实时数据,并通过控制器对数据进行处理和控制,实现对系统的准确监测和控制。

仪器是一种用于测量、检测、分析和控制的设备或工具。

测控仪器通常由传感器、信号处理器、控制器和执行器等组成,可以实现对各种参数的测量和控制。

现代仪器具有高精度、高灵敏度、高速度和自动化等特点,广泛应用于各种领域。

测控技术与仪器的结合,不仅可以实现对系统的实时监测和自动控制,提高生产效率和质量,还可以开发新的测量方法和仪器,推动科学技术的发展。

测控技术与仪器在工业、农业、环保、医疗等领域发挥着重要作用,是现代社会不可或缺的技术工具。

1.2 测控技术与仪器的重要性测控技术与仪器在现代科学技术和工程领域起着至关重要的作用。

测控技术和仪器是科学研究和实验的基础工具,通过精确的测量和控制,科学家们可以获取准确的数据,推动科学知识的进步和发展。

测控技术和仪器在工程领域中被广泛应用,可以提高生产效率,降低能耗成本,增加产品质量,并且可以确保工程项目的安全性和可靠性。

测量科学的发展趋势

测量科学的发展趋势

测量科学的发展趋势
测量科学是一门涉及测量方法、仪器、数据分析和统计等相关领域的科学学科。

其发展趋势可以总结如下:
1. 精确度和精度的提高:随着技术的不断进步,测量仪器和方法的精确性和精度得到不断提高。

新的测量技术和仪器的引入,使得测量能力大幅度提高,对于一些要求高精度的领域(如科学研究、工程设计等)具有重要意义。

2. 自动化和智能化的发展:自动化和智能化技术的发展,使得测量仪器能够自动完成测量过程,并能够自动化处理和分析数据。

这样可以提高测量的效率和准确性,同时减少人为误差的影响。

3. 多元化的测量方法:随着科学研究的深入,单一的测量方法已经无法满足复杂问题的需要。

因此,涌现了许多新的测量方法和技术,如光学测量、声学测量、纳米测量等。

这些新的测量方法可以更好地适应不同领域的需求。

4. 数字化和网络化的测量系统:随着计算机和通信技术的快速发展,测量系统的数字化和网络化成为可能。

数字化测量系统可以将测量数据直接以数字形式记录和存储,提高数据的可靠性和可访问性。

网络化测量系统可以实现远程测量和数据共享,为跨地域、跨学科的科学研究提供便利。

5. 综合性测量方法的兴起:由于科学研究领域的交叉性和复杂性,单一的测量
方法往往无法全面地了解所研究对象的特征。

因此,综合性测量方法的兴起成为发展趋势。

综合性测量方法将多个不同的测量技术和方法结合起来,通过综合分析来获得更全面、准确的结果。

总之,测量科学的发展趋势是技术的进步、方法的多样化、系统的数字化和网络化以及综合性方法的兴起。

这些趋势将进一步推动测量科学的发展和应用,满足越来越复杂、多样的测量需求。

论测控技术与仪器发展现状

论测控技术与仪器发展现状

论测控技术与仪器发展现状测控技术与仪器是现代科学技术发展的重要组成部分,它广泛应用于工业控制、科学研究、医疗诊断、军事领域等各个领域。

随着科技的不断进步和社会的不断发展,测控技术与仪器的应用范围和水平也在不断提高,取得了一系列显著的成果。

本文将就测控技术与仪器的发展现状进行分析与探讨。

一、传感器技术的发展传感器是测控技术与仪器中的核心部件之一,它的性能直接影响着整个系统的测量和控制质量。

目前,传感器技术在灵敏度、精度、可靠性、耐用性等方面都取得了显著进展。

传感器技术已经实现了对微小变化的高精度探测,使得人们可以更加准确地获取所需的数据。

新型材料、纳米技术等的应用也为传感器技术的发展提供了新的可能性,例如纳米材料传感器可以实现对微小数量级的物质进行检测,这对于化学、生物等领域的研究具有重要意义。

二、自动化控制技术的应用随着信息技术和通信技术的不断发展,自动化控制技术得到了很大的推动。

工业自动化控制系统已经从最初的控制单一设备发展到了对整个生产线甚至整个工厂的自动化控制,不仅提高了生产效率,还降低了劳动强度和生产成本。

自动化控制技术的应用也在交通运输、医疗诊断等领域得到了广泛的应用,使得生活更加便利和安全。

三、仪器仪表的智能化和网络化随着计算机技术和网络技术的飞速发展,传统的仪器仪表也在智能化和网络化方面取得了重大进展。

智能仪器仪表不仅拥有高精度的测量能力,还可以实现与计算机系统的直接连接,使得数据的采集、处理和传输更加方便快捷。

智能仪器仪表还具有自动诊断功能,可以对仪器的工作状态进行实时监测和分析,提高了仪器的可靠性和稳定性。

四、虚拟仪器技术的发展虚拟仪器是一种基于软件的仪器,它利用计算机技术和虚拟现实技术模拟出各种实验仪器的功能和性能。

虚拟仪器技术的出现,使得科研人员可以在计算机系统上进行各种实验,不需要进行实际的物理操作,大大降低了实验的成本和风险。

虚拟仪器还可以实现对实验数据的实时监测和分析,提高了对实验过程的控制和实验结果的准确性。

仪器仪表制造业的技术创新

仪器仪表制造业的技术创新

仪器仪表制造业的技术创新1. 前言仪器仪表制造业是现代工业的基础和重要组成部分,其发展水平直接反映了国家工业现代化程度。

近年来,随着计算机技术、通信技术、微电子技术、光学技术等相关领域的飞速发展,仪器仪表制造业也得到了快速的发展和进步。

本文将重点探讨仪器仪表制造业在技术创新方面的现状和发展趋势。

2. 技术创新的现状2.1 智能化随着技术的不断发展,仪器仪表产品正朝着智能化方向发展。

智能化仪器仪表能够实现自我诊断、自我调节、自我优化等功能,从而提高测量精度和可靠性,降低维护成本。

此外,智能化仪器仪表还可以通过互联网实现远程监控和数据传输,为用户提供更加便捷的服务。

2.2 微型化随着微电子技术的进步,仪器仪表产品正朝着微型化、集成化方向发展。

微型化仪器仪表具有体积小、重量轻、功耗低、便于携带和部署等优点,可以满足各种复杂环境和特殊应用的需求。

2.3 网络化随着通信技术的发展,仪器仪表产品正朝着网络化方向发展。

网络化仪器仪表可以通过有线或无线通信方式实现设备之间的数据交换和信息共享,从而提高系统的可靠性和可扩展性。

此外,网络化仪器仪表还可以实现大数据分析和云计算,为用户提供更加智能化的服务。

3. 技术创新的趋势3.1 物联网技术应用物联网技术的发展为仪器仪表制造业提供了新的机遇。

通过将物联网技术应用于仪器仪表产品,可以实现设备的互联互通,为用户提供更加智能化的解决方案。

例如,在工业生产过程中,通过将各种传感器和仪器仪表连接到物联网平台,可以实现对生产过程的实时监控和优化控制。

3.2 云计算和大数据技术应用云计算和大数据技术的发展为仪器仪表制造业带来了新的挑战和机遇。

通过将云计算和大数据技术应用于仪器仪表产品,可以实现数据的实时分析和处理,为用户提供更加智能化的服务。

例如,在环境监测领域,通过将各种传感器和仪器仪表连接到云计算平台,可以实现对环境数据的实时监测和分析,为政府和企业提供决策支持。

3.3 新材料应用新材料的应用为仪器仪表制造业带来了新的发展机遇。

2023年电子仪器的发展趋势分析

2023年电子仪器的发展趋势分析
2.人工智能驱动的电子仪器发展趋势
3.电子仪器微型化:实现智能化和自适应性
4.电子仪器绿色化发展,注重环保与节能
1.人工智能引领电子仪器发展新趋势
2.人工智能让电子仪器更智能、更自动
3.人工智能助仪器更准确测量
4.人工智能确保电子仪器更安全可靠
人工智能在电子仪器中的应用
物联网技术
电子仪器
无线网络
6. 环保化:随着环保意识的提高,电子仪器的设计和制造越来越注重环保。它们使用更少的能源,产生的废物更少,并且易于回收和处理。
科技对电子仪器的影响
1.科技与电子仪器发展趋势分析
2.微电子技术助力仪器设备小型化、智能化
3.数字技术提升电子仪器测量精度与实时监测能力
智能化
网络化
小型化
人工智能
1.高精度与稳定性是电子仪器的发展趋势
2.精确度提升:电子仪器发展的关键趋势
3.新型电子仪器稳定性提升,助力工业生产和环保
4.高精度、高稳定性是科技与电子仪器的发展趋势
更高的精度和稳定性
2023/9/21
分享人:victoria
TEAM
2023/9/21
演讲人:victoria
TEAM
目录CONTENTS
电子仪器的发展历程
1.科技与电子仪器发展趋势分析
2.数字化、网络化、智能化是电子仪器的发展趋势
3.全球电子仪器市场预测:2023年市场规模将达200亿美元,数字式与智子仪器应用广泛,发展趋势不可忽视
3. 微型化:随着微电子技术和纳米技术的进步,电子仪器正在变得越来越小,可以嵌入到各种设备中,如智能手机、电脑、电视等。
4. 无线化:随着无线技术的发展,电子仪器可以随时随地使用,无需连接电缆。这使得远程监控和诊断变得更加容易。

工程测量技术的发展趋势

工程测量技术的发展趋势

工程测量技术的发展趋势摘要:随着科学技术的发展,尤其是计算机技术、电子技术等方面的发展,工程测量的智能化、一体化、自动化、数字化水平越来越高,工程测量的可靠性、实时性、简便性、精确性也越来越高,极大的提升了工程测量水平。

本文就工程测量技术发展的现状以及应用进行了阐述,并对其未来发展趋势进行了的探讨。

关键词:工程测量;发展现状;发展趋势引言工程测量是为各项建设项目的勘测、设计、施工、安装、竣工、监测以及运营管理等一系列工程工序服务的。

能够为工程建设的各个环节提供必要的测量数据,在规范施工管理的同时,还能为工程的施工质量提供有效的保障。

一、工程测量的发展现状1、测量仪器数字化20世纪80年代以来,各种较为专业的地面测量仪器应运而生,给工程测量提供了极大的便捷与支持。

例如,激光水准仪、数字水准仪、全站仪、光电测距仪等不断研发,并迅速取代了传统的工程测量设备被应用于工程测量领域。

目前的工程测量设备体系已经实现了全面的数字化、自动化。

同时,这些测量仪器的数字化,有力的提高了测量的精度、准确度和速度,实现了测图、放样的数字化发展。

2、数据采集自动化在传统工程测量中,需要大量人工参与实际测量过程,但随着数据采集自动化程度的不断提高,实际测量过程所需要的人工参与越来越少,甚至仅一两人通过操作仪器即可完成测量工作。

如电子经纬仪即能够通过自动记录、自动修正、自动归化计算、自动角量扫描、自动消除误差,并能自动记录数据,有效的减少了整个测量过程的人工操作,实现对目标的自动测量;再如激光水准仪、记录式精密补偿水准仪等,能实现自动安平、自动读数、自动记录、自动校验测量数据,使几何水准测量自动化;再如陀螺经纬仪通过微机控制,也实现了矿山、隧道工程测量中干扰补偿、连续测量的自动化,有效提高了测量作业效率。

3、测量控制智能化目前,在工程测量作业中,传统的光学仪器、电磁波仪器已经逐渐退出工程测量实践,取而代之的是智能化程度越来越高的电子测量设备。

测控技术与仪器专业的现状分析

测控技术与仪器专业的现状分析

Electronic technology・ 电子技术Electronic Technology & Software Engineering 电子技术与软件工程• 133【关键词】测控技术与仪器专业 信息技术 系统化研究目前应用领域中所使用的仪器仪表已经将信息技术融入其中,实现了综合性的功能,包括收集信息,对于信息进行存储和传输,以及信息的技术处理和控制等等,都已经涵盖在仪器仪表的功能当中,使仪器仪表发展成为综测控技术与仪器专业的现状分析文/徐博合性的测控系统。

从测控技术的发展趋势来看,在高端科学技术和信息技术的带动下,测控技术逐渐发展成为以计算机为核心,建立了虚拟网络化空间,从而实现了远程化和集成化,并逐渐向微型化发展。

相应地,在测控技术与仪器专业教育上,应社会需求而发生了转向。

1 测控技术与仪器专业的国内发展概况中国设立仪器类的专业于建国初期首先在天津大学筹建,当时被命名为“精密机械仪器”专业,相关的专业在浙江大学被筹建起来,为“光学仪器”。

所聘请的是国外的知名专家前来教学,培养了众多专业人才,为中国在本专业技术领域的发展奠定了良好的基础。

随着中国国民经济的发展,诸多的大学,包括清华大学、上海交通大学、哈尔滨工业大学以及长春理工大学都陆续地将仪器仪表专业建立了起来。

进入到20世纪60年代,中国设立仪器仪表专业的院校已经超过了30所,同时在此时期还在天津大学成立了仪器仪表类教材编委会。

至此,中国在仪器仪表专业领域已经进入到系统化研究领域,并在仪器仪表专业下设立了3个专业,即自动化仪表专业、光学仪器专业以及精密仪器专业。

随着中国工业化发展,能源、国防和航空航天领域广泛地应用仪器仪表,其中渗入了各种高端的科技成果,结合测控技术,使这门专业成为了集观察、测量与计算等等功能于一体的综合性工具。

进入到20世纪末期,国家教育部规定,将与测控技术相关的10几门专业进行重新组合,成为测控技术与仪器专业,这一专业在当时是仪器科学与技术学科领域中的一门本科专业。

测控技术的发展与趋势

测控技术的发展与趋势

测控技术的发展与趋势测控技术的发展趋势测控技术是一门以电路和计算机为基础的新技术。

21世纪的测量和控制将是一个发达的系统概念。

信息交流与共享的主题也是测控系统的发展方向。

因此,通过建立网络来形成和使用测控系统已成为现代测控技术的发展趋势。

1.现代测控技术现状20世纪70年代以来,测量技术不断进步,出现了很多智能仪表,这些仪表在微电子的基础上,与计算机相结合,使得基于仪表的测量技术渐渐演变,成为一门包含机械、电子、计算机的独立的学科。

2、测控技术的发展在追求仪表智能化的同时,现代测控技术也在不断提高其稳定性、可靠性和适应性。

相应地,随着技术的发展,大量高新技术科研成果被应用于测控技术领域,测控技术的技术指标和功能不断提高。

作为代表,测控仪器单元的小型化、智能化越来越明显。

测控技术的两个方面,一个是测一个是控。

“测”是依靠传感器和信号传输电路,即测控电路;“控”则是依靠现代计算机的计算处理能力,根据数据得出相应结果,通过反馈等方式控制整个系统。

计算机已成为测控技术的支柱。

因此,网络技术自然成为测控技术满足实际需求的关键支撑。

然而,不可否认的是,测控电路仍然是测控技术发展的基础和另一个重要的发展方向。

3.测控技术发展趋势现代科学技术的融入不但使现代测控技术在各方面得到广泛应用,而且加快了现代测控技术的发展,形成了现代测控技术朝微型化、集成化、远程化、网络化、虚拟化等方向发展。

同时,现代测控技术是一门实践性非常强的技术,既包括硬件、软件的设计,又包括系统的集成,随着其在国防、工业、农业等领域应用的深度和广度的扩大,它将为提高生产效率、改进技术水平做出巨大的贡献。

新型传感器技术、现代测控总线技术、虚拟仪器技术、远程测控技术、测控系统集成技术等,都是这门涉及广泛的学科的发展趋势和方向。

新型传感器技术正朝着小型化、数字化、集成化、智能化、网络化、光纤传感器和生物传感器方向发展。

传感器是信息时代的三大支柱之一,目前新的智能化传感器层出不穷,微处理器和网络与传感器的融合技术快速发展,新型传感器在测量仪器仪表、测控系统中的应用日益广泛和深入,可以说,新型传感器技术的发展对现代测控技术的发展起到了很好的推动作用,新型传感器技术是现代测控技术的一个重要组成部分。

电子测量仪器的现状及发展趋势研究

电子测量仪器的现状及发展趋势研究

114【作者简介】 李金龙(1980—),男,本科,研究方向:电气自动化。

电子测量仪器的现状及发展趋势研究李金龙(甘肃机电职业技术学院,甘肃 天水 741000)摘 要:测量技术已经与各个行业,如工、农、医、航空、国防等人类生活密不可分,也从传统的测量全面进入到了电子测量的领域。

电子测量仪器的精准度已成为衡量某个国家科技水平高低的重要依据之一。

本文将对现有的电子测量仪器主要性能指标、技术路线、发展趋势等方面进行总结,加快电子测量仪器研究进度。

关键词:电子测量仪器;特点;新技术;发展趋势一、我国电子测量仪器发展现状综述我国电子测量仪器从二十世纪五六十年代开始了发展,出现了许多相关技术与设备,设立了相关的研究所,对当时的工业及国防事业的发展起到了很大的促进作用。

现在随着电子技术的不断进步,智能化、自动化、多功能化、模板化的新一代测量技术及方法的应用,使得电子测量仪器在各个行业、领域及日常生活中已密不可分,其发展前景非常广阔。

但我国电子测量设备及技术因起步较国外晚,与国外一些发达国家相比有一定的不足,因此更需把握电子测量技术发展的趋势,注重产品可靠性、精度等性能指标的改善,提高产品的技术水平及创新程度,使我国电子测量行业得以更好地发展。

二、目前电子测量设备的技术及发展特点(一)设备的超小型化随着电子电路集成化的程度越来越高、LED触控技术的发展以及设备的便携要求,目前的测量设备外形种类很多,但总体积在不断缩小。

传统设备上的开关、旋钮、按键等越来越少,转而以触摸屏、操作菜单等智能化部件和系统替代。

(二)设备的智能化以通用端口进行测量结果数据的传输和设备的测量过程控制,其操控、测量结果读取、汇总的自动化程度越来越高。

目前的电子测量设备本质上已成为一个微型计算机系统加相应的外围测量电路。

因此其可实现编程控制,其程序语言遵循计算机语言结构,配套程序使用通用端口来方便网络远程信息传输与控制的实现。

在设备中使用RAM和ROM作为数据存储和传输的规范元件,能存储大量数据并能读能写,可按指令做设备的系统设置,方便快捷。

论测控技术与仪器发展现状

论测控技术与仪器发展现状

论测控技术与仪器发展现状测控技术是现代科学技术发展的重要组成部分,它在工业自动化、仪器仪表、信息技术等领域起到至关重要的作用。

随着科技的不断进步和社会的不断发展,测控技术和仪器的发展也日新月异。

本文将从测控技术和仪器发展的现状出发,探讨其在各个领域中的应用和未来发展趋势。

一、测控技术的发展现状1. 智能化水平不断提升随着人工智能、云计算、大数据等新一代信息技术的发展,测控技术的智能化水平不断提升。

传感器、执行器、控制器等硬件设备不断更新换代,软件算法也得到了长足的发展。

智能化测控系统能够更加准确地感知和控制物理过程,提高了生产效率和产品质量。

2. 网络化与通信技术的广泛应用随着互联网技术的普及和发展,网络化与通信技术在测控系统中得到了广泛的应用。

传统的仪器仪表不再是简单的单一设备,而是通过网络和通信技术与其他设备进行连接和数据交换,实现信息的共享和协同控制。

这种网络化的测控系统大大提高了生产过程的自动化程度和智能化水平。

3. 多元化应用场景显著增加随着科学技术的不断进步,测控技术在各个领域的应用场景也显著增加。

除了传统的工业自动化领域,测控技术还广泛应用于航空航天、医疗健康、环境监测、农业生产等领域。

这些新的应用场景为测控技术的发展提供了广阔的空间和巨大的市场需求。

1. 传感器技术不断创新传感器作为测控系统中的核心设备,其技术不断创新。

传感器技术在材料、结构、工艺等方面取得了显著的进步,使得传感器具有了更高的精度、更强的抗干扰能力和更长的使用寿命。

新型传感器的出现也拓展了测控仪器的应用领域,如图像传感器、生物传感器等。

2. 仪器仪表自动化水平提升传统的仪器仪表主要依靠人工进行数据采集和处理,其自动化水平较低。

随着先进的自动化技术的引入,各类仪器仪表的自动化水平得到了显著提升。

部分仪器仪表甚至能够实现远程监控和控制,使得操作更加便捷和高效。

3. 标准化与智能化的趋势明显随着测控仪器的广泛应用,标准化和智能化的趋势变得越发明显。

测控技术与仪器的智能化技术应用

测控技术与仪器的智能化技术应用

《装备维修技术》2021年第13期测控技术与仪器的智能化技术应用高希辰 (中国地质大学,湖北 武汉430070)摘 要:进入21世纪以来,我们迈进了信息化的新时代,在仪器控制及检测等方面的研究中,我们逐步引用电子计算机技术,真正实现了仪器控制的智能化,并且在各个领域都开始应用智能化的检测技术。

随之测控科学技术与仪器智能化等相关技术的发展与应用不但大大减轻了相关工作人员的压力,并且在一定程度上还可以提高工作效率,进一步推动了我国工业化的进程,并奠定了科学基础。

基于此,本文主要针对测控技术与仪器相关的智能化技术的应用特点进行简要分析,希望能够为相关工作人员提供一些方法。

关键词:测控技术与仪器; 智能化技术; 应用我国经济的快速发展,为我国现代科学和技术的发展创造了良好的环境,同时现代化智能科学技术也为我国经济的发展奠定了基础。

尤其是对于现代工业来说,电子信息技术的运用为其发展提供了极大的便利。

无论是测控技术还是仪表智能化技术,在未来的发展中必将和电子信息技术以及现代智能技术有很大的联系。

测控技术与仪器智能化技术的结合,可以为仪器人员提高工作效率及工作质量。

1.论述测控技术和测控仪器1. 1 测控技术论述随着我国现代电子测控信息技术的发展,将测控技术与电子测量设备以及计算机信息技术有效地结合在一起,就可以真正地实现测量设备的智能化和设备的自动化,能更好地促进我国现代科学技术的发展与进步。

1. 2 仪器仪表信息化科学技术的发展趋势已经很明显,而在现代科学和信息技术中,测试装置和设备的技术与其仪器仪表则被认为是两个重要的构件和组成部分,作为我国现代工业生产和发展的重要构件和组成部分,仪器仪表的地位也愈来愈明显,所以我们需要更加清楚认识和看到设备和仪器示范的意义及重要性,在当前经济发展中,充分利用这些先进设备和检测仪器,并将其有效地结合到自动化的测控系统中去,促进了科学和技术的进步,可以更好地体现出这些仪器仪表的功能。

试论现代测量技术的主要进步特征及发展趋势

试论现代测量技术的主要进步特征及发展趋势

试论现代测量技术的主要进步特征及发展趋势赵志刚 赵 伟 黄松岭(1.清华大学电机工程与应用电子技术系 电力系统国家重点实验室,北京 100084)摘 要:数字化、可重构化、模型化、高可靠化、实时化、网络化、智能化以及自确认化,是现代测量技术的主要进步特征。

在这些发展和进步的推动和影响下,现代测量技术逐渐朝着按不同测量任务自动重构测量仪器软硬件,智能地构建测量模型并执行测量任务的方向发展;同时,在单台测量仪器能力不足情况下,可通过网络组织多台测量仪器协同完成测量;且测量仪器除可实时提供包含质量评定参数的完整测量结果外,还可输出自身工作状态参数,即具有了自确认工作状态的能力。

这些进步特征共同反映出,测量仪器的自主工作能力将越来越强。

不难预见,测量的更高智能化水平的自主化,将成为现代测量技术今后发展的必然趋势。

关键词:测量技术;数字化;模型化;网络化;智能化;自主化中图分类号:TM93 文献标识码: ADiscussion on the Main Advanced Characters and Development Trends of ModernMeasurement TechniqueZhao Zhigang Zhao Wei Huang Songling(State Key Laboratory of Electric Power System & Department of Electrical Engineering,Tsinghua University, Beijing 100084, China)Abstract:The main advanced characters of modern measurement technique are digitalization, reconfiguration, modeling, high reliability, real time, network, intellectualization and self-validation. Inflected by these characters, some modern measurement instruments can reconfigure their hardware and software and build the measurement model intellectually to adapt to the special measurement task. When a single measurement instrument cannot finish the measurement task, more instruments can be organized by the network to finish the task. The instrument can not only provide the measurement result and its measurement uncertainty but also the status of itself, and it means that the instrument is a self-validating instrument. In a word, the measurement instrument can finish a task more and more independent. The more intellective and self-determinative measurement instrument must be the future measurement instrument.Keywords: measurement technique; digitalization; modeling; network; intellectualization; self-determination各历史时期测量仪器仪表(以下简称测量仪器或仪器)的进步特征,鲜明地体现着测量技术发展的脉络。

测控技术与仪器的发展及特点分析

测控技术与仪器的发展及特点分析

测控技术与仪器的发展及特点分析摘要:测控技术在当今社会发展中起着不可或缺的关键作用。

科学的发展、突破往往是以检测仪器和技术方法上的突破为先导的,在诺贝尔物理和化学奖中大约有1/4是属于测试方法和仪器创新。

测控技术在工作生产中起着把关者和指导者的作用,广泛应用于电力、电子、建筑工程等行业。

当今信息化时代,仪器的作用主要是通过测量获取信息,是智能行动的依据。

作为一种信息的工具,仪器起着不可或缺的信息源的作用。

中国的两弹一星之父钱学森院士说:“新技术革命的关键技术是信息技术。

信息技术由测控技术、计算机技术、通讯技术三部分组成。

测控技术则是关键和基础。

”由此,测控技术的地位可见一斑。

关键词:测控技术;仪器;发展以及特点1.仪器与测控技术的具体解读1.1 仪器字典释义中仪器仪表可以简单理解为观察测量各种参数的具或设备。

仪器是进行高新技术研究的基础。

在人类的科学探索、生活实践与生产活动中,要观察、测量、控制的量越来越多。

仪器仪表俨然成为一个重要产业,在支持科技进步的同时为生产生活提供重要保障。

1.2 测控对于测控技术与仪器这一专业门类,可以将其拆开来看,分别来弄清这几个概念。

字典释义中“测”就是测量,“控”就是控制。

“测”是指采用各种方法获得反应客观事物或对象的运动属性的各种数据,并对数据进行记录及必要的处理。

“控”是采用各种方法支配或约束某一客观事实事物或对象的运动过程以达到一定目的。

由此可见,测量控制一个是认识事物,另一个是改造事物,两者都需要各种手段和方式,这也即是说测控技术与仪器专业所涵盖的知识体系必然与机械、光学等多个学科相互融贯,有较强的综合性。

1.3 技术字典释义中技术就是关于劳动工具的规则(即制作方式与使用方法)体系,其目的在于提高劳动生产力。

测控技术与仪器专业为国家各项科技项目,各行各业提供基本制造,研究的设备与仪器,其对技术上的要求自然会很高。

机械、光学、电子信息等各方面的知识点都会被应用到仪器设备的研发、制造和生产中来帮助人类利用和改造自然。

工程测量与监测技术发展趋势分析

工程测量与监测技术发展趋势分析

工程测量与监测技术发展趋势分析一、引言工程测量和监测技术在建筑、桥梁、基础设施、矿业等行业中被广泛应用。

这些技术的发展趋势越来越重要,因为现代工程越来越复杂,需要高精度、高效率和高可靠性的测量和监测技术来确保工程的质量和安全。

本文将对工程测量和监测技术的发展趋势进行深入分析。

二、工程测量技术发展趋势分析1.高精度和高效率当前工程测量技术的发展趋势是朝着高精度和高效率方向发展。

传统的测量方法如传统的经纬仪、水平仪、量角器等方法已经不能满足工程的需要。

现代的测量技术如全站仪、全自动测量系统、激光扫描仪等取代了传统的测量方法,具有高精度、高效率、高自动化、自整定、多功能的特点。

2.多传感器结合多传感器结合技术是实现高精度的一个新趋势。

随着仪器和传感器的发展,人们逐渐意识到可以将多个传感器结合起来,以实现更高的测量精度。

例如,全站仪可与GNSS、惯性导航、摄像测量、激光扫描等多种传感器结合使用。

这使我们可以将测量误差降低到最小,从而提高测量精度。

3.云端数据处理云端数据处理是一个新的发展趋势。

和传统的数据处理方式不同,云端数据处理使得数据可视化、共享和分析变得更加容易,同时也提高了数据的安全性和可靠性。

通过云端数据处理,我们可以更好地结合不同传感器的数据,从而实现更精确的测量结果。

4.无人机测量无人机测量是另一个新的测量技术,它具有更快、多角度的数据采集功能,不受地形和气象条件的影响,能够实现大范围的测量和监测。

同时,无人机测量的成本较低,可以减少人力和时间成本,提高效率。

随着无人机技术的不断发展,无人机测量的应用将会越来越广泛。

三、工程监测技术发展趋势分析1.物联网技术的应用物联网技术是目前工程监测技术的一个新趋势。

通过各种传感器的部署和数据采集,物联网系统能够实现对建筑、桥梁、隧道等工程的实时监测。

数据采集、传输和处理系统均可进行云端中心化管理,以自动控制和智能化的方式监测结构的健康状态。

2.智能预警系统智能预警系统能够实时监测工程结构的状态和健康状况,可以预测可能出现的问题和风险。

测量技术中的网络化仪器

测量技术中的网络化仪器

按照传统定义 ,测量仪器是 指单独或连 同其他 设 重要 的数 据实行多机 备份 ,能够提高 系统 的可靠性 ; 备一起 用 以实现对被测对象进行测量 的装置 .测量 仪 网络化可 以使 测量人员不受 时间的限制 ,随时 随地 地
器主要完成三个基本功 能 :信 号采集与控制 、信 号分 获取所 需的信 息 ;可方便进 行修 改 、扩展 .因此 可 以 析与处理 、测得结果表达 与输 出 .不 同测量仪器 实现 说 “ 网络”就是 “ 仪器” . 这三个功能 的具体模块 有着很大 的区别 .例 如智能仪 器实现信号采集 与控制 、信号 分析与处理功 能的核心
客户机 .它 的工作 原理 是终端 和服务 器通 过 T PI 等 .采用瘦服务器方式下 的网络化 测试仪器就是一种 C/ P
协议联结 ,瘦 客户机 作为客户端将其 输入传递到终端 典型 的嵌入式系统 ,其处理 器内存 有限 .若测量 过程 服务器处理 , 服务器再把处 理结果 传递 回客户端显示 .
2 网络 化仪器 的实现方 案
是微处理器 ;虚拟仪器 完成信 号采集与控制 功能 的核
网络化仪 器接入 It t的方法 有两种 :一种是 ne me
心是处于被测现场 的各种测量 单元 ,其信号分析 和处 通过计 算机连 入 Itre, ne t 即采用基 于计 算机的瘦客户 n
理功能 由在 P 机上运 行 的软件完成 ,测得结果信 号 机式 ;另一种 是仪器本 身带有完整 的网络接 口,具 有 C
收稿 日期:2 0 —81 0 60 —4
采用瘦客 户机式 的网络化仪 器是通过一 台计 算机
作者简介:郭航 ( 9 1 ) 18 一 ,男,河 南周 口人 ,空军第一航 空学院数 学教研 室助教

测量方面技术交流发言稿

测量方面技术交流发言稿

大家好!今天,我非常荣幸能在这里与大家共同探讨测量方面的一些技术问题。

随着我国科技的飞速发展,测量技术已经渗透到各行各业,成为国家经济建设和社会发展的重要支撑。

在此,我将结合自身工作实际,就测量领域的技术交流发言,希望大家能够共同学习、共同进步。

一、测量技术的发展趋势1. 数字化、智能化随着信息技术的飞速发展,数字化、智能化已成为测量技术发展的必然趋势。

通过数字化、智能化手段,可以提高测量精度、缩短测量时间、降低人工成本,为我国测量事业的发展注入新的活力。

2. 高精度、高稳定性随着科技的进步,人们对测量精度的要求越来越高。

未来,高精度、高稳定性的测量仪器将成为市场的主流。

同时,测量仪器在抗干扰、抗振动等方面的性能也将得到进一步提升。

3. 一体化、多功能在满足测量精度和稳定性的基础上,测量仪器将朝着一体化、多功能方向发展。

例如,多参数测量、自动校准、远程监控等功能将逐渐集成到测量仪器中,提高测量效率。

4. 网络化、远程化随着互联网技术的普及,测量技术将实现网络化、远程化。

通过远程测量、数据共享等方式,提高测量数据的准确性和实时性,为我国测绘事业提供有力保障。

二、测量领域的关键技术1. 测量仪器技术(1)光学测量技术:光学测量技术具有非接触、高精度、高分辨率等特点,广泛应用于机械加工、精密加工等领域。

(2)电磁测量技术:电磁测量技术具有高精度、高稳定性、抗干扰能力强等特点,在电力、石油、化工等行业具有广泛应用。

(3)声波测量技术:声波测量技术在无损检测、地质勘探等领域具有重要作用。

2. 测量数据处理与分析技术(1)测量数据处理技术:通过测量数据处理技术,可以提高测量数据的准确性和可靠性。

(2)测量数据分析技术:通过对测量数据进行统计分析、模式识别等处理,可以挖掘出测量数据中的潜在规律,为科学研究、工程应用提供有力支持。

3. 测量自动化技术(1)机器人测量技术:机器人测量技术可以实现高精度、高效率的测量作业,广泛应用于自动化生产线、机器人制造等领域。

测量技术与仪器发展的新趋势——网络化

测量技术与仪器发展的新趋势——网络化

测量技术与仪器发展的新趋势——网络化1. 引言20世纪70年代以来,计算机、微电子等技术迅猛发展。

在它们的推动下,同时也是为适应现代化工农业生产甚至战争的新需求,测量技术与仪器不断进步,相继诞生了智能仪器、PC仪器、VXI仪器、虚拟仪器及互换性虚拟仪器等微机化仪器及其自动测试系统,计算机与现代仪器设备间的界限日渐模糊,测量领域和范围不断拓宽。

近10年来,以Internet 为代表的网络技术的出现以及它与其他高新科技的相互结合,不仅已开始将智能互联网产品带入现代生活,而且也为测量与仪器技术带来了前所未有的发展空间和机遇,网络化测量技术与具备网络功能的新型仪器应运而生。

2. 计算机、微电子、通信和网络等技术是网络化测量技术与仪器产生并迅速发展的强劲支撑2.1“计算机就是仪器”自从迅猛发展的计算机技术及微电子技术渗透到测量和仪器仪表技术领域,便使该领域的面貌不断更新。

相继出现的智能仪器、总线仪器和虚拟仪器等微机化仪器,都无一例外地利用计算机的软件和硬件优势,从而既增加了测量功能,又提高了技术性能。

由于信号被采集变换成数字形式后,更多的分析和处理工作都由计算机来完成,故很自然使人们不再去关注仪器与计算机之间的界限。

近年来,新型微处理器的速度不断提高,采用流水线、RISC结构和cachE等先进技术,又极大提高了计算机的数值处理能力和速度。

在数据采集方面,数据采集卡、仪器放大器、数字信号处理芯片等技术的不断升级和更新,也有效地加快了数据采集的速率和效率。

与计算机技术紧密结合,已是当今仪器与测控技术发展的主潮流。

对微机化仪器作具体分析后,配以相应软件和硬件的计算机将能够完成许多仪器、仪表的功能,实质上相当于一台多功能的通用测量仪器。

这样的现代仪器设备的功能已不再由按钮和开关的数量来限定,而是取决于其中存储器内装有软件的多少。

从这个意义上可认为,计算机与现代仪器设备日渐趋同,两者间已表现出全局意义上的相通性。

据此,有人提出了“计算机就是仪器”、“软件就是仪器”的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测量技术与仪器发展的新趋势——网络化1. 引言20世纪70年代以来,计算机、微电子等技术迅猛发展。

在它们的推动下,同时也是为适应现代化工农业生产甚至战争的新需求,测量技术与仪器不断进步,相继诞生了智能仪器、PC仪器、VXI仪器、虚拟仪器及互换性虚拟仪器等微机化仪器及其自动测试系统,计算机与现代仪器设备间的界限日渐模糊,测量领域和范围不断拓宽。

近10年来,以Internet 为代表的网络技术的出现以及它与其他高新科技的相互结合,不仅已开始将智能互联网产品带入现代生活,而且也为测量与仪器技术带来了前所未有的发展空间和机遇,网络化测量技术与具备网络功能的新型仪器应运而生。

2. 计算机、微电子、通信和网络等技术是网络化测量技术与仪器产生并迅速发展的强劲支撑2.1“计算机就是仪器”自从迅猛发展的计算机技术及微电子技术渗透到测量和仪器仪表技术领域,便使该领域的面貌不断更新。

相继出现的智能仪器、总线仪器和虚拟仪器等微机化仪器,都无一例外地利用计算机的软件和硬件优势,从而既增加了测量功能,又提高了技术性能。

由于信号被采集变换成数字形式后,更多的分析和处理工作都由计算机来完成,故很自然使人们不再去关注仪器与计算机之间的界限。

近年来,新型微处理器的速度不断提高,采用流水线、RISC结构和cachE等先进技术,又极大提高了计算机的数值处理能力和速度。

在数据采集方面,数据采集卡、仪器放大器、数字信号处理芯片等技术的不断升级和更新,也有效地加快了数据采集的速率和效率。

与计算机技术紧密结合,已是当今仪器与测控技术发展的主潮流。

对微机化仪器作具体分析后,配以相应软件和硬件的计算机将能够完成许多仪器、仪表的功能,实质上相当于一台多功能的通用测量仪器。

这样的现代仪器设备的功能已不再由按钮和开关的数量来限定,而是取决于其中存储器内装有软件的多少。

从这个意义上可认为,计算机与现代仪器设备日渐趋同,两者间已表现出全局意义上的相通性。

据此,有人提出了“计算机就是仪器”、“软件就是仪器”的概念。

2.2计算机就是测控系统的中坚总线式仪器、虚拟仪器等微机化仪器技术的应用,使组建集中和分布式测控系统变得更为容易。

但集中测控越来越满足不了复杂、远程(异地)和范围较大的测控任务的需求,对此,组建网络化的测控系统就显得非常必要,而计算机软、硬件技术的不断升级与进步、给组建测控网络提供了越来越优异的技术条件。

Unix 、Windows NT、Windows2000、Netware等网络化计算机操作系统,为组建网络化测试系统带来了方便。

标准的计算机网络协议,如OSI的开放系统互连参考模型RM、Internet上使用的TCP/IP协议,在开放性、稳定性、可靠性方面均有很大优势,采用它们很容易实现测控网络的体系结构。

在开发软件方面,比如NI公司的Labview和LabWindows /CVI,HP公司的VEE,微软公司的的VB、VC等,都有开发网络应用项目的工具包。

软件是虚拟仪器开发的关键,如Labview和LabWindows/CVI的功能都十分强大,不仅使虚拟仪器的开发变得简单方便,而且为把虚拟仪器做到网络上,提供了可靠,便利的技术支持。

LabWindows/CVI中封装了TCP类库,可以开发基于TCP/Ip的网络应用。

Labview的TCP /IP和UDP网络VI能够与远程应用程序建立通信,其具有的Internet工具箱还为应用系统增加了E-mail、FTP和Web能力;利用远程自动化VI,还可对控制其他设备的分散的VI 进行控制。

Labview5.1中还特别增加有网络功能,提高了开发网络应用程序的能力。

将计算机、高档外设和通信线路等硬件资源以及大型数据库、程序、数据、文件等软件资源纳入网络,可实现资源的共享。

其次,通过组建网络化测控系统增加系统冗余度的方法能提高系统的可靠性,便于系统的扩展和变动。

由计算机和工作站作为结点的网络也就相当于现代仪器的网络。

计算机已成为现代测控系统的中坚。

2.3网络技术已越来越成为测控技术满足实际需求的关键支撑当今时代,以Internet为代表的计算机网络的迅速发展及相关技术的日益完善,突破了传统通信方式的时空限制和地域障碍,使更大范围内的通信变得十分容易,Internet拥有的硬件和软件资源正在越来越多的领域中得到应用,比如电子商务、网上教学、远程医疗、远程数据采集与控制、高档测量仪器设备资源的远程实时调用,远程设备故障诊断,等等。

与此同时,高性能、高可靠性、低成本的网关、路由器、中继器及网络接口芯片等网络互联设备的不断进步,又方便了Internet、不同类型测控网络、企业网络间的互联。

利用现有Internet资源而不需建立专门的拓扑网络,使组建测控网络、企业内部网络以及它们与Internet的互联都十分方便,这就为测控网络的普遍建立和广泛应用铺平了道路。

把TCP/IP协议作为一种嵌入式的应用,嵌入现场智能仪器(主要是传感器)的ROM 中,使信号的收、发都以TCP/IP方式进行,如此,测控系统在数据采集、信息发布、系统集成等方面都以企业内部网络(Intranet)为依托,将测控网和企业内部网及Internet 互联,便于实现测控网和信息网的统一。

在这样构成的测控网络中,传统仪器设备充当着网络中独立节点的角色,信息可跨越网络传输至所及的任何领域,实时、动态(包括远程)的在线测控成为现实,将这样的测量技术与过去的测控、测试技术相比不难发现,今天,测控能节约大量现场布线、扩大测控系统所及地域范围。

使系统扩充和维护都极大便利的原因,就是因为在这种现代测量任务的执行和完成过程中,网络发挥了不可替代的关键作用,即网络实实在在地介入了现代测量与测控的全过程。

基于Web的信息网络Intranet,是目前企业内部信息网的主流。

应用Internet的具有开放性的互联通信标准,使Intranet成为基丁TCP/IP协议的开放系统,能方便地与外界连接,尤其是与Internet连接。

借助Internet的相关技术,Intranet给企业的经营和管理能带来极大便利,已被广泛应用于各个行业。

Internet也已开始对传统的测控系统产生越来越大的影响。

目前,测控系统的设计思想明显受到计算机网络技术的影响,基于网络化、模块化、开放性等原则,测控网络由传统的集中模式转变为分布模式,成为具有开放性、可互操作性、分散性、网络化。

智能化的测控系统。

网络的节点上不仅有计算机、工作站,还有智能测控仪器仪表,测控网络将有与信息网络相似的体系结构和通信模型。

比如目前测控系统中迅猛发展的现场总线,它的通信模型和OSI模型对应,将现场的智能仪表和装置作为节点,通过网络将节点连同控制室内的仪器仪表和控制装置联成有机的测控系统。

测控网络的功能将远远大于系统中各独立个体功能的总和。

结果是测控系统的功能显著增强,应用领域及范围明显扩大。

1999年2月,Jini软件技术问世。

Jini软件技术旨在使各种电器设备、测量仪器及采用JAVA芯片的各种装置能连接上网,Jini软件连同以Java语言编写的简单程序,可使联网的任何仪器设备实现其自身功能的同时,还能为其他仪器设备加以利用。

网络技术的出现,正在并将极大地改变人们生活的各个方面。

具体到计量测试、测控技术及仪器仪表领域,微机化仪器的联网,高档测量仪器设备以及测量信息的地区性、全国性乃至全球性资源共享,各等级计量标准跨地域实施直接的数字化溯源比对,远程数据采集与测控,远程设备故障诊断,电、水、燃气、热能等的自动抄表,等等,都是网络技术进步并全面介入其中发挥关键作用的必然结果。

3. 网络化仪器初见端倪3·1测量与仪器定义的新拓展——网络化仪器的初步定义(1)以测量观念的拓展为基础现代自然科学的发展,多学科技术的创新与融合,测量仪器与计算机及通信的互动,使测量、测试过程、测量目的、测试结果的管理等观念均发生了改变。

今天,测量作为信息技术的源头和基础,已很难再找到其以纯原始的方式出现:人们似乎已不大关心某个测量需求是属于电测量范畴还是属于非电测量领域,因为各种传感器的出现和日益完善,已使非电量测量与电量测量几乎就是一回事;测试、数据采集、控制三者之间的界限已模糊不清;测量、维护、诊断、修理、数据处理/管理一体化的需求日趋迫切;对测试的现场化、远地化、网络化要求不断升温;自校准、自诊断和自预估,已成为评定测试系统性能的必备指标;测量与控制高度融合并相互渗透,测量为控制提供更准确可靠的信息,控制也不断为测量的发展注入新的活力,出现了状态监测、系统可控性判别、状态预测、智能控制、模式识别、对不可直接测量对象的间接测量、对特殊预知对象的测量以及信号滤波,等等;与此同时,测量反映在对被测对象的描述和表示上,也根据实际的需要从传统的数值加带方向的误差值,扩展为还可以由自然语言以及高度抽象的文字或符号来表征,出现了所谓“符号化测量”的概念。

传统意义上的十大测量门类中不包含软件测试,而今,软件已成为现代新型仪器即各种微机化仪器设备中的重要组成部分。

因此,为了保证软件的安全性能和质量,国外几年前就已开始着手制定测试软件的规范或标准。

由此可见,依托于这些现代测试与测控技术的飞速发展,传统意义上的测量的含义、目的和作用等均得到了丰富和拓展。

这种丰富和拓展自然而然地预示着网络技术向测量领域的注入和渗透,也必将导致测量观念上新的思想和概念的产生。

(2)以不断拓宽的仪器概念为借鉴现代高新科学技术的迅速发展,有力地推动了仪器仪表技术的不断进步。

仪器仪表的发展将遵循跟着通用计算机走、跟着通用软件走和跟着标准网络走的指导思想;仪器标准将向计算机标准、网络规范靠拢。

依托于智能化、微机化仪器仪表的日益普及,联网测量技术已在现场维护和某些产品的生产自动化方面实施,还必将在仪器仪表出厂校验。

现代化工业生产等越来越多的领域中大显身手。

继“计算机就是仪器”和“软件就是仪器”概念之后,“网络就是仪器”的提法也已出现。

具备网络功能的多种最新型现代测量仪器的相继问世,正急切地期待着人们对“网络就是仪器”的提法赋予更科学的描述。

(3)网络化仪器的初步定义服务于人们从任何地点、在任意时间都能够获取到测量信息(或数据)的所有硬、软件条件的有机集合,已远远超出了传统的单个式独立仪器的范畴,且也不是传统单个式独立仪器的简单组合,而一定少不了电子化的信息传输媒介,即电子化的信息载体。

没有了电子化信息载体的介人,在任意时间、从任何地点获取测量信息就根本不可能实现。

信息的载体越来越电子化,以及测量结果需要通过电缆、光纤Internet、移动通信、电视等媒介传输和显示(输出)的发展变化过程,正是一种涵盖范围更宽、应用领域更广的全新现代测量技术——网络化测量技术逐步形成并日渐清晰的过程。

相关文档
最新文档