钢铁材料学培训课件(ppt 109页)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C在铁中的固溶度公式
loC g][3.8 155/5 T0(石墨在α铁中,573-1011K) loC g][1.50 16/8T0 (石墨在γ铁中,1011-1427K) loC g][2.3 840/4 T0(Fe3C在α铁中,473-1000K) loC g][1.36 14/8T0(Fe3C在γ铁中,1000-1421K)
碳含量,%
铬对Fe-Fe3C相图奥氏体区的影响
1500
1400
1300
温 1200 度, ℃ 1100
1000
900
800
700
600
19Cr 15Cr
12Cr 5Cr 0Cr
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
碳含量,%
封闭γ相区相图的特点
最为简单的相图,右边往往是一匀晶相图 (开启γ相区相图由于上面开口连接液相, 故一般应有一包晶相变)
γ相区的右端点一般连接一共晶相变
固溶合金元素对相图的影响2
缩小γ相区的铁素体形成元素 (使Α3温度升 高、Α4温度降低 ):
-封闭γ相区:形成γ相圈,主要有钒、铬、 钛、钼、钨、铝、硅、磷、锡、锑、砷等 , 其中钒和铬在α-Fe中无限固溶
-缩小γ相区:出现了金属间化合物,破坏了 γ圈的完整性,使得α-Fe相区与δ-Fe相区被 分割开,主要有硼、锆、铌、钽、硫、铈
Fe-C合金
钢铁材料实质上是Fe-C合金 Fe-C合金发现的偶然性 C的间隙固溶强化的经济有效性 C形成各种碳化物(最典型的是Fe3C) C的加入使铁的固态相变复杂多变,由此导
致钢的性能变化范围大幅度扩大 热处理技术的发展
成分与相
合金元素加入后,使钢的基体化学成分发生变 化,同时还会产生新相
合金化后称为奥氏体
合金元素在钢中的存在方式
固溶于铁基体,使其热力学行为和相变行为发生 明显改变,产生固溶强化
形成第二相,各种类型的第二相将产生显著不同 的作用
仅固溶的元素:周期表铁右边如Co、Ni、Si;但 金属性较强元素会形成单质第二相如Cu;非金属 性较强元素与金属形成化合物如C、N、O、S、P
钢铁材料学
2006年 9月
四、钢铁材料的合金化原理 -合金元素在钢中的存在方式
合金化的作用
纯金属中只能采用位错强化和晶粒细化强 化,且强化效果受到一定限制
金属结构材料广泛采用合金化,合金化后 增加了固溶强化和第二相强化方式,同时 使强化技术与工艺丰富多彩
传统认为合金化主要作用是提高钢材淬透 性,但实际合金化的作用已远不止这一作 用
元素
开启γ相区相图
δ
A4
温 度
A3
γ
α
Fe
锰对Fe-Fe3C相图奥氏体区的影响
1500 1400 1300
温 1200 度, ℃ 1100
1000 900 800 700 600
0.35Mn 2.5Mn
4Mn
9Mn
6.5Mn
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
封闭γ相区相图
A4

度γ
α
A3
Fe
封闭与开启γ相区相图的对称性
A4
温 度
A3
α
ΔH<0
γ
A4 ΔH>0
温 度
γ
α
A3
钼对Fe-Fe3C相图奥氏体区的影响
1500
1400
1300
温 1200
度, ℃ 1100
7Mo
4Mo
1000
2Mo
900
8源自文库0
0Mo
700
600
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
碳含量,%
开启γ相区相图的特点
合金元素在γ-Fe中可以无限固溶,因而使γ相区存 在的温度范围显著变宽,使δ和α相区明显缩小, 当固溶度较大时甚至在室温温度也仍可使钢保持 为单相奥氏体。奥氏体形成元素如镍,本身就具 有面心立方点阵;而锰和钴的多型性固态相变晶 型中,在一定温度范围内存在着面心立方点阵。
钴的特殊性,它开启γ相区,但却使Α3温度略微升 高,这使钴产生了一些反常的行为(如降低钢的 淬透性)。
扩大γ相区相图
δ
A4

度 A3
γ
A1 α
Fe
扩大γ相区相图的特点
合金元素在γ-Fe中有限固溶,当合金元素含 量超过溶解度限时,则将出现石墨、ε-铜等 单质相或Fe3C、Fe4N等化合物相。
低于Α3温度的A1温度出现共析相变:γ→α+ 第二相,该温度下合金元素在γ-Fe中的固溶 度大于在α-Fe中的固溶度
α-Fe与δ-Fe相区合并
缩小γ相区相图
A4
δ
温 度γ
A3 α Fe
缩小γ相区相图的特点
出现金属间化合物限制合金元素的固溶 高于Α3温度出现包析相变:γ+金属间化合物
→α,该温度下合金元素在γ-Fe中的固溶度 小于在α-Fe中的固溶度 γ相区的右端点一般连接一共析相变: δ→γ+金属间化合物,该温度下合金元素在 γ-Fe中的固溶度小于在δ-Fe中的固溶度
大多数合金元素即可固溶也可形成第二相
钢中第二相种类
碳化物 氮化物 硼化物 金属间化合物 非金属化合物(夹杂物) 单质如铜、石墨
固溶合金元素对相图的影响1
扩大γ相区的奥氏体形成元素 (使Α3温度降 低,Α4温度升高 ):
-开启γ相区:主要有锰、钴和镍三种元素 -扩大γ相区:主要有碳、氮、铜、金、锌等
合金化后称为铁素体
钢中基础相
γ-铁 ,912—1394℃ 稳定,面心立方点阵, 912 ℃点阵 常数0.36468nm,计算最小原子间距(即配位数12时 原子直径)0.25787nm,理论摩尔体积 0.730163×10-5m3/mol,理论密度7.649Mg/m3,实 测密度为7.694Mg/m3。α→γ相变时体积变化约0.66%。室温下γ铁点阵常数0.35782nm,计算最小 原子间距(即配位数12时原子直径)0.25302nm,理 论摩尔体积0.689728×10-5m3/mol,理论密度为 8.097Mg/m3。
具有在一定程度内变化的化学成分、具有不同 的晶体结构因而不同性能和性质、用相界面与 其他相分隔的部分物质被称为相
成分分析,元素与含量
相分析,晶体结构(衍射晶面间距)与量(衍 射强度)和尺寸
组织分析,形貌(成分与相相同时有可能形貌 不同,如珠光体、索氏体、托氏体)
钢中基础相
α-铁,室温稳定,体心立方点阵,点阵产生 0.286645±1nm,由此计算出的最小原子间 距为0.248240nm,配位数为12时的原子直 径为0.25715 nm,理论摩尔体积为 0.709165×10-5m3/mol,理论密度为 7.875Mg/m3,通常采用的实际测定密度 7.870Mg/m3,室温线胀系数11.8×10-6/K。
相关文档
最新文档