世界七大难题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难题一:哥德巴赫猜想
提出者:哥德巴赫提出时间:1742年研究进展:尚未破解
内容表述:命题A每一个大于或者等于6的偶数,都可以表示为两个奇素数的和。
命题B每一个大于或者等于9的奇数,都可以表示为三个奇素数的和。
1742年,德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出了这两个问题。它是数论中的一个著名问题,常被称为数学皇冠上的明珠。
实际上第一个问题的正确解法可以推出第二个问题的正确解法,因为每个大于7的奇数显然可以表示为一个大于4的偶数与3的和。1937年,苏联数学家维诺格拉多夫利用他独创的“三角和”方法证明了每个充分大的奇数可以表示为3个奇质数之和,基本上解决了第二个问题。但是第一个问题至今仍未解决。由于问题实在太困难了,数学家们开始研究较弱的命题:每个充分大的偶数可以表示为质因数个数分别为m、n的两个自然数之和,简记为“m+n”。1920年,挪威数学家布龙证明了“9+9”;
以后的20几年里,数学家们又陆续证明了“7+7”,“6+6”,“5+5”,“4+4”,“1+c”,其中c是常数。1956年,中国数学家王元证明了“3+4”,随后又证明了“3+3”,“2+3”。60年代前半期,中外数学家将命题推进到“1+3”。1966年,中国数学家陈景润证明了“1+2”,这一结果被称为“陈氏定理”,至今仍是最好的结果。陈景润的杰出成就使他得到广泛赞誉,不仅仅是因为“陈氏定理”使中国在哥德巴赫猜想的证明上处于领先地位。
难题二:费马大定理
提出者:费马提出时间:1637年研究进展:于1995年被成功证明
内容表述:xn+yn=zn在n是大于2的自然数时没有正整数解(这里xn、yn、zn表示x的n次方、y的n次方、z的n 次方)。
在360多年前的某一天,当费马阅读古希腊名著《算术》时,突然心血来潮在书页的空白处,写下这样一段话:“将一个立方数分成两个立方数,一个四次幂分成两个四次幂,或者一般地将一个高於二次幂的数分成两个相同次幂,这是不可能
的。我对这个命题有一个美妙的证明,这里空白太小,写不下。”
这个世纪数论难题由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1995年成功证明。证明利用了很多新的数学理论,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等。
难题三:四色猜想
提出者:格斯里提出时间:1852年研究进展:于1976年被计算机验证
内容表述:每幅地图都可以用4种颜色着色,使得有共同边界的国家着上不同的颜色。
四色猜想于1852年由英国学生格斯里提出,这一猜想的证明得益于计算机技术的发展。1976年6月,美国伊利诺斯大学的数学家阿佩尔和哈肯在3台不同的计算机上用了1200个小时,分析了2000个构形后成功证明这一猜想。它是第一个人机合作完成的著名数学证明,在数学界、计算机界,乃至哲学界都引起了广泛关注,引发了关于数学的本质、数学证明的意义等问题的深入讨论。另外,四色难题的研究还对平面图理论、
代数拓扑学、有限射影几何和计算机编码程序设计等发展起到了重要的推动作用。
难题四:女生散步问题
提出者:柯克曼提出时间:1850年研究进展:已被破解
内容表述:某学生宿舍共有15名女生,每天3人一组进行散步,问怎样安排,才能使每位女生有机会与其他每一位女生在同一组中散步,并恰好每星期一次。
英国数学家柯克曼于1850年提出“女生散步”问题,提出后得到多种解答,其中较有代表性的是假定一位女生固定在某一组,再将其他14位女生编上号码(1至14号),并按照一定规律安排星期天的分组散步,则其他6天星期r散步
(r=1,2,3,4,5,6)分组可按原编号与r的数字之和安排(和数超过14则减去14)。
另外,有些数学家更将问题扩展成组合论中的难题:设有N 个元素,每三个一组分成若干组。这些组分别组成一个系列,现称为柯克曼序列。若每一元素与其他元素恰有一次同组的机会,问将N分成这种序列要满足的充分必要条件是什么,怎样
组成此序列?在女生问题中,序列数为7,N=15是适合条件的数。但N的一般解答直到20世纪60年代后才有突破。我国数学家陆家羲对此曾作出过重要的贡献。
难题五:七桥问题
提出者:起源于普鲁士柯尼斯堡镇(今苏联加里宁格勒)
提出时间:十八世纪初研究进展:于1736年被圆满解决
内容表述:一条河的两支流绕过一个岛,有七座桥横跨这两支流,问一个散步者能否走过每一座桥,而每座桥却只走过一次。
这个问题起源于18世纪初的普鲁士柯尼斯堡镇(今苏联加里宁格勒)。欧拉在1736年圆满地解决了这一问题,证明这种方法并不存在。他在圣彼得堡科学院发表了图论史上第一篇重要文献。欧拉把实际的抽象问题简化为平面上的点与线组合,每一座桥视为一条线,桥所连接的地区视为点。这样若从某点出发后最后再回到这点,则这一点的线数必须是偶数。
七桥问题引发了网络理论之研究,被认为是拓扑学理论基
本应用题,对解决最短邮路等问题很有帮助。
新闻缘起
二00六年六月三日,著名数学家丘成桐在中国科学院晨兴数学研究中心宣布,“庞加莱猜想”被证明了———在美、俄等国科学家的工作基础上,中山大学朱熹平教授和旅美数学家、清华大学兼职教授曹怀东已经彻底证明了这一猜想。前有陈景润攻坚哥德巴赫猜想,后有朱熹平、曹怀东破解庞加莱猜想,中国的数学家在世纪难题的攻坚战上留下了自己的足迹,而数学史上那一道道亮丽的风景,仍吸引着数学精英们为之痴狂。
世界七大数学难题
2000年5月24日,千年数学会议在著名的法兰西学院举行。会上,美国克雷数学研究所公布和介绍了7个“千年大奖问题”。并邀请有关研究领域的专家对每一个问题进行了较详细的阐述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且