水轮机调节技术的发展与展望

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水轮机调节技术的发展与展望

武汉大学程远楚

2007年6月

水电机组控制的任务与种类

水电机组控制设备主要完成水轮发电机组的操作、调节、控制和事故保护。主要有:调节(控制)系统:水轮机调速系统

发电机励磁系统

操作(控制)与监视系统:计算机监控系统,同期装置事故保护:发电机继电保护,机组过速保护等辅机控制系统

二.水电机组控制系统的特点

水电机组控制系统是一个水-机-电过程相互影响、相互制约的复杂系统,它具有时变(被控对象的结构和参数均随时间和运行工况的改变而变化)、非线性、非最小相位等复杂特性,常规控制器难以满足其对控制性能指标和稳定性的要求。另一方面,由于水电机组控制系统的性能指标与稳定性,直接关系到水电厂与整个电力系统的安全运行、供电品质及经济效益,水电机组的安全控制与优化控制一直是该领域研究的核心问题,也是长期存在的理论和技术难题。

随着控制技术的发展,水电机组控制系统的控制规律也在不断地发展和完善。从定参数PI 、PID 到变参数PID[1] ,从常规控制到变结构控制、励磁系统附加稳定控制(PSS),水轮机调节系统和发电机励调节系统的性能得到了不断的提高。

但随着单机容量的增大,长距离输电线路的增加,水电厂无人值班、少人值守的实施,对水电机组控制系统的性能指标提出了更高的要求。如在建的三峡水电站,其机组容量大,水头变幅大,运行范围变化宽(有功从0(空载)-700MW;初期水头61 米-最高水头113米);再加上水电机组运行工况的变化及电网负荷的变动导致系统动态特性的变化均较难预测。基于离线模型[1]的适应式PID变参数难以保证调节系统在不同的工况下均有较好的动态品质。另一方面,互联电网容量的不断扩大,为提高电力系统的暂态稳定性,往往采用高顶值电压的快速励磁系统,由此可能使长输电线弱联系的大型电力系统阻尼严重削弱。机械械模式阻尼的缺乏,会引发互联系统中出现每分钟只有几个周波至几十个周波的低频自激振荡。这种振荡的加剧会破坏发电机组间的并列运行。大容量机组的普遍采用,远距离、超高压、大功率输电系统的不断出现,不但使小

干扰稳定问题和由于系统阻尼不足引起的低频振荡成为一个严重的问题,电力系统在大干扰下的稳定问题也成为一个突出的问题。一旦电力系统的稳定遭到破坏,会导致电力系统的崩溃和瓦解,从而给国民经济和人民生活带来巨大的损失。在这方面,我国过

有多次惨痛的教训,美国、日本、欧洲等也曾发生过多起电力系统瓦解的事故[2] 长期以来,就如何保证和提高电力系统的安全稳定性进行了大量的研究,提出了许多有效的控制措施和方法。其中,改善控制系统的性能、提高控制系统的品质是最主要的方法。因此,为提高大型互联系统的稳定性,为改善水电机组的控制性能,基于现代控制理论的自适应控制[3] 、变结构时变参数自完善控制[4] [5] 、模型参考多变量最优控制[6] [7] 、鲁棒控制[8] [9] 等的有关水轮机调节系统的控制模型和控制方法也被提出并进行了大量的理论研究。然而,由于需要被控对象的精确数学模型,而水电机组的数学模型至今尚未完全建立,特别是水轮机特性,因具有严重的非线性,只能以图表或曲线的方式给出,参数估计和参数辨识较为困难,故未能得到很好的实际应用。基于现代控制理论的励磁系统最优控制[10,11] 、非线性控制[12,13] 、自适应

PSS[14,15] 等进行了大量的试验研究,有些还在实际中得到了应用。

近年来,随着智能控制技术的出现,基于专家系统、模糊逻辑和神经网络及遗传算法的水电机组智能控制规律被提了出来[16-26] ,并引起了一股研究热潮。

智能控制作为一门新兴的理论和技术,其发展得益于许多学科,其中,包括人工智能、现代自适应控制、最优控制、生物控制、学习理论、模糊控制、神经网络及再励学习等[27] 。智能控制理论发展时间不长,理论体系尚不完整,但发展很快。智能控制系统因其特有的自学习功能、自组织功能、良好的自适应性能,已在生物、农业、地质、军事、空间技术、环境科学等领域得到了应用。研究者认为:智能控制的发展和完善必将引起控制领域的全面革命[28,29] 。

目前,智能控制的研究已从单学科研究发展成为多学科理论交叉研究[27,29-32] 。大量的研究表明,智能控制是提高水电机组控制系统的鲁棒性和适应性的有效方法和途径。然而,由于智能控制理论尚不完善,智能控制在实际工程中应用的结果与理论研究的结果尚有不小的差距。特别是对像水电机组控制系统这样一类性能指标要求较高、运行域变化较大、参数变化较为剧烈的时变且存在随机扰动而又相对快速的控制系统,智能控制的研究仅限于计算机仿真和实验室试验,智能控制的应用实例尚未见到报导。三.水轮机调节系统的发展

水轮机调节系统是以水轮机调速器作为控制器,水轮发电机组作为被控对象所构成的闭环控制系统。水轮机调节系统的基本任务,是根据负荷的变化不断地调节水轮发电机组的有功功率,以维持机组转速(频率)在规定的范围内。水轮发电机组在电网中经常担任调频和调峰任务,开停机频繁,其性能的好坏,自动化水平的高低,直接影响到机组的正常运行。因此,水轮机调节系统的性能好坏,对电力系统的电能质量(频率、电压)及安全可靠运行具有重大的影响。

自水轮机问世之初起,便有了水轮机调速器。随着电子技术的控制理论的进步,水轮机调速器得到了快速地发展。在近一个世纪的发展中,水轮机调速器先后经历了机械液压型调速器、电气液压型调速器和微机调速器三个发展阶段。

机械液压型调速器以其原理简单、便于掌握等特点,在相当一段时间内得到了广泛的应用,在上世纪50 年代达到了全盛时期,但由于其静、动态特性较差,而且存在机件磨损问题,因此其应用受到限制。

上世纪40 年代未,随着电子管式电气液压调速器的问世,因其具有响应快、精度高的优点,逐步在电力系统中得到了应用。随着晶体管式电液调速器的问世,特别是上世纪70 年代大规模集成电路技术发展迅速,集成电路运算放大器应用于水轮机调速器,其控制性能进一步提高,模拟式电气液压型调速器迅速取代了机械液压式调速器,得到了广泛的应用。

计算机技术的飞速发展,促进了水轮机调速器的又一次飞跃1982 年ASEA公

相关文档
最新文档