详解电容、电感的相位差是如何产生的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于正弦信号,流过一个元器件的电流和其两端的电压,它们的相位不一定是相同的。这种相位差是如何产生的呢?这种知识非常重要,因为不仅放大器、自激振荡器的反馈信号要考虑相位,而且在构造一个电路时也需要充分了解、利用或避免这种相位差。下面探讨这个问题。
1、首先,要了解一下一些元件是如何构建出来的;
2、其次,要了解电路元器件的基本工作原理;
3、第三,据此找到理解相位差产生的原因;
4、第四,利用元件的相位差特性构造一些基本电路。
一、电阻、电感、电容的诞生过程
科学家经过长期的观察、试验,弄清楚了一些道理,也经常出现了一些预料之外的偶然发现,如伦琴发现X射线、居里夫人发现镭的辐射现象,这些偶然的发现居然成了伟大的科学成就。电子学领域也是如此。
科学家让电流流过导线的时候,偶然发现了导线发热、电磁感应现象,进而发明了电阻、电感。科学家还从摩擦起电现象得到灵感,发明了电容。发现整流现象而创造出二极管也是偶然。
二、元器件的基本工作原理
电阻——电能→热能
电感——电能→磁场能,&磁场能→电能
电容——电势能→电场能,&电场能→电流
由此可见,电阻、电感、电容就是能源转换的元件。电阻、电感实现不同种类能量间的转换,电容则实现电势能与电场能的转换。
1、电阻
电阻的原理是:电势能→电流→热能。
电源正负两端贮藏有电势能(正负电荷),当电势加在电阻两端,电荷在电势差作用下流动——形成了电流,其流动速度远比无电势差时的乱序自由运动快,在电阻或导体内碰撞产生的热量也就更多。
正电荷从电势高的一端进入电阻,负电荷从电势低的一端进入电阻,二者在电阻内部进行中和作用。中和作用使得正电荷数量在电阻内部呈现从高电势端到低电势端的梯度分布,负电荷数量在电阻内部呈现从低电势端到高电势端的梯度分布,从而在电阻两端产生了电势差,这就是电阻的电压降。同样电流下,电阻对中和作用的阻力越大,其两端电压降也越大。
因此,用R=V/I来衡量线性电阻(电压降与通过的电流成正比)的阻力大小。
对交流信号则表达为:R=v(t)/i(t)。
注意,也有非线性电阻的概念,其非线性有电压影响型、电流影响型等。
电阻器由电阻体、骨架和引出端三部分构成(实芯电阻器的电阻体与骨架合二为一),而决定阻值的只是电阻体。对于截面均匀的电阻体,电阻值为
式中ρ为电阻材料的电阻率(欧·厘米);L为电阻体的长度(厘米);A为电阻体的截面积(平方厘米)。
薄膜电阻体的厚度d很小,难于测准,且ρ又随厚度而变化,故把视为与薄膜材料有关的常数,称为膜电阻。实际上它就是正方形薄膜的阻值,故又称方阻 (欧/方)。对于均匀薄膜
式中W为薄膜的宽度(厘米)。通常R s应在一有限范围内,R s太大会影响电阻器性能的稳定。因此圆柱形电阻体以刻槽方法,平面形电阻体用刻蚀迂回图形的方法来扩大其阻值范围,并进行阻值微调。
伏安特性是用图形曲线来表示电阻端部电压和电流的关系,当电压电流成比例时(特性为直线),称为线性电阻,否则称为非线性电阻。
参数与特性表征电阻特性的主要参数有标称阻值及其允许偏差、额定功率、负荷特性、电阻温度系数等。
2、电感
电感器(Inductor)是能够把电能转化为磁能而存储起来的元件。电感器的结构类似于变压器,但只有一个绕组。电感器具有一定的电感,它只阻碍电流的变化。如果电感器在没有电流通过的状态下,电路接通时它将试图阻碍电流流过它;如果电感器在有电流通过的状态下,电路断开时它将试图维持电流不变。电感器又称扼流器、电抗器、动态电抗器。
电感的原理:电感——电势能→电流→磁场能,&磁场能→电势能(若有负载,则→电流)。
当电源电势加在电感线圈两端,电荷在电势差作用下流动——形成了电流,电流转变磁场,这称为“充磁”过程。若被充磁电感线圈两端的电源电势差撤销,且电感线圈外接有负载,则磁场能在衰减的过程中转换为电能(如负载为电容,则为电场能;若负载为电阻,则为电流),这称为“去磁”过程。
衡量电感线圈充磁多少的单位是磁链——Ψ。电流越大,电感线圈被冲磁链就越多,即磁链与电流成正比,即Ψ=L*I。对一个指定电感线圈,L是常量。
因此,用L=Ψ/I表达电感线圈的电磁转换能力,称L为电感量。电感量的微分表达式为:L=dΨ(t)/di(t)。
根据电磁感应原理,磁链变化产生感应电压,磁链变化越大则感应电压越高,即:v(t)=d dΨ(t)/dt。
综合上面两公式得到:v(t)=L*di(t)/dt,即电感的感应电压与电流的变化率(对时间的导数)成正比,电流变化越快则感应电压越高。
3、电容
两个相互靠近的导体,中间夹一层不导电的绝缘介质,这就构成了电容器。当电容器的两个极板之间加上电压时,电容器就会储存电荷。电容器的电容量在数值上等于一个导电极板上的电荷量与两个极板之间的电压之比。电容器的电容量的基本单位是法拉(F)。在电路图中通常用字母C表示电容元件。电容的原理:电势能→电流→电场能,电场能→电流。
当电源电势加在电容的两个金属极板上,正负电荷在电势差作用下分别向电容两个极板聚集而形成电场,这称为“充电”过程。若被充电电容两端的电源电势差撤销,且电容外接有负载,则电容两端的电荷在其电势差下向外流走,这称为“放电”过程。电荷在向电容聚集和从电容两个极板向外流走的过程中,电荷的流动就形成了电流。
要特别注意,电容上的电流并不是电荷真的流过电容两个极板间的绝缘介质,而只是充电过程中电荷从外部向电容两个极板聚集形成的流动,以及放电过程中电荷从电容两个极板向外流走而形成的流动。也就是说,电容的电流其实是外部电流,而非内部电流,这与电阻、电感都不一样。
衡量电容充电多少的单位是电荷数——Q。电容极板间电势差越大,说明电容极板被冲电荷越多,即电荷数与电势差(电压)成正比,即
Q=C*V。对指定电容,C是常量。
因此,用C=Q/V表达电容极板贮存电荷的能力,称C为电容量。
电容量的微分表达式为:C=dQ(t)/dv(t)。
因为电流等于单位时间内电荷数的变化量,即i(t)=dQ(t)/dt,综合上面两个公式得到:i(t)=C*dv(t)/dt,即电容电流与其上电压的变化率(对时间的导数)成正比,电压变化越快则电流越大。
小结:v(t)=L*di(t)/dt
表明电流变化形成了电感的感应电压(电流不变则没有感应电压形成)。
i(t)=C*dv(t)/dt表明电压变化形成了电容的外部电流(实际是电荷量变化。电压不变则没有电容的外部电流形成)。
三、元件对信号相位的改变
首先要提醒,相位的概念是针对正弦信号而言的,直流信号、非周期变化信号等都没有相位的概念。
1、电阻上的电压电流同相位
因为电阻上电压v(t)=R*i(t),若i(t)=sin(ωt+θ),则v(t)=R* sin(ωt+θ)。所以,电阻上电压与电流同相位。
2、电感上的电流落后电压90°相位
因为电感上感应电压v(t)=L*di(t)/dt,若i(t)=sin(ωt+θ),则v(t)=L*cos(ωt+θ)。所以,电感上电流落后感应电压90°相位,或者说感应电压超前电流90°相位。
直观理解:设想一个电感与电阻串联充磁。从充磁过程看,充磁电流的变化引起磁链的变化,而磁链的变化又产生感应电动势和感应电流。根据楞次定