第六章树和二叉树习题_数据结构
中国农业大学_821数据结构_《数据结构》习题(6)
第6章 二叉树与树一、回答题1. 图6-1所示的树的叶子结点、非中端结点、每个结点的度及树的深度各是多少?图6-1 树2. 已知一棵树边的集合表示为:{ ( L, N ), ( G, K ), ( G, L ), ( G, M ), ( B, E ), ( B, F ), ( D, G ), ( D, H ), ( D, I ), ( D, J ), ( A, B ), ( A, C ), ( A, D ) },画出这棵树,并回答以下问题:(1) 树的根结点是哪个?哪些是叶子结点?哪些是非终端结点? (2) 树的度是多少?各个结点的度是多少? (3) 树的深度是多少?各个结点的层数是多少?(4) 对于结点G ,它的双亲结点、祖先结点、孩子结点、子孙结点、兄弟和堂兄弟分别是哪些结点?3. 如果一棵度为m 的树中,度为1的结点数为n 1,度为2的结点数为n 2,……,度为m 的结点数为n m ,那么该树中含有多少个叶子结点?有多少个非终端结点?ABECDFGHJI4. 任意一棵有n 个结点的二叉树,已知有m 个叶子结点,能否证明度为2结点有m-1个?5. 已知在一棵含有n 个结点的树中,只有度为k 的分支结点和度为0的叶子结点,那么该树含有的叶子结点的数目是多少?6. 一棵含有n 个结点的k 叉树,可能达到的最大深度和最小深度各为多少?7. 对于3个结点A 、B 、C ,可以过程多少种不同形态的二叉树?8. 深度为5的二叉树至多有多少个结点?9. 任何一棵二叉树的叶子结点在先序、中序和后序遍历中的相对次序是发生改变?不发生改变?不能确定?10. 设n 、m 为一棵二叉树上的两个结点,在中序遍历时,n 在m 前的条件是什么? 11. 已知某二叉树的后续遍历序列是dabec ,中序遍历序列是debac ,那么它的前序遍历序列是什么?12. 对一棵满二叉树,m 个树叶,n 个结点,深度为h ,则n 、m 和h 之间的关系是什么? 13. 对图6-2(a)和(b)所示的二叉树,它们的经过先序、中序和后序遍历后得到的结点序列分别是什么?画出它们的先序线索二叉树和后序线索二叉树。
数据结构-6 树和二叉树
第六章树和二叉树一.选择题1. 以下说法错误的是。
A.树形结构的特点是一个结点可以有多个直接前趋B.线性结构中的一个结点至多只有一个直接后继C.树形结构可以表达(组织)更复杂的数据D.树(及一切树形结构)是一种"分支层次"结构2. 如图6-2所示的4 棵二叉树中,不是完全二叉树。
图6-2 4 棵二叉树3. 在线索化二叉树中,t 所指结点没有左子树的充要条件是。
A. t->left == NULLB. t->ltag==1C. t->ltag==1 且t->left==NULL D .以上都不对4. 以下说法错误的是。
A.二叉树可以是空集B.二叉树的任一结点最多有两棵子树C.二叉树不是一种树D.二叉树中任一结点的两棵子树有次序之分5. 以下说法错误的是。
A.完全二叉树上结点之间的父子关系可由它们编号之间的关系来表达B.在三叉链表上,二叉树的求双亲运算很容易实现C.在二叉链表上,求根,求左、右孩子等很容易实现D.在二叉链表上,求双亲运算的时间性能很好6. 如图6-3所示的4 棵二叉树,是平衡二叉树。
图6-3 4 棵二叉树7. 如图6-4所示二叉树的中序遍历序列是。
A. abcdgefB. dfebagcC. dbaefcgD. defbagc图6-4 1 棵二叉树8. 已知某二叉树的后序遍历序列是dabec,中序遍历序列是debac,它的前序遍历序列是。
A. acbedB. decabC. deabcD. cedba9. 如果T2 是由有序树T 转换而来的二叉树,那么T 中结点的前序就是T2 中结点的。
A. 前序B.中序C. 后序D. 层次序10. 某二叉树的前序遍历结点访问顺序是abdgcefh,中序遍历的结点访问顺序是dgbaechf,则其后序遍历的结点访问顺序是。
A. bdgcefhaB. gdbecfhaC. bdgaechfD. gdbehfca11. 将含有83个结点的完全二叉树从根结点开始编号,根为1号,后面按从上到下、从左到右的顺序对结点编号,那么编号为41的双亲结点编号为。
数据结构-习题-第六章-树
数据结构-习题-第六章-树和二叉树E F D G A B / + + * - C * 第六章 树和二叉树一、选择题1.已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/-,其前缀形式为( )A .-A+B*C/DE B. -A+B*CD/EC .-+*ABC/DE D. -+A*BC/DE【北京航空航天大学 1999 一、3 (2分)】2.算术表达式a+b*(c+d/e )转为后缀表达式后为( )【中山大学 1999 一、5】A .ab+cde/*B .abcde/+*+C .abcde/*++D .abcde*/++ 3. 设有一表示算术表达式的二叉树(见下图), 它所表示的算术表达式是( )【南京理工大学1999 一、20(2分)】A. A*B+C/(D*E)+(F-G)B.(A*B+C)/(D*E)+(F-G)C. (A*B+C)/(D*E+(F-G ))D.A*B+C/D*E+F-G4. 设树T 的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1 则T 中的叶子数为( )A .5B .6C .7D.8【南京理工大学 2000 一、8 (1.5分)】5. 在下述结论中,正确的是()【南京理工大学 1999 一、4 (1分)】①只有一个结点的二叉树的度为0; ②二叉树的度为2;③二叉树的左右子树可任意交换;④深度为K的完全二叉树的结点个数小于或等于深度相同的满二叉树。
A.①②③ B.②③④ C.②④ D.①④6. 设森林F对应的二叉树为B,它有m个结点,B的根为p,p的右子树结点个数为n,森林F中第一棵树的结点个数是()A.m-n B.m-n-1 C.n+1 D.条件不足,无法确定【南京理工大学2000 一、17(1.5分)】7. 树是结点的有限集合,它( (1))根结点,记为T。
其余结点分成为m(m>0)个((2))的集合T1,T2,…,Tm,每个集合又都是树,此时结点T称为Ti的父结点,Ti称为T的子结点(1≤i≤m)。
第6章_数据结构习题题目及答案_树和二叉树_参考答案
一、基础知识题6.1设树T的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1,求树T中的叶子数。
【解答】设度为m的树中度为0,1,2,…,m的结点数分别为n0, n1, n2,…, nm,结点总数为n,分枝数为B,则下面二式成立n= n0+n1+n2+…+nm (1)n=B+1= n1+2n2 +…+mnm+1 (2)由(1)和(2)得叶子结点数n0=1+即: n0=1+(1-1)*4+(2-1)*2+(3-1)*1+(4-1)*1=86.2一棵完全二叉树上有1001个结点,求叶子结点的个数。
【解答】因为在任意二叉树中度为2 的结点数n2和叶子结点数n0有如下关系:n2=n0-1,所以设二叉树的结点数为n, 度为1的结点数为n1,则n= n0+ n1+ n2n=2n0+n1-11002=2n0+n1由于在完全二叉树中,度为1的结点数n1至多为1,叶子数n0是整数。
本题中度为1的结点数n1只能是0,故叶子结点的个数n0为501.注:解本题时要使用以上公式,不要先判断完全二叉树高10,前9层是满二叉树,第10层都是叶子,……。
虽然解法也对,但步骤多且复杂,极易出错。
6.3 一棵124个叶结点的完全二叉树,最多有多少个结点。
【解答】由公式n=2n0+n1-1,当n1为1时,结点数达到最多248个。
6.4.一棵完全二叉树有500个结点,请问该完全二叉树有多少个叶子结点?有多少个度为1的结点?有多少个度为2的结点?如果完全二叉树有501个结点,结果如何?请写出推导过程。
【解答】由公式n=2n0+n1-1,带入具体数得,500=2n0+n1-1,叶子数是整数,度为1的结点数只能为1,故叶子数为250,度为2的结点数是249。
若完全二叉树有501个结点,则叶子数251,度为2的结点数是250,度为1的结点数为0。
6.5 某二叉树有20个叶子结点,有30个结点仅有一个孩子,则该二叉树的总结点数是多少。
数据结构课后习题答案及解析第六章
第六章树和二叉树(下载后用阅读版式视图或web版式可以看清)习题一、选择题1.有一“遗传”关系:设x是y的父亲,则x可以把它的属性遗传给y。
表示该遗传关系最适合的数据结构为( )。
A.向量B.树 C图 D.二叉树2.树最合适用来表示( )。
A.有序数据元素 B元素之间具有分支层次关系的数据C无序数据元素 D.元素之间无联系的数据3.树B的层号表示为la,2b,3d,3e,2c,对应于下面选择的( )。
A. la (2b (3d,3e),2c)B. a(b(D,e),c)C. a(b(d,e),c)D. a(b,d(e),c)4.高度为h的完全二叉树至少有( )个结点,至多有( )个结点。
A. 2h_lB.h C.2h-1 D. 2h5.在一棵完全二叉树中,若编号为f的结点存在右孩子,则右子结点的编号为( )。
A. 2iB. 2i-lC. 2i+lD. 2i+26.一棵二叉树的广义表表示为a(b(c),d(e(,g(h)),f)),则该二叉树的高度为 ( )。
A.3B.4C.5D.67.深度为5的二叉树至多有( )个结点。
A. 31B. 32C. 16D. 108.假定在一棵二叉树中,双分支结点数为15,单分支结点数为30个,则叶子结点数为( )个。
A. 15B. 16C. 17D. 479.题图6-1中,( )是完全二叉树,( )是满二叉树。
..专业知识编辑整理..10.在题图6-2所示的二叉树中:(1)A结点是A.叶结点 B根结点但不是分支结点 C根结点也是分支结点 D.分支结点但不是根结点(2)J结点是A.叶结点 B.根结点但不是分支结点 C根结点也是分支结点 D.分支结点但不是根结点(3)F结点的兄弟结点是A.EB.D C.空 D.I(4)F结点的双亲结点是A.AB.BC.CD.D(5)树的深度为A.1B.2C.3D.4(6)B结点的深度为A.1B.2C.3D.4(7)A结点所在的层是A.1B.2C.3D.4..专业知识编辑整理..11.在一棵具有35个结点的完全二叉树中,该树的深度为( )。
数据结构习题第6章
第6章树和二叉树一、选择题1.不含任何结点的空树()。
A. 是一棵树B. 是一棵二叉树C. 是一棵树也是一棵二叉树;D. 既不是树也不是二叉树2. 一棵有n个结点的树的所有结点的度数之和为()。
A. n-1B. nC. n+1D. 2n3. 在二叉树中某一个结点的深度为3,高度为4,则该树的高度是()。
A. 5B. 6C. 7D. 84. 设高度为h的二叉树中只有度为0和度为2的结点,则该树的结点数至多为()。
A. 2h-1B. 2h+1C. 2h-1D. 2h+15. 设高度为h的二叉树中只有度为0和度为2的结点,则该树的结点数至少为()。
A. 2h-1B. 2h+1C. 2h-1D. 2h+16. 高度为h的满二叉树中有n个结点,其中有m个叶结点,则正确的等式是()。
A. h+m=nB. h+m=2nC. m=h-1D. n=2h-17.二叉树是非线性数据结构,所以()。
A. 它不能用顺序存储结构存储B. 它不能用链式存储结构存储C. 顺序存储结构和链式存储结构都能存储D. 顺序存储结构和链式存储结构都不能使用8. 一棵完全二叉树有25个叶结点,则该树最少有()个结点。
A. 48B. 49C. 50D. 519. 假设一个三叉树的结点数为36,则该树的最小高度为()。
A. 2B. 3C. 4D. 510. 设二叉树有n个结点,则二叉链表中非空指针数为()。
A. n-1B. nC. n+1D. 2n11. 先序序列和中序序列正好相反的二叉树是()。
A. 完全二叉树B. 满二叉树C. 左单枝树D. 右单枝树12. 后序序列和中序序列正好相反的二叉树是()。
A. 完全二叉树B. 满二叉树C. 左单枝树D. 右单枝树13.把一棵树转换为二叉树后,这棵二叉树的形态是()。
A. 唯一的B. 有多种C. 有多种,但根结点都没有左孩子D. 有多种,但根结点都没有右孩子14. 将一棵树T转换为孩子—兄弟链表表示的二叉树H,则T的后根序遍历是H 的()。
数据结构课后习题(第6章)
【课后习题】第6章树和二叉树网络工程2010级()班学号:姓名:一、填空题(每空1分,共16分)1.从逻辑结构看,树是典型的。
2.设一棵完全二叉树具有999个结点,则此完全二叉树有个叶子结点,有个度为2的结点,有个度为1的结点。
3.由n个权值构成的哈夫曼树共有个结点。
4.在线索化二叉树中,T所指结点没有左子树的充要条件是。
5.在非空树上,_____没有直接前趋。
6.深度为k的二叉树最多有结点,最少有个结点。
7.若按层次顺序将一棵有n个结点的完全二叉树的所有结点从1到n编号,那么当i为且小于n时,结点i的右兄弟是结点,否则结点i没有右兄弟。
8.N个结点的二叉树采用二叉链表存放,共有空链域个数为。
9.一棵深度为7的满二叉树有___ ___个非终端结点。
10.将一棵树转换为二叉树表示后,该二叉树的根结点没有。
11.采用二叉树来表示树时,树的先根次序遍历结果与其对应的二叉树的遍历结果是一样的。
12.一棵Huffman树是带权路径长度最短的二叉树,权值的外结点离根较远。
二、判断题(如果正确,在对应位置打“√”,否则打“⨯”。
每题0.5分,共5分)1.对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i-1个结点。
2.二叉树的前序遍历并不能唯一确定这棵树,但是,如果我们还知道该二叉树的根结点是那一个,则可以确定这棵二叉树。
3.一棵树中的叶子结点数一定等于与其对应的二叉树中的叶子结点数。
4.度≤2的树就是二叉树。
5.一棵Huffman树是带权路径长度最短的二叉树,权值较大的外结点离根较远。
6.采用二叉树来表示树时,树的先根次序遍历结果与其对应的二叉树的前序遍历结果是一样的。
7.不存在有偶数个结点的满二叉树。
8.满二叉树一定是完全二叉树,而完全二叉树不一定是满二叉树。
9.已知二叉树的前序遍历顺序和中序遍历顺序,可以惟一确定一棵二叉树;10.已知二叉树的前序遍历顺序和后序遍历顺序,不能惟一确定一棵二叉树;三、单项选择(请将正确答案的代号填写在下表对应题号下面。
数据结构习题第六章树和二叉树
第六章 树和二叉树一、选择题1.已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/-,其前缀形式为( )A .-A+B*C/DE B. -A+B*CD/E C .-+*ABC/DE D.-+A*BC/DE【北京航空航天大学 1999 一、3 (2分)】2.算术表达式a+b*(c+d/e )转为后缀表达式后为( )【中山大学 1999 一、5】A .ab+cde/*B .abcde/+*+C .abcde/*++D 3. 设有一表示算术表达式的二叉树(见下图),它所表示的算术表达式是( ) 【南京理工大学1999 一、20(2分)】 A. A*B+C/(D*E)+(F-G) B. (A*B+C)/(D*E)+(F-G) C. (A*B+C)/(D*E+(F-G )) D. A*B+C/D*E+F-G 4. 设树T 的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1 则T 中的叶子数为( )A .5B .6C .7D .8【南京理工大学 2000 一、8 (1.5分)】5. 在下述结论中,正确的是( )【南京理工大学 1999 一、4 (1分)】①只有一个结点的二叉树的度为0; ②二叉树的度为2; ③二叉树的左右子树可任意交换;④深度为K 的完全二叉树的结点个数小于或等于深度相同的满二叉树。
A .①②③B .②③④C .②④D .①④6. 设森林F 对应的二叉树为B ,它有m 个结点,B 的根为p,p 的右子树结点个数为n,森林F 中第一棵树的结点个数是( )A .m-nB .m-n-1C .n+1D .条件不足,无法确定 【南京理工大学2000一、17(1.5分)】7. 树是结点的有限集合,它( (1))根结点,记为T 。
其余结点分成为m (m>0)个((2))的集合T1,T2, …,Tm ,每个集合又都是树,此时结点T 称为Ti 的父结点,Ti 称为T的子结点(1≤i ≤m )。
数据结构第6章作业 树和二叉树答案
第6章树和二叉树答案一、判断正误(√)1. 若二叉树用二叉链表作存贮结构,则在n个结点的二叉树链表中只有n—1个非空指针域。
(×)2.二叉树中每个结点的两棵子树的高度差等于1。
(√)3.二叉树中每个结点的两棵子树是有序的。
(×)4.二叉树中每个结点有两棵非空子树或有两棵空子树。
(×)5.二叉树中每个结点的关键字值大于其左非空子树(若存在的话)所有结点的关键字值,且小于其右非空子树(若存在的话)所有结点的关键字值。
(应当是二叉排序树的特点)(×)6.二叉树中所有结点个数是2k-1-1,其中k是树的深度。
(应2i-1)(×)7.二叉树中所有结点,如果不存在非空左子树,则不存在非空右子树。
(×)8.对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i—1个结点。
(应2i-1)(√)9.用二叉链表法(link-rlink)存储包含n个结点的二叉树,结点的2n个指针区域中有n+1个为空指针。
(正确。
用二叉链表存储包含n个结点的二叉树,结点共有2n个链域。
由于二叉树中,除根结点外,每一个结点有且仅有一个双亲,所以只有n-1个结点的链域存放指向非空子女结点的指针,还有n+1个空指针。
)即有后继链接的指针仅n-1个。
(√)10. 〖01年计算机系研题〗具有12个结点的完全二叉树有5个度为2的结点。
最快方法:用叶子数=[n/2]=6,再求n2=n0-1=5二、填空题1.由3个结点所构成的二叉树有5种形态。
2. 一棵深度为6的满二叉树有n1+n2=0+ n2= n0-1=31 个分支结点和26-1 =32个叶子。
注:满二叉树没有度为1的结点,所以分支结点数就是二度结点数。
3.一棵具有257个结点的完全二叉树,它的深度为9。
(注:用⎣ log2(n) ⎦+1= ⎣ 8.xx ⎦+1=94.设一棵完全二叉树有700个结点,则共有350个叶子结点。
数据结构二叉树习题含答案
第 6 章树和二叉树1.选择题( 1)把一棵树变换为二叉树后,这棵二叉树的形态是()。
A.独一的B.有多种C.有多种,但根结点都没有左孩子D.有多种,但根结点都没有右孩子( 2)由 3 个结点能够结构出多少种不一样的二叉树?()A. 2 B . 3 C . 4 D. 5( 3)一棵完整二叉树上有1001 个结点,此中叶子结点的个数是()。
A. 250 B . 500 C . 254 D. 501( 4)一个拥有 1025 个结点的二叉树的高h 为()。
A. 11 B . 10 C.11 至 1025 之间 D .10 至 1024 之间( 5)深度为 h 的满 m叉树的第 k 层有()个结点。
(1=<k=<h)k-1B kCh-1 hA. m . m-1 . m D.m-1( 6)利用二叉链表储存树,则根结点的右指针是()。
A.指向最左孩子 B .指向最右孩子 C .空 D .非空( 7)对二叉树的结点从 1 开始进行连续编号,要求每个结点的编号大于其左、右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,可采纳()遍历实现编号。
A.先序 B. 中序 C. 后序 D.从根开始按层次遍历(8)若二叉树采纳二叉链表储存结构,要互换其全部分支结点左、右子树的地点,利用()遍历方法最适合。
A.前序B.中序C.后序D.按层次(9)在以下储存形式中,()不是树的储存形式?A.双亲表示法 B .孩子链表表示法 C .孩子兄弟表示法D.次序储存表示法( 10)一棵非空的二叉树的先序遍历序列与后序遍历序列正好相反,则该二叉树必定满足()。
A.全部的结点均无左孩子B.全部的结点均无右孩子C.只有一个叶子结点D.是随意一棵二叉树( 11)某二叉树的前序序列和后序序列正好相反,则该二叉树必定是()的二叉树。
A.空或只有一个结点B.任一结点无左子树C.高度等于其结点数 D .任一结点无右子树( 12)若 X 是二叉中序线索树中一个有左孩子的结点,且 X 不为根,则 X 的前驱为()。
数据结构课后习题及解析第六章
数据结构课后习题及解析第六章第六章习题1.试分别画出具有3个结点的树和3个结点的二叉树的所有不同形态。
2.对题1所得各种形态的二叉树,分别写出前序、中序和后序遍历的序列。
3.已知一棵度为k的树中有n1个度为1的结点,n2个度为2的结点,……,nk个度为k的结点,则该树中有多少个叶子结点并证明之。
4.假设一棵二叉树的先序序列为EBADCFHGIKJ,中序序列为ABCDEFGHIJK,请画出该二叉树。
5.已知二叉树有50个叶子结点,则该二叉树的总结点数至少应有多少个?6.给出满足下列条件的所有二叉树:①前序和后序相同②中序和后序相同③前序和后序相同7. n个结点的K叉树,若用具有k个child域的等长链结点存储树的一个结点,则空的Child 域有多少个?8.画出与下列已知序列对应的树T:树的先根次序访问序列为GFKDAIEBCHJ;树的后根次序访问序列为DIAEKFCJHBG。
9.假设用于通讯的电文仅由8个字母组成,字母在电文中出现的频率分别为:0.07,0.19,0.02,0.06,0.32,0.03,0.21,0.10请为这8个字母设计哈夫曼编码。
10.已知二叉树采用二叉链表存放,要求返回二叉树T的后序序列中的第一个结点指针,是否可不用递归且不用栈来完成?请简述原因.11. 画出和下列树对应的二叉树:12.已知二叉树按照二叉链表方式存储,编写算法,计算二叉树中叶子结点的数目。
13.编写递归算法:对于二叉树中每一个元素值为x的结点,删去以它为根的子树,并释放相应的空间。
14.分别写函数完成:在先序线索二叉树T中,查找给定结点*p在先序序列中的后继。
在后序线索二叉树T中,查找给定结点*p在后序序列中的前驱。
15.分别写出算法,实现在中序线索二叉树中查找给定结点*p在中序序列中的前驱与后继。
16.编写算法,对一棵以孩子-兄弟链表表示的树统计其叶子的个数。
17.对以孩子-兄弟链表表示的树编写计算树的深度的算法。
数据结构题
第六章树和二叉树简答题1、有一棵树的括号表示为A(B,C(E,F(G)),D),回答下面的问题:这棵树的根结点是谁?这棵树的叶子结点是什么?结点C的度是多少?这棵树的度是多少?这棵树的深度是多少?结点C的孩子结点是哪些?结点C的双亲结点是谁?2、若一棵度为4的树中度为1,2,3,4的结点个数分别是4,3,2,2,则该树中叶子结点的个数是多少?总结点个数是多少?3、一棵高度为h的完全k次数,如果按照层次自上向下、自左向右的顺序从1开始对全部结点编号,试问:最多有多少个结点?最少有多少个结点?编号为q的结点的第i个孩子结点的编号是多少?4、若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数为结点的总个数为5、一棵完全二叉树有1001个结点,其中叶子结点的个数为6、一棵高度为h的完全二叉树至少有个结点。
7、一棵高度为5的完全二叉树至多有个结点。
8、设高度为h的二叉树上只有度为0和度为2的结点,则此类二叉树至少包含个结点。
9、一个具有1025个结点的二叉树的高度h为10、在一棵完全二叉树中,结点个数为n,则编号最大的分支结点的编号为11、一棵二叉树的先序遍历为ABCDEF,中序遍历为CBAEDF,则后序遍历为12、一棵二叉树的先序遍历为ABCDEFG,它的中序遍历可能为A.CABDEFGB. ABCDEFGC.DACEFBGD.ADCFEGB思考:二叉树的先序和中序遍历相同的条件是?二叉树的后序和中序遍历相同的条件是?13、一棵二叉树的后序遍历为DABEC,中序遍历为DEBAC,则先序遍历为14、一棵二叉树的先序遍历为EFHIGJK,中序遍历为HFIEJKG,则该二叉树根结点的右孩子为16、根据使用频率为5个字符设计的赫夫曼编码不可能的是A.111,110,10,01,00B.000,001,010,011,1C.100,11,10,1,0D.001,000,01,11,1017、根据使用频率为5个字符设计的赫夫曼编码不可能的是A. 000,001,010,011,1B.0000,0001,001,01,1C. 000,001,01,10,11D.00,100,101,110,11118、设有13个值,用它们组成一棵赫夫曼树,则该赫夫曼树共有个结点。
数据结构习题与答案--树和二叉树
第六章树和二叉树一、判断题( t )01、若二叉树用二叉链表作存贮结构,则在n个结点的二叉树链表中只有n—1个非空指针域。
( f )02、二叉树中每个结点的两棵子树的高度差等于1。
(t )03、二叉树中每个结点的两棵子树是有序的。
( f )04、二叉树中每个结点有两棵非空子树或有两棵空子树。
( f )05、二叉树中所有结点个数是2k-1-1,其中k是树的深度。
(f )06、二叉树中所有结点,如果不存在非空左子树,则不存在非空右子树。
( f )07、对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i—1个结点。
(t )08、用二叉链表法存储包含n个结点的二叉树,结点的2n个指针区域中有n+1个为空指针。
(t)09、具有12个结点的完全二叉树有5个度为2的结点。
( f )10、二叉树中每个结点的关键字值大于其左非空子树(若存在的话)所有结点的关键字值,且小于其右非空子树(若存在的话)所有结点的关键字值。
( f )11、二叉树按某种顺序线索化后,任一结点均有指向其前驱和后续的线索。
( t )12、二叉树的先序遍历序列中,任意一个结点均处在其孩子结点的前面。
二、填空题01、由3个结点所构成的二叉树有_5_种形态。
02、一棵深度为6的满二叉树有____个分支结点和____个叶子。
03、一棵具有257个结点的完全二叉树,它的深度为____。
04、设一棵完全二叉树有700个结点,则共有____个叶子结点。
05、设一棵完全二叉树具有1000个结点,则此完全二叉树有____个叶子结点,有____个度为2的结点,有____个结点只有非空左子树,有____个结点只有非空右子树。
06、一棵含有n个结点的k叉树,可能达到的最大深度为____,最小深度为____。
07、二叉树的基本组成部分是:根(N)、左子树(L)和右子树(R)。
因而二叉树的遍历次序有六种。
最常用的是三种:前序法(即按N L R次序),后序法(即按LRN次序)和中序法(也称对称序法,即按L N R次序)。
数据结构第六章树和二叉树习题及答案
习题六树和二叉树一、单项选择题1.以下说法错误的是 ( )A.树形结构的特点是一个结点可以有多个直接前趋B.线性结构中的一个结点至多只有一个直接后继C.树形结构可以表达(组织)更复杂的数据D.树(及一切树形结构)是一种"分支层次"结构E.任何只含一个结点的集合是一棵树2.下列说法中正确的是 ( )A.任何一棵二叉树中至少有一个结点的度为2B.任何一棵二叉树中每个结点的度都为2C.任何一棵二叉树中的度肯定等于2D.任何一棵二叉树中的度可以小于23.讨论树、森林和二叉树的关系,目的是为了()A.借助二叉树上的运算方法去实现对树的一些运算B.将树、森林按二叉树的存储方式进行存储C.将树、森林转换成二叉树D.体现一种技巧,没有什么实际意义4.树最适合用来表示 ( )A.有序数据元素 B.无序数据元素C.元素之间具有分支层次关系的数据 D.元素之间无联系的数据5.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是()A.9 B.11 C.15 D.不确定6.设森林F中有三棵树,第一,第二,第三棵树的结点个数分别为M1,M2和M3。
与森林F 对应的二叉树根结点的右子树上的结点个数是()。
A.M1 B.M1+M2 C.M3 D.M2+M37.一棵完全二叉树上有1001个结点,其中叶子结点的个数是()A. 250 B. 500 C.254 D.505 E.以上答案都不对8. 设给定权值总数有n 个,其哈夫曼树的结点总数为( )A.不确定 B.2n C.2n+1 D.2n-19.二叉树的第I层上最多含有结点数为()A.2I B. 2I-1-1 C. 2I-1 D.2I -110.一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( )结点A.2h B.2h-1 C.2h+1 D.h+111. 利用二叉链表存储树,则根结点的右指针是()。
A.指向最左孩子 B.指向最右孩子 C.空 D.非空12.已知一棵二叉树的前序遍历结果为ABCDEF,中序遍历结果为CBAEDF,则后序遍历的结果为()。
《数据结构》习题汇编06 第六章 树和二叉树 试题
第六章树和二叉树试题一、单项选择题1.树中所有结点的度等于所有结点数加()。
A. 0B. 1C. -1D. 22.在一棵树中,()没有前驱结点。
A. 分支结点B. 叶结点C. 根结点D. 空结点3.在一棵二叉树的二叉链表中,空指针域数等于非空指针域数加()。
A. 2B. 1C. 0D. -14.在一棵具有n个结点的二叉树中,所有结点的空子树个数等于()。
A. nB. n-1C. n+1D. 2*n5.在一棵具有n个结点的二叉树的第i层上(假定根结点为第0层,i大于等于0而小于等于树的高度),最多具有()个结点。
A. 2iB. 2i+1C. 2i-1D. 2n6.在一棵高度为h(假定根结点的层号为0)的完全二叉树中,所含结点个数不小于()。
A. 2h-1B. 2h+1C. 2h-1D. 2h7.在一棵具有35个结点的完全二叉树中,该树的高度为()。
假定空树的高度为-1。
A. 5B. 6C. 7D. 88.在一棵具有n个结点的完全二叉树中,分支结点的最大编号为()。
假定树根结点的编号为0。
A. ⎣(n-1)/2⎦B. ⎣n/2⎦C. ⎡n/2⎤D. ⎣n/2⎦ -19.在一棵完全二叉树中,若编号为i的结点存在左孩子,则左子女结点的编号为()。
假定根结点的编号为0A. 2iB. 2i-1C. 2i+1D. 2i+210.在一棵完全二叉树中,假定根结点的编号为0,则对于编号为i(i>0)的结点,其双亲结点的编号为()。
A. ⎣(i+1)/2⎦B. ⎣(i-1)/2⎦C. ⎣i/2⎦D. ⎣i/2⎦ -111.在一棵树的左子女-右兄弟表示法中,一个结点的右孩子是该结点的()结点。
A. 兄弟B. 子女C. 祖先D. 子孙12.在一棵树的静态双亲表示中,每个存储结点包含()个域。
A. 1B. 2C. 3D. 413.已知一棵二叉树的广义表表示为a (b (c), d (e ( , g (h) ), f ) ),则该二叉树的高度为A. 3B. 4C. 5D. 614.已知一棵树的边集表示为 {<A, B>, <A, C>, <B, D>, <C, E>, <C, F>, <C, G>, <F, H>,<F, I>},则该树的高度为()。
数据结构课后习题答案第六章
欢迎下载
6
-
9.已知信息为“ ABCD BCD CB DB ACB ”,请按此信息构造哈夫曼树,求出每一字符的最优编码。 10. 己知中序线索二叉树采用二叉链表存储结构,链结点的构造为:
_,双分支结点的个数为 ____, 3 分支结点的个数为 ____, C 结点的双亲结点为 ____ ,其孩子结点为 ____。
5. 一棵深度为 h 的满 k 叉树有如下性质:第 h 层上的结点都是叶子结点,其余各层上的每个结点都有
k 棵非空子树。
如果按层次顺序(同层自左至右)从 1 开始对全部结点编号,则:
7.二叉树的遍历分为 ____ ,树与森林的遍历包括 ____。 8.一棵二叉树的第 i(i>=1) 层最多有 ____ 个结点;一棵有 n(n>0) 个结点的满二叉树共有 ____ 个叶子和 ____个非终端结点。
9.在一棵二叉树中,假定双分支结点数为 5 个,单分支结点数为 6 个,则叶子结点为 ____个。
A. 逻辑 B.逻辑和存储 C.物理 D.线性 19.由权值分别是 8,7, 2, 5 的叶子结点生成一棵哈夫曼树,它的带权路径长度为
A. 23 B. 37 C. 46 D. 43 20.设 T 是哈夫曼树,具有 5 个叶结点,树 T 的高度最高可以是 ( )。
A.2 B . 3 C. 4 D. 5
()
6.在叶子数目和权值相同的所有二叉树中,最优二叉树一定是完全二叉树。
()
7.由于二叉树中每个结点的度最大为 2,所以二叉树是一种特殊的树。 8.二叉树的前序遍历序列中,任意一个结点均处在其子树结点的前面。
数据结构复习题-第6章答案2014-6-16
第6章树和二叉树一、选择题(每小题1分,共10分)1.以下数据结构中,( A )是非线性数据结构。
A.树B.线性表C.队列D.栈2.在一棵二叉树中第五层上的结点数最多为( B )。
A.8B.15C.16D.323. 已知一棵二叉树的前序遍历结果为ABCDEF,中序遍历结果为CBAEDF,则后序遍历的结果为( A )。
A. CBEFDAB. FEDCBAC. CBEDFAD. 不定4.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是( B )。
A.9B.11C.15D.不确定5.给定二叉树如图所示。
设N代表二叉树的根,L代表根结点的左子树,R代表根结点的右子树。
若遍历后的结点序列为3,7,5,6,1,2,4,则其遍历方式是(D )。
A. LRNB. NRLC. RLND. RNL6.在下列存储形式中,哪一个不是树的存储形式?( D )A.双亲表示法B.孩子表示法C.孩子兄弟表示法D.顺序存储表示法7.有n个叶子的哈夫曼树的结点总数为(D )。
A.不确定B.2n C.2n+1 D.2n-18.设i为n个结点的完全二叉树结点编号,i=1,2,3...n;若i≤(n-1)/2时,结点i的右孩子为( B )A.2iB.2i+1C.2i-1D.i+19. 由分别带权为9、2、5、7的四个叶子结点构造一棵哈夫曼树,该树的带权路径长度为( C )。
A.23B.37C.44D.4610.一棵具有n个结点的完全二叉树的树高度(深度)是( A )。
A. +1B. log2n+1C.D. log2n-111.由权值分别为7,9,4,2,5的叶子结点生成一棵哈夫曼树,它的带权路径长度为( B )。
A.36B.60C.48D.5312.由权值分别为11,8,6,2,5的叶子结点生成一棵哈夫曼树,它的带权路径长度为( B )。
A. 24B. 71C. 48D. 5313.具有35个结点的完全二叉树的深度为( B )。
数据结构第6章树和二叉树
数据结构第6章树和⼆叉树第六章树和⼆叉树⼀、选择题1.已知⼀算术表达式的中缀形式为 A+B*C-D/E,后缀形式为ABC*+DE/-,其前缀形式为( )A.-A+B*C/DE B. -A+B*CD/E C.-+*ABC/DE D. -+A*BC/DE2.设树T的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1 则T中的叶⼦数为()A.5 B.6 C.7 D.83.在下述结论中,正确的是()①只有⼀个结点的⼆叉树的度为0; ②⼆叉树的度为2;③⼆叉树的左右⼦树可任意交换;④深度为K的完全⼆叉树的结点个数⼩于或等于深度相同的满⼆叉树。
A.①②③ B.②③④ C.②④ D.①④4.设森林F对应的⼆叉树为B,它有m个结点,B的根为p,p的右⼦树结点个数为n,森林F中第⼀棵树的结点个数是()A.m-n B.m-n-1 C.n+1 D.条件不⾜,⽆法确定5.⼀棵完全⼆叉树上有1001个结点,其中叶⼦结点的个数是()A.250 B. 254 C.500 D.5016.设给定权值总数有n 个,其哈夫曼树的结点总数为( )A.不确定 B.2n C.2n+1 D.2n-17.有关⼆叉树下列说法正确的是()A.⼆叉树的度为2 B.⼀棵⼆叉树的度可以⼩于2 C.⼆叉树中⾄少有⼀个结点的度为2 D.⼆叉树中任何⼀个结点的度都为2 8.⼆叉树的第I层上最多含有结点数为()A.2I B. 2I-1-1 C. 2I-1 D.2I -19.⼀个具有1025个结点的⼆叉树的⾼h为()A.11 B.10 C.11⾄1025之间 D.10⾄1024之间10.⼀棵⼆叉树⾼度为h,所有结点的度或为0,或为2,则这棵⼆叉树最少有( )结点A.2h B.2h-1 C.2h+1 D.h+111.⼀棵具有 n个结点的完全⼆叉树的树⾼度(深度)是()A.?log2n?+1 B.log2n+1 C.?log2n? D.log2n-112.深度为h的满m叉树的第k层有()个结点。
树和二叉树-第6章-《数据结构题集》习题解析-严蔚敏吴伟民版
树和⼆叉树-第6章-《数据结构题集》习题解析-严蔚敏吴伟民版习题集解析部分第6章树和⼆叉树——《数据结构题集》-严蔚敏.吴伟民版源码使⽤说明链接☛☛☛课本源码合辑链接☛☛☛习题集全解析链接☛☛☛相关测试数据下载链接☛本习题⽂档的存放⽬录:数据结构\▼配套习题解析\▼06 树和⼆叉树⽂档中源码的存放⽬录:数据结构\▼配套习题解析\▼06 树和⼆叉树\▼习题测试⽂档-06源码测试数据存放⽬录:数据结构\▼配套习题解析\▼06 树和⼆叉树\▼习题测试⽂档-06\Data⼀、基础知识题6.1❶已知⼀棵树的集合为{<I, M>, <I, N>, <E, I>, <B, E>, <B, D>, <A, B>, <G, J>, <G, K>, <C, G>, <C, F>, <H, L>, <C, H>, <A, C>},请画出这棵树,并回答下列问题:(1)哪个是根结点?(2)哪些是叶⼦节点?(3)哪个是结点G的双亲?(4)哪些是结点G的祖先?(5)哪些是结点G的孩⼦?(6)哪些是结点E的⼦孙?(7)哪些是结点E的兄弟?哪些是结点F的兄弟?(8)结点B和N的层次号分别是什么?(9)树的深度是多少?(10)以结点C为根的⼦树的深度是多少?6.2❶⼀棵度为2的树与⼀棵⼆叉树有何区别?6.3❶试分别画出具有3个结点的树和3个结点的⼆叉树的所有不同形态。
6.4❸⼀棵深度为H的满k叉树有如下性质:第H层上的结点都是叶⼦结点,其余各层上每个结点都有k棵⾮空⼦树。
如果按层次顺序从1开始对全部结点编号,问:(1)各层的结点数⽬是多少?(2)编号为p的结点的⽗结点(若存在)的编号是多少?(3)编号为p的结点的第i个⼉⼦结点(若存在)的编号是多少?(4)编号为p的结点有右兄弟的条件是什么?其右兄弟的编号是多少?6.5❷已知⼀棵深度为k的树中有n1个度为1的结点,n2个度为2的结点,…,nk个度为k的结点,问该树中有多少个叶⼦结点?6.6❸已知在⼀棵含有n个结点的树中,只有度为k的分⽀结点和度为0的叶⼦结点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)
A. 2n B . n- l C . n+ l D
.n
21.下面几个符号串编码集合中,不是前缀编码的是(
)。
A. {0,10,110,1111}
B
. {11,10,001,101,0001}
C. {00,010,0110,1000} D
. {b,c,aa,ac,aba,abb,abc}
22. 一棵有 n 个结点的二叉树,按层次从上到下,同一层从左到右顺序存储在一维数组
else { p=pop(s); printf( “%c”,p ->data);(2)__ __; }/*
栈顶元素出栈 */
}
14.二叉树存储结构同上题,以下程序为求二叉树深度的递归算法,请填空完善之。
int depth(bitree bt) /*bt
为根结点的指针 */
{int hl,hr;
if (bt==NULL) return((1)_
A.任何一棵二叉树中至少有一个结点的度为
2
B.任何一棵二叉树中每个结点的度都为 2
C.任何一棵二叉树中的度肯定等于 2
D.任何一棵二叉树中的度可以小于 2
3.讨论树、森林和二叉树的关系,目的是为了(
)
A.借助二叉树上的运算方法去实现对树的一些运算
B.将树、森林按二叉树的存储方式进行存储
C.将树、森林转换成二叉树
______。
12.以下程序段采用先根遍历方法求二叉树的叶子数,请在横线处填充适当的语句。
Void countleaf(bitreptr t,int *
count)/ * 根指针为 t ,假定叶子数 count 的初值为
0*/
{if(t!=NULL)
{if((t->lchild==NULL)&&(t->rchild==NULL))________;
E.以上答案都不对
17. 一棵左右子树均不空的二叉树在先序线索化后,其中空的链域的个数是:
() 。
A. 0
B. 1 C. 2
D.
不确定
18. 引入二叉线索树的目的是(
)
A.加快查找结点的前驱或后继的速度
B .为了能在二叉树中方便的进行插入与删除
C.为了能方便的找到双亲
D
.使二叉树的遍历结果唯一
19. n 个结点的线索二叉树上含有的线索数为(
8.二叉树的先序序列和中序序列相同的条件是
___
___
。
9.一个无序序列可以通过构造一棵 为对无序序列进行排序的过程。
___ ___
树而变成一个有序序列,构造树的过程即
10.若一个二叉树的叶子结点是某子树的中序遍历序列中的最后一个结点, 的____ __ 序列中的最后一个结点。
则它必是该子树
11.若以 {4 ,5,6,7,8} 作为叶子结点的权值构造哈夫曼树,则其带权路径长度是
K 的满二
2.设一棵二叉树的结点结构为 (LLINK,INFO,RLINK),ROOT 为指向该二叉树根结点的指针, p 和 q 分别为指向该二叉树中任意两个结点的指针, 试编写一算法 ANCESTO(RROO,T p,q,r ),
该算法找到 p 和 q 的最近共同祖先结点 r 。
3.有一二叉链表,试编写按层次顺序遍历二叉树的算法。
()
三、填空题
1.在二叉树中,指针 p 所指结点为叶子结点的条件是 ___
___
。
2.深度为 k 的完全二叉树至少有 ___ ____ 个结点,至多有 ___ ____ 个结点。
3.高度为 8 的完全二叉树至少有 ______个叶子结点。
4. 具有 n 个结点的二叉树中 , 一共有 ________个指针域 , 其中只有 ________个用来指向结点 的左右孩子,其余的 ________个指针域为 NULL。
D A
E BC
F
6.设二叉树 BT 的存储结构如下 : 1 2 3 4 5 6 7 8 9 10
Lchild
00
2
3
7
Data
JH
F
D
B
Rchild
00
0
9
4
其中 BT 为树根结点的指针, 其值为 6,Lchild,Rchild
为结点的数据域。试完成下列各题 : (l )画出二叉树 BT 的逻辑结构 ; (3)画出二叉树的后序线索树。
指针。 ( )
11.树形结构中元素之间存在一个对多个的关系。
()
12.将一棵树转成二叉树,根结点没有左子树。
()
13.度为二的树就是二叉树。 ( )
14. 二叉树中序线索化后,不存在空指针域。 ( )
15.霍夫曼树的结点个数不能是偶数。 ( )
16.哈夫曼树是带权路径长度最短的树,路径上权值较大的结点离根较近。
4.已知二叉树按照二叉链表方式存储, 利用栈的基本操作写出先序遍历非递归形式的算法。
5.对于二叉树的链接实现 , 完成非递归的中序遍历过程。
6.试写出复制一棵二叉树的算法。二叉树采用标准链接结构。
。
7.请设计一个算法,要求该算法把二叉树的叶子结点按从左到右的顺序连成一个单链表, 表头指针为 head 。 二叉树按二叉链表方式存储,链接时用叶子结点的右指针域来存放单链 表指针。分析你的算法的时、空复杂度。
__);
hl=depth(bt->lchild); hr=depth(bt->rchild);
if((2)_
__) (3)_
____
;
return(hr+1);
}
15 . 将 二 叉 树 bt 中 每 一 个 结 点 的 左 右 子 树 互 换 的 C 语 言 算 法 如 下 , 其 中 ADDQ(Q,bt),DELQ(Q),EMPTY(Q) 分别为进队,出队和判别队列是否为空的函数,请填写算法 中得空白处,完成其功能。
A. 2h B . 2h-1 C . 2h+1 D . h+1
11. 利用二叉链表存储树,则根结点的右指针是(
)。
A.指向最左孩子
B .指向最右孩子
C .空 D .非空
14.在二叉树结点的先序序列,中序序列和后序序列中,所有叶子结点的先后顺序(
)
A.都不相同
B
.完全相同
C.先序和中序相同,而与后序不同
B.若一个二叉树的树叶是某子树的中序遍历序列中的第一个结点,则它必是该子树的 后序遍历序列中的第一个结点。
C.已知二叉树的前序遍历和后序遍历序列并不能惟一地确定这棵树,因为不知道树的
根结点是哪一个。
D.在前序遍历二叉树的序列中,任何结点的子树的所有结点都是直接跟在该结点的之
后。
二、判断题(在各题后填写“√”或“×” )
1. 完全二叉树一定存在度为 1 的结点。 ( )
2.对于有 N 个结点的二叉树,其高度为 log 2n。 ( )
3. 二叉树的遍历只是为了在应用中找到一种线性次序。
()
4. 一棵一般树的结点的前序遍历和后序遍历分别与它相应二叉树的结点前序遍历和后序遍
历是一致的。 ( )
5. 用一维数组存储二叉树时,总是以前序遍历顺序存储结点。
D .中序和后序相同,而与先序不同
15.在完全二叉树中,若一个结点是叶结点,则它没(
)。
A.左子结点
B
.右子结点
C.左子结点和右子结点
D .左子结点,右子结点和兄弟结点
16.在下列情况中,可称为二叉树的是(
)
A.每个结点至多有两棵子树的树
B. 哈夫曼树
C.每个结点至多有两棵子树的有序树
D. 每个结点只有一棵右子树
习题六 树和二叉树
一、单项选择题
1. 以下说法错误的是 ( )
A.树形结构的特点是一个结点可以有多个直接前趋
B.线性结构中的一个结点至多只有一个直接后继
C.树形结构可以表达 ( 组织 ) 更复杂的数据
D.树 ( 及一切树形结构 ) 是一种 " 分支层次 " 结构
E.任何只含一个结点的集合是一棵树
2.下列说法中正确的是 ( )
1)各层的结点的数目是多少? 2)编号为 n 的结点的双亲结点(若存在)的编号是多少? 3)编号为 n 的结点的第 i 个孩子结点(若存在)的编号是多少? 4)编号为 n 的结点有右兄弟的条件是什么?如果有,其右兄弟的编号是多少? 请给出计算和推导过程。
5.将下列由三棵树组成的森林转换为二叉树。 (只要求给出转换结果)
typedef struct node {int data ; struct node *lchild, *rchild; }btnode;
void EXCHANGE(btnode *bt) {btnode *p, *q; if (bt){ADDQ(Q,bt);
while(!EMPTY(Q)) {p=DELQ(Q); q=(1)_ __; p->rchild=(2)_ __; (3)__ _=q;
G
HI
J
KL
MN O
P
5
8
0
10 1
A
C
E
G
I
0
0
0
0
0
分别为结点的左、 右孩子指针域 ,data
五、算法设计题 1.要求二叉树按二叉链表形式存储,
(1)写一个建立二叉树的算法。 (2)写一个判别给定的二叉树是否是完全二叉树的算法。 完全二叉树定义为:深度为 K,具有 N 个结点的二叉树的每个结点都与深度为 叉树中编号从 1 至 N的结点一一对应。此题以此定义为准。
6.设森林 F 中有三棵树,第一,第二,第三棵树的结点个数分别为
M1,M2和 M3。与森林 F