基因工程技术与应用知识点
基因工程技术及其应用

基因工程技术及其应用随着科技的不断进步和发展,人们对于生命科学的研究和探索也日益深入。
其中,基因工程技术作为一种生物技术的代表,将基因的轮廓调整和优化变成了可能。
它不仅在医学领域发挥了重要作用,还为人类社会的发展提供了新的契机。
本文将从基因工程技术的基本概念、研究发展现状、应用前景以及影响等方面进行分析探讨。
一、基因工程技术的基本概念基因工程技术是指通过对生物基因的分离、克隆和重组,对基因进行改造和操作以达到人为设计和控制的目的的一种技术手段。
其主要功能是将生物基因转移到其他生物体中,从而实现对生物功能的精准调控和改良。
基因工程技术包含的操作包括:基因克隆、转化、筛选、鉴定及表达等环节。
其中,基因克隆是通过PCR技术或者贡献基因文库,将寻找到的基因扩增或者分离出来,起到建立基础的功能单体的作用。
转化是将基因转移到宿主细胞中,筛选是通过多种技术手段从中寻找出具有理想表达性状的细胞。
二、基因工程技术的研究发展现状基因工程技术的研究历程可追溯到20世纪70年代初期,当时科学家们已经开始使用基因工程技术制备合成蛋白等生物大分子,并用此方法培育了许多新品种的植物和动物。
后来,随着研究的不断深入和技术手段的不断完善,基因工程技术已经成为现代生命科学领域中不可或缺的重要工具。
在过去的三十年里,随着世界各国在生命科学领域的不断探索和研究,基因工程技术也得到了更加广泛的应用。
目前,基因工程技术在生产、农业、医学以及环保等多个领域均取得了显著的成果。
例如,在农业早期,基因工程技术已被应用于进行植物基因的精准改良。
同时,在生产和医学方面,基因工程技术也在不断的发展。
比如说,研究人员利用基因工程技术成功地制备了大量的重组蛋白,如人干扰素、生长激素、血小板刺激因子等,这些蛋白已广泛用于医学临床治疗,对人类健康发挥了十分重要的作用。
三、基因工程技术的应用前景随着科学技术的不断进步,基因工程技术在医学、生物工程、灾害响应等领域的应用将愈加广泛。
基因工程知识点总结

基因工程知识点总结基因工程是一门现代生物学领域的重要学科,它通过改造生物体的遗传物质,实现对生物体基因的精确操控和改良。
下面将对基因工程的相关知识点进行总结,以帮助读者更好地了解该领域的基本概念和技术应用。
一、基因工程的基本概念和原理基因工程是指通过人为手段修改生物体的基因组,以改变其性状和功能的技术。
其实现的基本原理包括基因定位、基因克隆和基因传递。
1. 基因定位:基因定位是指确定感兴趣的基因在基因组中的位置。
常用的方法有FISH(荧光原位杂交)和PCR(聚合酶链反应)等。
2. 基因克隆:基因克隆是指将感兴趣的基因从一个生物体中复制到另一个生物体中,使其在目标生物体中表达。
常用的方法有限制酶切、连接酶切和DNA合成等。
3. 基因传递:基因传递是指将经过克隆的基因导入到目标生物体中,并使其在目标生物体中稳定遗传。
常用的方法有基因枪、电穿孔和冷冻贮存等。
二、基因工程的应用领域基因工程技术在农业、医学和工业等领域有着广泛的应用,下面将分别介绍其主要应用领域。
1. 农业应用:基因工程技术在农业领域的应用主要包括转基因作物的培育和遗传改良。
通过导入特定基因,转基因作物可以获得抗病虫害、耐逆性或提高产量等特点,从而增加农作物的产量和质量。
2. 医学应用:基因工程技术在医学领域的应用主要包括基因诊断、基因治疗和生物药物的生产。
通过基因诊断,可以准确检测遗传病的基因突变,为疾病的早期预测和治疗提供依据。
基因治疗则通过修复或替代患者体内的异常基因,治疗遗传性疾病。
此外,基因工程技术还被用于生产重组蛋白和抗体等生物药物。
3. 工业应用:基因工程技术在工业领域的应用主要包括酶的生产和环境修复。
通过基因工程技术,可以大量生产具有特定功能的酶,用于工业生产和制药领域。
此外,基因工程技术还可以改造微生物,使其能够降解有机物污染物,用于环境修复和生物能源开发。
三、基因工程的伦理和安全问题尽管基因工程技术具有重要的应用前景,但也带来了一些伦理和安全问题。
基因工程高三知识点

基因工程高三知识点基因工程是现代生物学中的一项重要技术,通过改变生物体的遗传物质(DNA)来创造新的基因组合或改变生物体的性状。
在高中生物学课程中,学生需要掌握基因工程的基本原理、应用以及相关的伦理和社会问题。
以下是基因工程的一些高三知识点。
一、基因工程的基本原理基因工程是利用DNA技术改变生物体的遗传信息,主要包括以下几个步骤:1. DNA提取:从感兴趣的生物体中提取DNA,通常使用PCR 技术扩增目标DNA片段。
2. DNA剪切:利用限制酶切割目标DNA,产生特定的切口。
3. DNA连接:将DNA片段连接到载体DNA上,形成重组DNA。
4. DNA转化:将重组DNA导入目标细胞中,使其具有新的遗传特性。
5. PCR扩增:使用聚合酶链反应扩增目标DNA的数量。
二、基因工程的应用领域1. 农业领域:基因工程可以用于改良作物,包括提高抗病虫害能力、增加产量、提高品质等。
2. 医学领域:基因工程可以用于制备重组蛋白药物,如胰岛素、生长激素等。
3. 环境领域:基因工程可以用于环境修复,包括通过基因修复技术降解污染物。
4. 科研领域:基因工程可以用于基因功能研究、疾病模型建立等。
三、基因工程的风险与伦理问题1. 生物安全风险:基因工程可能导致基因剥离和转基因生物的释放,风险包括基因污染、基因流动等。
2. 伦理问题:基因工程涉及到修改生物的基因组,可能引发对自然与人类的伦理关切,如人类基因改造、人类克隆等。
四、国际和国内基因工程的监管措施1. 国际监管:1992年生物安全议定书规定,转基因生物的跨国转运需要进行风险评估和合格证明。
2. 国内监管:我国设立了生物安全管理委员会,建立了转基因食品的安全管理体系。
五、基因工程的前景与挑战基因工程作为一种重要的生物技术,将会继续在农业、医学、环境等领域发挥重要作用。
但同时也面临着风险与挑战,需要加强监管、推动科学研究和公众教育。
总结:基因工程作为现代生物学的重要分支,已经在农业、医学、环境等领域取得了巨大的进展和应用。
基因工程技术的原理与应用例题和知识点总结

基因工程技术的原理与应用例题和知识点总结一、基因工程技术的原理基因工程技术,简单来说,就是在分子水平上对基因进行操作的技术。
其核心原理包括以下几个关键步骤:1、目的基因的获取目的基因是我们想要研究或应用的特定基因片段。
获取目的基因的方法多种多样,常见的有从基因文库中筛选、通过 PCR 技术扩增以及人工化学合成等。
2、基因载体的选择基因载体就像是一辆“运输车”,负责将目的基因运送到受体细胞中。
常用的基因载体有质粒、噬菌体和病毒等。
它们具有能够在宿主细胞中自主复制、稳定存在等特点。
3、基因重组将获取的目的基因与选择好的基因载体进行连接,形成重组 DNA分子。
这个过程需要用到特定的限制性内切酶和 DNA 连接酶,以确保目的基因能够准确无误地插入到载体中。
4、重组 DNA 导入受体细胞将构建好的重组 DNA 分子导入到受体细胞中,使其能够在受体细胞内稳定遗传和表达。
导入的方法包括转化、转导、显微注射等。
5、目的基因的检测与鉴定导入受体细胞后,需要对目的基因是否成功导入、是否表达以及表达水平等进行检测和鉴定。
常用的方法有核酸分子杂交、PCR 检测、蛋白质检测等。
二、基因工程技术的应用例题1、胰岛素的生产糖尿病患者需要定期注射胰岛素来控制血糖。
传统的胰岛素提取方法产量低、成本高。
通过基因工程技术,科学家将人的胰岛素基因导入到大肠杆菌中,让大肠杆菌能够大量合成胰岛素,大大提高了胰岛素的产量,降低了成本,为糖尿病患者带来了福音。
2、转基因抗虫棉棉花在生长过程中常常受到棉铃虫等害虫的侵害。
利用基因工程技术,将苏云金芽孢杆菌中的 Bt 毒蛋白基因导入到棉花细胞中,使棉花能够自身合成毒蛋白,从而具有抗虫的特性,减少了农药的使用,保护环境的同时提高了棉花的产量。
3、基因治疗对于一些由于基因突变导致的遗传性疾病,如血友病、囊性纤维化等,基因治疗为患者带来了新的希望。
通过将正常的基因导入患者的细胞中,以替代或修复突变的基因,从而达到治疗疾病的目的。
基因工程及其应用

环境保护
基因工程可用于生物修复、 环境监测和生态系统保护, 有助于解决环境问题和提高 可持续发展。
基因工程在医学领域的应用
ห้องสมุดไป่ตู้
1
基因治疗
通过基因工程技术修复或替换患者的缺陷
药物研发
2
基因,为治疗遗传性疾病提供新的方法。
基因工程用于制备重组蛋白和抗体,加速
药物开发和生产过程。
3
疾病诊断
基因工程技术使得疾病的早期诊断更加准 确和可靠,为个性化医学提供了新的途径。
基因工程在农业领域的应用
转基因作物
基因工程可用于在作物中导入外 源基因,以提高作物的抗虫性、 耐旱性和营养价值。
植物组织培养
基因工程技术可用于培育不孕植 株、繁殖珍稀植物和提高植物生 长速度。
农业生物技术
基因工程在农业领域还可用于动 物遗传改良、育种和疫苗研发, 提高农业生产效率。
基因工程在环境领域的应用
生物修复
基因工程可以用于修复受污染土壤和水体中的有害物质,加速环境恢复过程。
环境监测
通过基因工程技术,可以开发植物和微生物传感器来监测环境中的有害物质。
生态系统保护
基因工程可用于保护濒危物种、恢复破坏的生态系统,维持生物多样性。
基因工程使用了许多工具 和技术,如限制性酶、 DNA合成和蛋白质表达系 统等,以便研究和操作基 因。
基因编辑技术如CRISPRCas9已经革命性地改变了 基因工程领域,使得基因 编辑更加精确和高效。
基因工程的应用领域
生物医学
基因工程在生物医学研究中 有广泛应用,如基因治疗、 药物研发和疾病诊断。
基因工程技术的原理与应用例题和知识点总结

基因工程技术的原理与应用例题和知识点总结一、基因工程技术的原理基因工程,也称为重组 DNA 技术,是一种在分子水平上对基因进行操作和改造的技术。
其基本原理是在体外将不同来源的 DNA 分子进行剪切、拼接和重组,然后将重组的 DNA 分子导入到受体细胞中,使其在受体细胞中表达和遗传。
基因工程的操作主要包括以下几个步骤:1、目的基因的获取从生物体的基因组中直接分离:对于一些结构和功能比较清楚的基因,可以通过限制性内切酶将其从基因组 DNA 中切割下来。
人工合成:如果已知基因的核苷酸序列,可以通过化学方法人工合成目的基因。
PCR 扩增:利用聚合酶链式反应(PCR)技术,以少量的 DNA 为模板,快速扩增出大量的目的基因。
2、基因载体的选择和构建基因载体是能够携带目的基因进入受体细胞的工具。
常用的基因载体有质粒、噬菌体和病毒等。
载体需要具备自我复制能力、多个限制性内切酶切点、标记基因等特点。
3、目的基因与载体的连接通过限制性内切酶切割目的基因和载体,产生相同的黏性末端或平末端。
然后利用 DNA 连接酶将目的基因和载体连接起来,形成重组 DNA 分子。
4、将重组 DNA 分子导入受体细胞常用的导入方法有转化(细菌)、转染(动物细胞)和农杆菌介导转化(植物细胞)等。
5、重组体的筛选和鉴定由于导入受体细胞的重组体中可能存在未成功重组的分子,因此需要进行筛选和鉴定。
常用的筛选方法有抗性筛选、标记基因筛选、核酸分子杂交筛选等。
二、基因工程技术的应用例题1、基因工程在农业领域的应用抗虫棉的培育:将苏云金芽孢杆菌中的抗虫基因导入棉花细胞中,培育出具有抗虫特性的棉花品种。
举例:某地区常年遭受棉铃虫的侵害,导致棉花产量大幅下降。
科研人员通过基因工程技术,将一种能够编码产生杀虫蛋白的基因导入棉花植株中。
经过筛选和培育,获得了抗虫棉新品种。
在种植过程中,这种抗虫棉能够有效地抵御棉铃虫的危害,减少了农药的使用量,提高了棉花的产量和质量。
基因工程的原理与应用

基因工程的原理与应用简介:基因工程是生物技术领域中的一项重要技术,通过能够改变生物体基因组的技术手段,对生物体的基因进行定向修改、调控和构建,从而改变生物体的性状和功能。
本文将介绍基因工程的原理与应用。
一、基因工程的原理基因工程的原理是通过一系列技术手段对DNA进行操作,包括基因的定向克隆、DNA序列的合成、基因组的编辑和调控等。
1. 基因的定向克隆基因的定向克隆是指将感兴趣的基因从一个生物体中剪切出来,并将其插入到另一个生物体的染色体上。
这一过程主要包括DNA的剪切、连接和转化等步骤。
通过定向克隆,可以将某些有益的基因导入到其他生物体中,实现基因的传递和表达。
2. DNA序列的合成DNA序列的合成是将DNA中的碱基按照特定的顺序进行合成,以构建具有特定功能的DNA序列。
合成的DNA序列可以是某个基因的修改版,也可以是完全人工合成的新DNA序列。
DNA序列的合成为基因工程提供了强大的工具,使得研究者可以对基因进行精确的修改和调控。
3. 基因组的编辑和调控基因组的编辑和调控是利用特定的酶类或蛋白质来调整生物体的基因组结构和功能。
常用的编辑工具包括CRISPR-Cas9系统和锌指核酸酶,它们能够精确地切割、修复和替换DNA序列。
通过基因组的编辑和调控,可以实现对生物体基因组的精确操控,以达到特定的目的。
二、基因工程的应用基因工程技术的广泛应用,为许多领域带来了巨大的变革和进步。
以下是基因工程在医学、农业和环境中的应用示例。
1. 医学应用基因工程在医学领域中的应用非常广泛,其中包括基因治疗、生物药物生产、疫苗研发等。
通过基因治疗,可以将正常的基因导入患者体内,治疗一些遗传性疾病。
生物药物的生产利用基因工程技术可以实现大规模的高效合成,例如利用转基因细菌表达人类胰岛素。
此外,基因工程还为疫苗的研发提供了新的思路和方法。
2. 农业应用基因工程在农业领域的应用主要集中在作物的遗传改良、疾病抗性和提高产量等方面。
基因工程技术与应用知识点

基因工程技术与应用知识点
1.基因工程技术的原理
基因克隆是指将感兴趣的基因从一个物种中剪切并插入到另一个物种
的DNA中。
首先,需要获得目标基因的DNA序列,然后通过PCR扩增得到
足够多的目标基因的DNA片段。
接下来,将目标基因的DNA片段与质粒进
行连接,形成重组质粒。
最后,将重组质粒导入宿主细胞中,使其进行复
制和表达。
这样,目标基因就被克隆到宿主细胞的基因组中。
转基因是指利用基因工程技术将外源基因导入目标细胞中,使其产生
新的功能或性状。
转基因主要通过两种方法实现:直接注射外源基因或利
用载体导入外源基因。
直接注射外源基因常用于转基因动物的制作,而利
用载体导入外源基因则常用于转基因植物的制作。
通过转基因技术,可以
实现农作物的抗虫、抗病、抗逆性增强,以及工业酶的大规模生产等。
2.基因工程技术的应用
农业领域:基因工程技术可以用于农作物的抗虫、抗病和抗逆性提高
等方面。
通过转基因技术,可以使植物表达抗虫蛋白,减少对农药的依赖;也可以导入外源基因,增强植物的抗逆性,使其在恶劣环境下仍能正常生长。
工业领域:基因工程技术可以用于工业酶的生产,如乳酸菌发酵生产
乳酸。
此外,基因工程还可以用于生物燃料的生产,如利用转基因酵母生
产乙醇。
基因工程指南学习基因工程技术和应用推动生命科学发展

基因工程指南学习基因工程技术和应用推动生命科学发展基因工程指南:学习基因工程技术和应用,推动生命科学发展(提示:以下是一个适合于基因工程指南的文章格式,其中包含了标题、小节和正文部分。
请注意,正文部分并不是根据具体内容写的,而是为了满足字数要求而编写的示例文本。
写作时,请根据实际内容来进行论述和阐述。
)一、引言基因工程是通过对生物体的基因进行改造和编辑,来研究和应用生物技术的一门学科。
本指南将提供给您关于基因工程技术和应用的基础知识和最新进展,以及推动生命科学发展的重要性。
二、基因工程技术基因工程技术是为了对生物体的基因进行更改和编辑,从而实现特定目的的一组技术工具和方法。
这些技术包括:1.基因克隆:通过将所需基因从一个生物体转移到另一个宿主生物体中,实现特定基因的表达和功能。
2.基因编辑:利用工具如CRISPR-Cas9系统,直接编辑生物体的基因序列,以实现基因的修正、插入或删除等操作。
3.转基因技术:将外源基因导入生物体中,使其表达新的特性或功能,为农业、医学等领域带来潜在的应用前景。
三、基因工程应用基因工程技术在多个领域有着广泛的应用,其中包括但不限于以下领域:1.农业领域:利用基因工程技术改良农作物的抗病虫性和适应环境的能力,提高产量和质量,为粮食安全和农业可持续发展作出贡献。
2.医学领域:通过基因工程技术开发新的药物和治疗方法,如基因治疗、干细胞治疗等,为疾病的预防和治疗带来希望。
3.环境保护:利用基因工程技术改造微生物,以降解有毒物质或清除环境中的污染物,促进环境的修复和保护。
四、生命科学发展的推动力基因工程技术的快速发展和广泛应用,对推动生命科学发展具有重要影响:1.突破性研究:基因工程技术为科学家们提供了研究生命本质和机制的强大工具,推动了生命科学领域的不断突破。
2.医学进步:基因工程技术的应用使得疾病的诊断和治疗更加精准和个性化,为医学进步和人类健康带来福音。
3.可持续发展:基因工程技术在农业领域的应用,有助于提高农作物的产量和质量,减少对土地、水资源的使用,为可持续农业发展提供支持。
高中生物基因工程知识点总结

高中生物基因工程知识点总结基因工程,作为现代生物技术的核心领域之一,在高中生物课程中占据着重要的地位。
它不仅具有深刻的理论意义,还在农业、医药等众多领域有着广泛的实际应用。
下面我们就来详细梳理一下高中生物中基因工程的相关知识点。
一、基因工程的概念基因工程,又叫基因拼接技术或 DNA 重组技术,是指按照人们的意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。
二、基因工程的基本工具1、限制性核酸内切酶(限制酶)限制酶能够识别双链 DNA 分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。
它具有特异性,即一种限制酶只能识别一种特定的核苷酸序列,并在特定的切点上切割 DNA 分子。
2、 DNA 连接酶DNA 连接酶的作用是将两个具有相同末端的 DNA 片段连接起来,形成磷酸二酯键。
3、运载体常用的运载体有质粒、噬菌体和动植物病毒等。
运载体需要具备的条件有:能在受体细胞中复制并稳定保存;具有一至多个限制酶切点,供外源 DNA 片段插入;具有标记基因,便于筛选。
三、基因工程的基本操作程序1、目的基因的获取目的基因可以从自然界中已有的物种中分离出来,也可以用人工的方法合成。
常用的方法有:从基因文库中获取、利用 PCR 技术扩增目的基因、通过化学方法人工合成。
2、基因表达载体的构建这是基因工程的核心步骤。
基因表达载体包括目的基因、启动子、终止子和标记基因等。
启动子是 RNA 聚合酶识别和结合的部位,能驱动基因转录出 mRNA;终止子是转录终止的信号;标记基因的作用是为了鉴别受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。
3、将目的基因导入受体细胞将目的基因导入植物细胞常用的方法有农杆菌转化法、基因枪法和花粉管通道法;导入动物细胞常用的方法是显微注射法;导入微生物细胞常用感受态细胞法。
4、目的基因的检测与鉴定检测目的基因是否导入受体细胞可以采用 DNA 分子杂交技术;检测目的基因是否转录出 mRNA 可以采用分子杂交技术;检测目的基因是否翻译成蛋白质可以采用抗原抗体杂交技术;还可以进行个体生物学水平的鉴定,比如抗虫或抗病的接种实验。
基因工程技术及应用

G
GATCC
CCTAG
G
G
GATCC
切
CCTAG
G
分
接
转
筛 表
2.2 基因工程操作步骤和相应技术
基因工程的操作包含以下步骤: • 获得目的基因 • 构造重组 DNA 分子 • 转化或转染 • 表达 • 蛋白质产物的分离纯化
2.2.1目的基因的获得
到哪里去找目的基因?一般来说,人的基因, 要从人体的组织细胞中去找;小鼠的基因要从 小鼠的组织细胞中去找。 目的基因的筛选和分离可采用以下方法进行: ①直接从染色体DNA中分离:仅适用于原核生 物基因的分离,较少采用。 ②人工合成:根据已知多肽链的氨基酸顺序, 利用遗传密码表推定其核苷酸顺序再进行人工 合成。适应于编码小分子多肽的基因。
隆所用的技术方法及相关工作称基因工程,也称重 组DNA技术.或重组DNA工艺学。
定义:基因工程是指将外源目的基因(一段 DNA片段)组合到载体DNA分子(质粒, 噬菌体或病毒等)中去,再使它转染进入 受体细胞(亦称寄主细胞),在受体细胞 中外源基因得以增殖和表达,从而得到期 望的由这个外源基因所编码的目的蛋白质。
重组DNA的筛选和鉴定
• 由于重组体导入宿主细胞的比例通常较低,因此需 要对含有重组体的宿主细胞进行筛选并作鉴定。可 采用以下方法进行:
• 根据重组体的表型进行筛选: 对于带有抗药基因的 质粒重组体,可采用插入灭活法进行筛选。如 pBR322中带有抗氨苄青霉素和抗四环素基因,当将 目的基因插入抗四环素基因后,就可引起该基因失 活,细菌对氨苄青霉素耐药,而对四环素敏感。在 含氨苄青霉素的培养基上能够生长,而在含四环素 的培养基上不能生长的细菌即为带重组质粒的细菌。
其原理是依据DNA半保留复制机理、DNA在不同 温度下变性、复性的特性,人为控制温度——使其 高温变性、低温复性、适温延伸,循环多次后,可使 目的基因得到扩增。
高中生物基因工程知识点总结

高中生物基因工程知识点总结一、基因工程1、基因工程:通过诱导、控制、修饰和组装酶分子改造生物的技术手段,即基因工程。
2、基因是什么:基因是DNA(deoxyribonucleic acid)在调控生物表达的功能单位,它是细胞在传递遗传信息的实体,也是遗传的核心物质。
它决定着生物体的各种性状特征。
3、基因的分类:基因可以按照性质和功能分为结构基因、调控基因和其他基因。
4、基因工程改造方法:基因工程技术有多种,包括基因重组技术、克隆技术、突变技术、转基因技术和增幅技术等。
二、基因工程在实验室中应用1、基因工程在实验室中的应用:基因工程技术在实验室中的应用大大提高了有关生命科学研究的准确性和灵敏度,广泛应用于药物研发、蛋白质检测、临床诊断等领域。
2、基因芯片:基因芯片是一种微小的电子设备,它可以通过在芯片上安装的特定探针来检测特定基因的表达情况或者其他特征。
这种技术可以用来快速检测病毒、细菌等多种病原体,也可以用来研究和监测人体疾病的进展情况。
3、基因测序:DNA测序技术是利用数字技术对准确确定和分析DNA序列的一种技术。
它可以用来检测基因组DNA的结构、查找靶基因和生物多样性、研究基因变异和肿瘤等。
4、基因合成:基因合成技术是以整合DNA的方式制造新的蛋白质的技术,它是把细菌、哺乳动物等常用基因以指定的比例混合在一起。
三、基因工程的发展1、基因工程的发展趋势:基因工程的发展将继续走向优化、分析和精细化。
将进一步提升对生命系统的认识,并能更好地利用基因信息提高生物系统的性能。
2、基因工程的应用场景:基因工程可用于转基因作物的研发、制药新药研发、生物燃料的生物柴油等方面的开发应用,还可以进行生命科学的深入研究,探索新的生物机理。
3、基因工程的未来发展:基因工程技术将在药物研发、医疗诊断、育种良种、食品检测、农药残留和农作物耐药性等方面获得更大的应用,发挥更大的作用,更好地促进人类健康。
基因工程技术与应用知识点

基因工程的定义:按照预先设计好的蓝图,利用现代分子生物学技术,特别是酶学技术,对遗传物质DNA直接进行体外重组操作与改造,将一种生物(供体)的基因转移到另外一种生物(受体)中去,从而实现受体生物的定向改造与改良.基因工程的基本过程:切、接、转、增、检基因工程理论依据:a)生物的遗传物质是DNA。
b) DNA的双螺旋结构和半保留复制机理.c)遗传信息的传递方式(中心法则)和三联体密码子系统的建立遗传工程:指以改变生物有机体性状为目标,采用类似工程技术手段而进行的对遗传物质的操作,以改良品质或创造新品种。
包括细胞工程和基因工程等不同的技术层次。
克隆。
指由同个祖先经过无性繁殖方式得到的一群由遗传上同一的DNA分子、细胞或个体组成的特殊生命群体.限制性核酸内切酶。
是一类能识别双链DNA 中特殊核苷酸序列,并使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶。
限制性内切酶由三个基因位点所控制:hsd R—-—限制性内切酶,hsd M---限制性甲基化酶,hsd S---控制两个系统的表达.Hsd S -识别特定DNA序列,Hsd M-甲基化,Hsd R -限制性内切酶功能。
命名法:例如Haemophilus influenzue)d 株中分离的第三个酶:Hin d III同裂酶:不同来源的限制酶具有相同的识别位点和切割位点。
同尾酶:来源不同、识别序列不同,但产生相同粘性末端的酶粘性末端:DNA末端一条链突出的几个核苷酸能与另一个具有突出单链的DNA末端通过互补配对粘合,这样的DNA末端,称之。
酶活性单位。
在合适的温度和缓冲液中,在50μl反应体系中,1小时内完全切割1微克DNA所需的酶量为1个酶活性单位U。
星活性:指限制性内切酶在非标准条件下,对与识别序列相似的其它序列也进行切割反应,导致出现非特异性的DNA片段的现象。
引起星活性原因:若使用buffer不当, 会有star activity,而star activity是指限制酶对所作用的DNA及序列失去专一性, 当酶辨认切割位置的能力降低,导致相似的序列或是错误的辨认序列长度也会作用,而产生错误的结果.连杆:化学合成的8~12个核苷酸组成的寡核苷酸片段。
应用基因工程技术在医学领域中的知识点

应用基因工程技术在医学领域中的知识点基因工程技术是指通过改变生物体的遗传物质,使其具备特定的功能或特征的一种技术手段。
在医学领域中,应用基因工程技术已经取得了卓越的成就。
本文将从几个方面介绍基因工程技术在医学领域中的知识点。
一、基因工程与基因治疗基因工程技术在医学领域中的一个重要应用是基因治疗。
基因治疗是指通过向患者体内导入正常的遗传物质,来治疗遗传性疾病或其他疾病的一种方法。
基因工程技术可以用于构建基因载体,将正常的基因导入患者的细胞中,从而修复或替代受损的基因。
这样一来,人们就可以通过基因治疗来治愈一些目前尚无有效治疗方法的疾病。
二、基因工程与生物药物基因工程技术还被广泛应用于生物药物的研发与生产。
生物药物是通过基因工程技术获得的具有特定功能的蛋白质药物。
通过将目标基因导入表达系统中,可以大规模生产需要的生物药物。
其中,重组蛋白是一类常见的生物药物,如重组人胰岛素、重组干扰素等。
这些生物药物具有较高的纯度和活性,能够更准确地靶向治疗疾病,提高患者的治疗效果。
三、基因工程与基因检测基因工程技术在医学领域中还被用于基因检测,即通过检测个体的基因组,了解其携带的基因变异及相关疾病风险。
基因检测可以帮助人们预测个体患病的风险,及时采取相应的预防和治疗措施。
例如,BRCA1和BRCA2基因突变与乳腺癌、卵巢癌的发生密切相关,通过基因检测可以提前发现携带这些基因突变的个体,并采取预防措施,降低患病风险。
四、基因工程与干细胞治疗基因工程技术在干细胞治疗方面也发挥了重要作用。
干细胞是一类具有自我更新和分化能力的细胞,可以分化为不同类型的细胞,具有很大的治疗潜力。
通过基因工程技术,可以改变干细胞的分化方向,使其转化为特定类型的细胞,用于治疗一些难以治愈的疾病,如心脏病、神经系统疾病等。
干细胞治疗被认为是一种前景广阔的治疗方法,可以为一些目前无法治愈的疾病带来新的希望。
五、基因工程与药物研发基因工程技术在药物研发领域中的应用也越来越广泛。
生物基因工程知识点总结总结

生物基因工程知识点总结总结生物是与我们生活联系最为紧密的学科。
高中生物的学科特点不同于数学物理,学好高中生物既需要严密的逻辑思维,又要求精准地记忆。
下面是整理的生物基因工程知识点总结,仅供参考希望能够帮助到大家。
生物基因工程知识点总结一、基因工程及其应用基因工程概念:基因工程又叫基因拼接技术或DNA重组技术。
通俗的说,就是按照人们意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。
原理:基因重组结果:定向地改造生物的遗传性状,获得人类所需要的品种。
二、基因工程的工具1、基因的“剪刀”—限制性核酸内切酶(简称限制酶)(1)特点:具有专一性和特异性,即识别特定核苷酸序列,切割特定切点。
(2)作用部位:磷酸二酯键(4)例子:EcoRI限制酶能专一识别GAATTC序列,并在G和A 之间将这段序列切开。
(黏性末端)(黏性末端)(5)切割结果:产生2个带有黏性末端的DN断。
(6)作用:基因工程中重要的切割工具,能将外来的DNA切断,对自己的DNA无损害。
注:黏性末端即指被限制酶切割后露出的碱基能互补配对。
基因的“针线”——DNA连接酶作用:将互补配对的两个黏性末端连接起来,使之成为一个完整的DNA分子。
连接部位:磷酸二酯键基因的运载体(1)定义:能将外源基因送入细胞的工具就是运载体。
(2)种类:质粒、噬菌体和动植物病毒。
三、基因工程的操作步骤1、提取目的基因2、目的基因与运载体结合3、将目的基因导入受体细胞4、目的基因的检测和鉴定四、基因工程的应用1、基因工程与作物育种:转基因抗虫棉、耐贮存番茄、耐盐碱棉花、抗除草作物、转基因奶牛、超级绵羊等等2、基因工程与药物研制:干扰素、白细胞介素、溶血栓剂、凝血因子、疫苗3、基因工程与环境保护:超级细菌五、转基因生物和转基因食品的安全性两种观点是:1、转基因生物和转基因食品不安全,要严格控制2、转基因生物和转基因食品是安全的,应该大范围推广。
植物基因工程技术和应用介绍

3.改良营养品质。植物基因工程可以改变种子的营养含量和组成;转基因植物也可作为一种生物反应器,生产有机化合物、药物蛋白、植物次生代谢产物等。
4.基因功能研究。转基因植物可以帮助研究人员研究某些基因的功能及其在生长发育中的作用等。
b.基因沉默
基因沉默是转基因中植物特定基因表达抑制或者表达量很低的现象。基因沉默技术可用来研究基因功能和植物遗传改良。常见的用于植物基因沉默的技术包括RNA干扰(RNAi)和病毒介导的基因沉默(VIGS)。VIGS是利用病毒将目的基因引入受体植物,它在大规模基因功能研究方面有着巨大优势,但是由于不能稳定遗传,在植物改良种的应用有所局限。RNAi具有操作简单费用低等特点,应用广泛。
c.基因过表达
基因过表达属于反向遗传学策略的一种,通过调节一个或多个基因的表达水平,观察表型改变,从而研究基因功能和分子机制。通过将目的基因克隆到带有启动子、复制子以及抗性标记和筛选基因的质粒上,导入受体植物基因组中,实现目的基因的过表达。基因过表达可以作为基因敲除的替代或互补实验来研究植物功能。
2.遗传转化策略
[3]刘彦锋,刘瑛,李娜.植物抗病基因工程的研究进展及前景展望[J].生物技术通报,2005(05):7-10.
[4]田继微,刘建丰,王育花.基因枪法转化水稻的研究进展[J].云南农业大学学报,2004(06):623-626+634.
毫无疑问,CRISPR/Cas9是最受关注的基因编辑技术,也被认为是植物基因工程最佳选择。CRISPR/Cas9基因编辑技术利用的是原核生物的先天防御系统,缺点是存在一定的脱靶现象。主要的应对策略是设计适合的导向RNA,使得在基因组中与其他位点有最小的序列同源性。CRISPR/Cas9技术已经被用于模式植物(如拟南芥和烟草)和作物(高粱、小麦和玉米),表现出广泛的应用前景。
基因工程的原理与应用例题和知识点总结

基因工程的原理与应用例题和知识点总结基因工程,作为现代生物技术的核心领域,正以前所未有的速度改变着我们的生活和未来。
它就像是一把神奇的钥匙,为人类打开了探索生命奥秘和解决诸多难题的大门。
一、基因工程的原理基因工程,简单来说,就是按照人们的意愿,把一种生物的基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。
要实现这一过程,需要以下几个关键步骤:1、提取目的基因目的基因是我们想要研究或应用的特定基因。
提取的方法多种多样,比如可以从基因文库中获取,也可以通过PCR 技术(聚合酶链式反应)进行扩增。
2、基因表达载体的构建这是基因工程的核心步骤。
就好比要把珍贵的宝石镶嵌在合适的底座上,我们要把目的基因连接到合适的载体上,形成一个能够在受体细胞中稳定存在和表达的基因表达载体。
载体通常是一些小型的 DNA分子,如质粒。
3、将目的基因导入受体细胞这就像是把准备好的礼物送到收件人的手中。
导入的方法根据受体细胞的不同而有所差异。
例如,对于植物细胞,可以使用农杆菌转化法、基因枪法等;对于动物细胞,可以采用显微注射法;对于微生物细胞,则常用感受态细胞法。
4、目的基因的检测与鉴定导入之后,还需要确定目的基因是否成功进入受体细胞并且发挥了作用。
常用的检测方法包括 DNA 分子杂交、分子杂交和抗原抗体杂交等。
二、基因工程的应用基因工程的应用领域极为广泛,给农业、医学、工业等多个领域带来了深刻的变革。
1、农业领域(1)培育抗虫、抗病、抗逆的作物新品种通过将抗虫、抗病基因导入农作物,减少了农药的使用,降低了环境污染,同时提高了农作物的产量和质量。
(2)改良农产品品质比如,通过基因工程技术,可以增加水果的甜度、延长蔬菜的保鲜期等。
2、医学领域(1)生产药物利用基因工程技术,可以让微生物或动物细胞大量生产人类所需的药物,如胰岛素、生长激素等。
(2)基因治疗针对一些遗传性疾病,通过将正常基因导入患者体内,以纠正或补偿缺陷基因,达到治疗疾病的目的。
基因工程与转基因技术应用知识点总结

基因工程与转基因技术应用知识点总结基因工程是一种通过人为手段改变生物体遗传结构和功能的技术,转基因技术则是基于基因工程的方法,将外源基因导入目标生物体中,使其获得新的性状或功能。
本文将从三个方面对基因工程与转基因技术的应用进行总结。
一、医学应用1. 治疗遗传性疾病:基因工程技术可以用于治疗一些遗传性疾病,如血友病、囊性纤维化等。
通过将正常的基因导入患者的体内,可以修复受损的基因,从而使患者恢复正常功能。
2. 生产重要疫苗:转基因技术可以用于生产一些重要的疫苗,如乙肝疫苗、流感疫苗等。
通过将与疾病相关的基因导入细菌或其他微生物中,可以使其在表达过程中产生相应的抗原,从而用于制备疫苗。
3. 基因治疗:基因工程技术可以通过将特定的基因片段导入患者体内,来治疗一些难治性疾病,如癌症、艾滋病等。
这种方法可以针对疾病的具体基因变异进行精准治疗,具有很高的潜力。
二、农业应用1. 转基因作物:转基因技术可以改良传统农作物,使其具备更好的抗病性、耐旱性、耐寒性等性状。
例如,转基因水稻可以增加抗虫性,提高产量;转基因玉米可以提高抗除草剂的能力,减少农药使用。
2. 增强植物营养价值:通过转基因技术,可以增加农作物的营养价值,例如,转基因大豆可以增加花青素含量,提高抗氧化能力;转基因小麦可以增加维生素含量,提高人体吸收率。
3. 疾病防控:转基因技术可以用于预防和控制作物疾病的传播,例如,转基因西瓜可以增加对病毒的抵抗能力,减少病毒传播风险;转基因马铃薯可以增加对真菌的抵抗能力,减少病害发生。
三、环境应用1. 污染物降解:转基因微生物可以通过改造代谢途径,加强对环境中污染物的降解能力。
例如,转基因细菌可以用于处理油污染、重金属污染等。
2. 增强植物适应性:通过转基因技术,可以使植物在恶劣环境中更好地生存。
例如,转基因植物可以增加对盐碱地的耐受性,改善土壤质量。
3. 生物修复:利用转基因技术,可以通过改造植物或微生物的基因,使其对环境中的有害物质具有吸附、分解或转化能力,促进环境的修复。
基因工程及其应用

基因工程及其应用编稿:闫敏敏审稿:宋辰霞【学习目标】1、简述基因工程的原理。
2、举例说明基因工程在农业、医药等领域的应用。
3、关注转基因生物和转基因食品的安全性。
【要点梳理】要点一、基因工程的原理1、对概念的理解基因工程的别名基因拼接技术或DNA重组技术操作环境生物体外操作对象基因操作水平DNA分子水平基本过程剪切→拼接→导入→表达结果人类需要的基因产物2、基因工程的工具(1)基因的“剪刀”——限制性核酸内切酶①概念:限制酶是生物体内的一种酶,能将外来的DNA分子切断,由于这种切割作用是在DNA分子内部进行的,故名限制性内切酶。
②特点:特异性。
即一种限制酶只能识别一种特定的核苷酸序列,并且能在特定的切点上切割DNA分子。
要点诠释:①限制酶切割的是脱氧核苷酸之间(磷酸和脱氧核糖之间)的化学键——磷酸二酯键,不是切割碱基之间的氢键。
②限制酶切割目的基因不一定都产生黏性末端,也可能产生整齐的末端。
(2)基因的“针线”——DNA连接酶把黏性末端之间的缝隙“缝合”起来,这样一个重组DNA分子就形成了。
如下图:要点诠释:DNA连接酶连接的也是磷酸和脱氧核糖之间的化学键——磷酸二酯键,而不是碱基之间的氢键。
(3)基因的“运载工具”——运载体①常用的运载体:细菌细胞质的质粒、噬菌体或某些动植物病毒。
其中,质粒是基因工程最常用的运载体。
②条件:a.能在受体细胞内稳定保存并大量复制;b.有多个限制酶切点,以便与外源基因连接;c.有标记基因,便于进行筛选。
3、基因工程的原理:基因重组4、基因重组与基因工程比较要点二、基因工程的基本操作步骤第一步:获取目的基因第二步:目的基因与运载体结合第三步:将目的基因导入受体细胞第四步:目的基因的检测和表达要点三、基因工程的应用【高清课堂:基因工程及其应用高清未发布基因工程的应用】1、基因工程与遗传育种(1)获得高产、抗逆性强的优质转基因植物①抗虫转基因植物②抗病(病毒、细菌、真菌)转基因植物③抗逆转基因植物④利用转基因改良植物的品质(2)具有优良性状或特殊用途的转基因动物2、基因工程与疾病治疗(1)生产基因工程药品:利用基因工程菌等生产的药物有:胰岛素、干扰素、人生长激素、乙肝疫苗等60余种。
基因工程技术的原理与应用例题和知识点总结

基因工程技术的原理与应用例题和知识点总结基因工程技术,作为现代生物技术的核心领域之一,正以惊人的速度改变着我们的生活和未来。
它就像是一把神奇的钥匙,打开了生命奥秘的大门,让我们能够对生物的基因进行精确的操作和改造。
接下来,让我们一起深入探索基因工程技术的原理、应用例题,并对重要的知识点进行总结。
一、基因工程技术的原理基因工程技术的核心原理基于对DNA 分子结构和功能的深入理解。
我们知道,DNA 是由四种碱基(腺嘌呤 A、胸腺嘧啶 T、鸟嘌呤 G、胞嘧啶 C)组成的双螺旋结构,这些碱基的排列顺序决定了基因所携带的遗传信息。
基因工程的第一步是获取目的基因。
这可以通过从生物体的基因组中直接分离,或者利用反转录法从 mRNA 合成 cDNA 来实现。
例如,如果我们想要获取胰岛素基因,就可以从胰岛细胞中提取 mRNA,然后通过反转录酶合成 cDNA。
获得目的基因后,需要将其与合适的载体(如质粒、噬菌体等)进行连接,构建重组 DNA 分子。
这个过程就像是给目的基因找了一辆“车”,以便将其运输到目标细胞中。
在连接过程中,需要使用特定的限制酶和 DNA 连接酶。
限制酶能够识别特定的碱基序列,并在该位置切割 DNA 分子,产生粘性末端或平末端;DNA 连接酶则能够将具有相同末端的 DNA 片段连接起来。
接下来,将重组 DNA 分子导入受体细胞。
常用的导入方法包括转化(对于细菌等原核生物)、转染(对于动物细胞)和农杆菌介导法(对于植物细胞)等。
一旦重组 DNA 分子成功进入受体细胞,它就可以随着细胞的分裂和遗传进行复制和表达。
最后,通过筛选和鉴定,选出含有目的基因并且能够正确表达的受体细胞。
这可以通过抗性标记、分子杂交等技术来实现。
二、基因工程技术的应用例题(一)生产药物胰岛素是治疗糖尿病的重要药物。
过去,胰岛素主要从动物的胰腺中提取,不仅产量低,而且成本高。
通过基因工程技术,我们可以将人的胰岛素基因导入大肠杆菌或酵母细胞中,使其大量表达胰岛素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基因工程的定义:按照预先设计好的蓝图,利用现代分子生物学技术,特别是酶学技术,对遗传物质DNA 直接进行体外重组操作与改造,将一种生物(供体)的基因转移到另外一种生物(受体)中去,从而实现受体生物的定向改造与改良。
基因工程的基本过程:切、接、转、增、检基因工程理论依据:a) 生物的遗传物质是DNA。
b) DNA的双螺旋结构和半保留复制机理。
c)遗传信息的传递方式(中心法则)和三联体密码子系统的建立遗传工程:指以改变生物有机体性状为目标,采用类似工程技术手段而进行的对遗传物质的操作,以改良品质或创造新品种。
包括细胞工程和基因工程等不同的技术层次。
克隆。
指由同个祖先经过无性繁殖方式得到的一群由遗传上同一的DNA分子、细胞或个体组成的特殊生命群体。
限制性核酸内切酶。
是一类能识别双链DNA中特殊核苷酸序列,并使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶。
限制性内切酶由三个基因位点所控制:hsd R---限制性内切酶,hsd M---限制性甲基化酶,hsd S---控制两个系统的表达。
Hsd S-识别特定DNA序列,Hsd M-甲基化,Hsd R-限制性内切酶功能。
命名法:例如Haemophilusinfluenzue)d 株中分离的第三个酶:Hin d III同裂酶:不同来源的限制酶具有相同的识别位点和切割位点。
同尾酶:来源不同、识别序列不同,但产生相同粘性末端的酶粘性末端:DNA末端一条链突出的几个核苷酸能与另一个具有突出单链的DNA末端通过互补配对粘合,这样的DNA末端,称之。
酶活性单位。
在合适的温度和缓冲液中,在50μl反应体系中,1小时内完全切割1微克DNA所需的酶量为1个酶活性单位U。
星活性:指限制性内切酶在非标准条件下,对与识别序列相似的其它序列也进行切割反应,导致出现非特异性的DNA片段的现象。
引起星活性原因:若使用buffer不当, 会有star activity,而star activity是指限制酶对所作用的DNA及序列失去专一性, 当酶辨认切割位置的能力降低,导致相似的序列或是错误的辨认序列长度也会作用,而产生错误的结果。
连杆:化学合成的8~12个核苷酸组成的寡核苷酸片段。
以中线为轴两边对称,其上有一种或几种限制性核酸内切酶的识别序列,酶切后可产生一定的粘性末端,便于与具有相同粘性末端的另一DNA片段连接。
底物位点优势效应:酶对同一个DNA底物上的不同酶切位点的切割速率不同衔接头:化学合成的寡核苷酸,含有一种以上的限制性核酸内切酶识别序列。
其一端或两端具有一种或两种内切酶切割产生的黏性末端。
逆转录酶:以mRNA为模板合成其互补DNA。
RNA 聚合酶:以DNA为模板合成mRNA,不需引物,但必须有启动子。
末端转移酶:不依赖于DNA的DNA聚合酶,来自于小牛胸腺组织,在DNA分子的3端增加一个或多个脱氧核苷酸。
多核苷酸激酶:对核酸末端羟基进行磷酸化的酶。
防止载体分子的自身环化作用:使用不同的限制酶切;碱性磷酸酶预先处理质粒载体;DNA片段5’端脱磷酸化作用后连接。
;DNA片段末端同聚物加尾后进行连接载体:指能够运载外源DNA片段(目的基因)进入受体细胞,具有自我复制能力,使外源DNA片段在受体细胞中得到扩增和表达,不被受体细胞的酶系统所破坏的一类DNA分子。
功能:1运送外源基因高效转入受体细胞2为外源基因提供复制能力或整合能力3为外源基因的扩增或表达提供条作为工程载体必备的条件:具有多个单一的限制酶切位点;有复制起点,在受体细胞中能自我复制,或整合到染色体DNA上随染色体DNA的复制而同步复制;具有筛选转化子的选择性标记基因;安全,不含对受体细胞有害的基因,不会任意转入受体细胞以外的其它生物细胞中;分子量小,拷贝数多;携带外源基因的幅度宽。
克隆载体:用于在受体细胞中进行目的基因扩增的载体。
一般具有较1d低的分子量、较高的拷贝数和松弛型复制子。
表达载体。
指专用于在宿主细胞中高水平表达外源蛋白质的载体,可将重组体DNA导入适合的受体细胞,使所载的目的基因能够复制、转录和翻译。
穿梭载体:能在两种不同的生物体内复制的载体。
主要用于原核细胞与真核细胞之间进行基因转移质粒:指独立存在于宿主细胞染色体外、能够自我复制的DNA分子。
严谨型质粒:拷贝数为1至几个的质粒。
松弛型质粒:拷贝数多于10个的质粒。
氯霉素扩增:用氯霉素抑制蛋白质合成并阻断细菌染色体复制时,带有pMB1或ColEI复制子的质粒扔会利用丰富的原料大量复制的的现象。
质粒不亲和性:指在无选择压力的情况下,两种亲缘关系密切的不同质粒不能在同一个寄主细胞中稳定共存的现象。
接合质粒。
指质粒所携带的基因的功能是使细胞彼此有效地接触,以便将质粒DNA从供体细胞转移至受体细胞的质粒。
质粒有哪些性质:自主复制性、可扩增性、不亲和性、转移和迁移、重组性。
cos位点:指在连接酶的作用下,连接黏性末端结合形成的双链DNA区段。
柯斯质粒载体:是一类人工构建的含有DNA cos 位点、噬菌体包装有关的DNA短序列、质粒DNA复制起点、抗生素标记基因等元件的特殊质粒载体。
在宿主细胞中可以作为正常噬菌体进行复制,但不表达噬菌体的任何功能。
人工染色体:指人工构建的含有天然染色体基本功能单位的载体系统。
主要有酵母人工染色体(YAC,在大规模的测序中例如人类基因组计划是非常有用的还有用于高等生物构建基因组文库,缺点是:1存在嵌合现象,嵌合体比例比较高,2 YAC 克隆的稳定性差, 插入片段存在重排和丢失现象,3插入片段的分离和纯化困难,不容易与酵母自身染色体相分离。
)、细菌人工染色体(BAC)、源于噬菌体P1的人工染色体(PAC),它们的特点是载体的容载能力扩大,人工染色体具备三个元件:复制起始区/自主复制序列,参与染色体DNA复制起始结构的形成;着丝粒,负责染色体向子细胞传递;端粒, 对染色体DNA两个末端起封口和保护作用。
λ-DNA作为载体的优点:1) λ-DNA可在体外包装成噬菌体颗粒,能高效感染大肠杆菌;2) λ-DNA作为载体,其装载外源DNA的能力为25kb,远远大于质粒的装载量;3) 重组λ-DNA的筛选较为方便, 可进行正向筛选和杂交筛选;4) 重组λ-DNA分子的提取比质粒容易PCR反应体系的成份:Taq酶、模板DNA、引物、dNTP、PCR 缓冲液PCR反应的步骤:①DNA变性:(90℃-96℃):双链DNA模板在热作用下,氢键断裂,形成单链DNA。
②退火:(60℃-65℃):系统温度降低,引物与DNA模板结合,形成局部双链。
③延伸:(70℃-75℃):在Taq 酶(在72℃左右,活性最佳)的作用下,以dNTP为原料,从引物的3′端开始以从5′→3′端的方向延伸,合成与模板互补的DNA链。
探针:具有一定序列的核苷酸片段,能与互补的核酸序列复性杂交,并且能通过适当标记进行检测。
目的基因。
是指已被或欲被分离、改造、扩增和表达的特定基因或DNA片段。
基因文库:是某种特定的生物所含有的能够包含所有基因的足够数目的克隆的集合cDNA文库。
以mRNA为模板,经反转录产生的各种cDNA片段分别与克隆载体重组,贮存在一种受体菌群体中,这样的群体称为cDNA文库。
构建步骤:分离纯化总RNA及mRNA;•cDNA第一链的合成•双链cDNA合成•与载体重组、转化基因组文库:某种生物的基因组的全部遗传信息通过克隆载体贮存在一个受体菌的群体中,这个群体即为这种生物的基因组文库。
探针杂交原理。
任意两条单链核酸分子都有相互形成碱基对的趋势。
但形成的大多数分子对由于只有少数链间氢键形成,杂交结构并不稳定。
如果多聚核苷酸链是互补的,碱基对的大量形成使双链分子稳定。
原位杂交技术:基本原理是利用核酸分子单链之间有互补的碱基序列,将有放射性或非放射性的外源核酸(即探针)与组织、细胞或染色体上待测DNA或RNA互补配对,结合成专一的核酸杂交分子,经一定的检测手段将待测核酸在组织、细胞或染色体上的位置显示出来。
cDNA文库的构建步骤:分离纯化总RNA及mRNA (P104-110)、cDNA第一链的合成、双链cDNA合成、与载体重组、转化从基因文库中获取目的基因的方法:PCR法、化学合成法、分离目的基因的方法和原理:1从生物基因组群体中分离目的基因(原核生物基因组较小,基因容易定位,用限制性内切酶将基因组切成若干段后,用带有标记的核酸探针,从中选出目的基因.真核生物一般通过基因组文库的方法获得目的基因.)2人工合成目的基因DNA片段(人工合成目的基因DNA片段有化学合成和酶促合成法两条途径.一般是采用DNA合成仪来合成长度不是很大的DNA片段.)3 PCR反应合成DNA(PCR是以2d3dDNA 变性、复制的某些特性为原理设计) 受体细胞选择的原则;•外源DNA 分子能稳定存在,限制酶缺陷型;•重组基因缺陷型; •易于转化/ 转导;•易筛选•遗传稳定性高,易于扩大培养;•安全性高;•内源蛋白酶基因缺失或缺陷;•遗传密码无明显偏好性;•具有较好的转译加工机制;•较高的理论和实践应用价值。
转化:以质粒为载体的重组DNA 分子引入受体细胞的过程。
转染:以噬菌体或病毒为载体的重组DNA 分子引入受体细胞的过程。
转导:是指通过λ噬菌体(病毒)颗粒感染宿主细胞的途径把外源DNA 分子转移到受体细胞内的过程。
感受态细胞:指处于能吸收周围环境中DNA 分子的生理状态的细胞。
转化率:是指DNA 分子转化受体菌获得转化子的效率 几种常见的转化方法:1化学转化法:• 原理:0ºC、低浓度(50~100 mM )CaCl2,Ca2+改变细胞膜的磷脂层结构,提高膜的通透性,而且增强进入细胞的DNA 分子抗DNase 的能力。
特点:操作简便,不需特殊仪器,一般实验室均可进行。
2电激法•原理:利用高压电脉冲作用,在细菌细胞膜上进行电穿孔,形成可逆的瞬间通道,促进外源DNA 的有效吸收。
•特点:感受态细胞制备简单;用途广泛,但需特殊仪器电激仪。
原生质体转化、噬菌体转化。
正向选择•重组子在培养基上能生长,而非重组子不能生长。
根据插入序列的表型特征进行筛选:1限制性内切酶法:可以通过限制性酶酶切重组质粒,电泳分析插入片段长度是否正确。
2 PCR 法:如果已知插入DNA 片段的某些序列,就可以通过PCR 的方法进行鉴定。
3菌落原位杂交法:直接把菌落或噬菌斑印迹转移到杂交膜上,不必进行核酸分离纯化、限制酶酶切及凝胶电泳分离等操作,而是经溶菌和变性处理后使DNA 暴露出来并与杂交膜结合,再与特异性标记探针杂交,筛选出含有插入序列的菌落或噬菌斑。
4基因产物检测法:如果使用的是表达载体,那么就可以通过鉴定基因产物的方法鉴定正确的克隆。
α-互补:lacZ 基因上缺失近操纵基因区段的突变体lacZ’可以与带有完整的近操纵基因区段的β-半乳糖苷酶阴性突变体之间实现互补。