水环境监测遥感技术的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水环境监测遥感技术的应用
我国水环境状况不断恶化,提高水环境监测效率的工作势在必行。传统监测方式存在局限性,在现实需求与现有监测方式不足这一矛盾不断激化的背景下,遥感技术在水环境监测中得到快速而广泛的应用。随着遥感技术的不断发展,遥感数据的时间、空间和光谱分辨率将越来越高,生态监测的频次、监测内容和数据精度也会逐步提高,为遥感技术在水环境监测中的应用提供了更坚固的保障。
1.遥感技术在水环境中的应用
遥感是指在不直接接触目标地物的情况下,对目标地物进行远距离探测、识别和获取地物信息的过程,空间中的电磁波、声波、重力场等都可用作遥感,但通常所述遥感是指利用电磁波获取目标地物信息的电磁波遥感。由于任何温度高于绝对零度的物体均能发射、反射或吸收能量辐射,而且不同物体有不同性质结构,所以不同地物均具有其独特的辐射特性。同样在水环境监测中,不同温度、泥沙含量、藻类数量、污染程度的水体也都有不同的辐射特性,通常各种水体的特性可以通过遥感图像反映出来。污染水体具有不同于清洁水体的光谱特征,这些光谱特征体现在对特定波长的吸收或反射,而且这些光谱特征能够为遥感器捕获并在遥感图像中体现出来。根据对图像的识别情况,我们就可以获得水体的水质参数或者水体污染状况。有基于此,遥感技术可以在水环境监测中得到应用。
伴随着社会经济等各方面的快速发展,我国江河湖海的各种水体受污染程度也不断加重,包括生活废水污染、泥沙等悬浮固体污染、石油污染、重金属污染、富营养化污染和热污染等。中国环境监测总站提供资料表明,我国水环境面临三大问题:①主要污染物排放量远远超过水环境容量;②江河湖泊普遍遭受污染;③生态用水缺乏,水环境恶化加剧。水污染的现状可以表明,我国水环境污染形势严峻,因此提高水环境监测效率的工作势在必行。传统方式的水环境监测主要是地面布点采样,然后实验室分析得出结论,这种方式由于受自然条件和时空等因素影响,具有一定的局限性。例如,在大面积水域的监测过程中,仅仅依赖于监测台站和传统监测方式,很难满足对水体污染监测所需的实时、快速、宏观、准确的监测要求,从而不能全面准确地反映出水体状
况。而与传统监测方式相比,遥感技术具有宏观、综合、动态和快速的特点,并且可以获取其他监测手段无法获取的信息。水环境状况的恶化和传统监测方式的不足,将促使遥感技术在水环境监测中的广泛应用。
2.水环境遥感应用的常用平台与数据
通常,水环境监测主要利用的是卫星遥感和航空遥感平台,主要利用的数据包括遥感集市高分数据GF-1、ZY-3数据、美国Landsat-MSS、TM数据,法国SPOT-HRV数据以及各种航空遥感数据。20世纪70年代到80年代初,航空遥感广泛应用于监测海水中的浮游植物;80年代中期以后遥感监测水质的工作主要利用卫星数据和航天平台上的多光谱扫描仪及成像光谱仪的遥测数据。水环境遥感监测中常用数据就其应用可以归为以下几类。
2.1多光谱遥感数据
在水环境的遥感监测中,常用的多光谱遥感数据包括遥感集市GF1-WFV1、美国Landsat-MSS、TM、法国SPOT-HRV、等的图像数据,以及中国与古巴合作的地球资源1号卫星(CBERS)的CCD相机数据等。MSS数据最早被用于内陆水体的水质监测,如Lathrop和Kloiber等学者的研究表明内陆水体中的叶绿素a浓度、悬浮物浓度可以通过MSS数据监测。Lathrop 等对美国Michigan 湖的Green 湖湾作了一系列遥感研究,估测了包括叶绿素a、悬浮物、透明度在内的多项参数,取得了较理想的结果。李旭文等利用TM 数据对苏州运河水质进行过综合分析。余丰宁等用 TM 图像对太湖北部水质进行了主成分监督分类的研究。
2.2高光谱遥感数据
现有高光谱数据可以分为两类:成像光谱仪数据和非成像光谱仪数据。成像光谱仪数据主要利用的是美国的 AVIRIS 数据、加拿大的 CASI 数据、芬兰的 AISA数据、中国的 PHI 数据以及 OMIS 数据、SEAWIFS 数据。非成像光谱仪是指不以影像记录为目的,而是以非影像的方式记录信息的地面光谱测量仪。例如,ASD 野外光谱仪、便携式超光谱仪等。在对我国太湖进行水质监测时,水面光谱测量就使用了 GRE-1500 便携式超光谱仪。
2.3新型的更为先进的遥感数据
事实上新型遥感数据也无外乎多光谱和高光谱遥感数据,但是新的卫星升空为水环境的遥感监测提供了更高空间、时间和光谱分辨率的遥感数据。如ETM+、MERIS多光谱数据,Hyperion、MODIS高光谱数据。新型卫星遥感数据在水环境监测中的应用在国内外尚处于起步阶段,其特性为水环境监测提供了机遇。MODIS是EOS-AM1系列卫星的主要探测仪器,属于波段不连续(光谱范围0.4~14.5μm)、数量少(波段36个)、地面分辨率较低的一类高光谱传感器。其空间分辨率为250m、500m、1000m,每日或每两日可获得一次全球观测数据,适合进行大范围动态监测。
3.水体的光谱特征
由于遥感测定的是地物的反射辐射,所以我们以反射波谱特性曲线来研究水体的光谱特征,反射波谱特性曲线是指某物体的反射率(或反射辐射能)随波长变化的规律,以波长为横坐标、反射率为纵坐标所得的曲线。
3.1自然水体的光谱特征
自然水体的反射主要在蓝绿光波段,其他波段吸收率很强,特别是在近红外、中红外波段有很强的吸收带,反射率几乎为零,因而在红外波段上水体比较容易识别。较洁净自然水体在0.4~1.1μm波段的光谱反射率约1%~3%,其平均反射率约2%。但当水中含有其他物质时,反射光谱曲线会发生变化。当含有泥沙时,由于泥沙的散射作用,可见光波段发射率会增加,峰值出现在黄红区;当水中含有叶绿素时,近红外波段明显抬升;由泥沙、天然有机物和浮游生物造成的浑浊水体通常比清澈水体的光谱反射率要高一些。有研究表明,浑浊河水(含悬浮物质99mg/L)比清澈湖水(含悬浮物质10mg/L)的光谱反射率高1.5%~6%。这些都是影响分析的重要数据。
3.2污染水体的光谱特征
污染物质种类各异,其物理化学性质也不尽相同,因而对水体的光谱反射率影响也各不相同。含黑色物质和暗色物质悬浮物较多的污染水体,在0.4~1.1μm波段的反射率比洁净的自然水体的反射率略低一些;含中等色调悬浮污染物质较多的水体其在上述波长的反射率比洁净水体的反射率要高一些;而含浅色和白色色调悬浮污染物质较多的水体,其在0.4~1.1μm波段的反射率则显著地高于洁净的自然水体的反射率