浅谈机器人智能控制研究

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.. .

科技大学

2015 级研究生课程考试答题纸

考试科目机械制造与装配自动化专业机械工程

学号1505048

考生乔旭光

考生类别专业学位硕士

浅谈机器人智能控制研究

摘要:以介绍机器人控制技术的发展及机器人智能控制的现状为基础,叙述了模糊控制和人工神经网络控制在机器人中智能控制的方法。讨论了机器人智能控制中的模糊控制和变结构控制,神经网络控制和变结构控制,以及模糊控制和神经网络控制等几种智能控制技术的融合。并对模糊控制和神经网络控制等方法中的局限性作出了说明。

关键词:机器人;智能控制;模糊控制;人工神经网络

1 智能控制的主要方法

随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出崭新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。

智能控制技术的主要方法有模糊控制、基于知识的专家控制、神经网络控制和集成智能控制等,以及常用优化算法有:遗传算法、蚁群算法、免疫算法等。1.1 模糊控制

模糊控制以模糊集合、模糊语言变量、模糊推理为其理论基础,以先验知识和专家经验作为控制规则。其基本思想是用机器模拟人对系统的控制,就是在被

控对象的模糊模型的基础上运用模糊控制器近似推理等手段,实现系统控制。在实现模糊控制时主要考虑模糊变量的隶属度函数的确定,以及控制规则的制定二者缺一不可。

1.2 专家控制

专家控制是将专家系统的理论技术与控制理论技术相结合,仿效专家的经验,实现对系统控制的一种智能控制。主体由知识库和推理机构组成,通过对知识的获取与组织,按某种策略适时选用恰当的规则进行推理,以实现对控制对象的控制。专家控制可以灵活地选取控制率,灵活性高;可通过调整控制器的参数,适应对象特性及环境的变化,适应性好;通过专家规则,系统可以在非线性、大偏差的情况下可靠地工作,鲁棒性强。

1.3 神经网络控制

神经网络模拟人脑神经元的活动,利用神经元之间的联结与权值的分布来表示特定的信息,通过不断修正连接的权值进行自我学习,以逼近理论为依据进行神经网络建模,并以直接自校正控制、间接自校正控制、神经网络预测控制等方式实现智能控制。

1.4 学习控制

(1)遗传算法学习控制

智能控制是通过计算机实现对系统的控制,因此控制技术离不开优化技术。快速、高效、全局化的优化算法是实现智能控制的重要手段。遗传算法是模拟自然选择和遗传机制的一种搜索和优化算法,它模拟生物界/生存竞争,优胜劣汰,适者生存的机制,利用复制、交叉、变异等遗传操作来完成寻优。遗传算法作为优化搜索算法,一方面希望在宽广的空间进行搜索,从而提高求得最优解的概率;另

一方面又希望向着解的方向尽快缩小搜索围,从而提高搜索效率。如何同时提高搜索最优解的概率和效率,是遗传算法的一个主要研究方向。

(2)迭代学习控制

迭代学习控制模仿人类学习的方法、即通过多次的训练,从经验中学会某种技能,来达到有效控制的目的。迭代学习控制能够通过一系列迭代过程实现对二阶非线性动力学系统的跟踪控制。整个控制结构由线性反馈控制器和前馈学习补偿控制器组成,其中线性反馈控制器保证了非线性系统的稳定运行、前馈补偿控制器保证了系统的跟踪控制精度。它在执行重复运动的非线性机器人系统的控制中是相当成功的。

2 机器人智能控制技术的发展

从机器人诞生到20 世纪80 年代初,机器人技术经历了一个长期缓慢的发展过程。到了20 世纪90 年代,随着计算机技术、微电子技术、网络技术等的快速发展,机器人技术也得到了飞速发展。智能机器人的研究是目前机器人研究中的热门课题。作为一门新兴学科,它融合了神经生理学、心理学、运筹学、控制论和计算机技术等多学科思想和技术成果。智能控制的研究主要体现在对基于知识系统、模糊逻辑和人工神经网络的研究。智能机器人可以在非预先规定的环境中自行解决问题。智能机器人的技术关键就是自适应和自学习的能力,而模糊控制和神经网络控制的应用显示出诸多优势,具有广阔的应用前景。

2.1 机器人控制技术的发展

早期的机器人系统,由于需要完成的任务比较简单,而且对动态特性的要求不高,其系统可看成是机器人各关节控制器简单的组合。随着机器人技术的发展,机器人控制器对各关节在整个过程中位置、速度及加速度都有一定的要求,因此可

采用独立关节控制原则,在各关节构成PID 控制。由于机器人操作臂是一个高度非线性的系统,工业用的低速操作臂应用常规的PID 反馈控制可以满足控制要求,但为实现高速运动,要求具有较好的控制品质, PID 反馈控制难以取得较好的控制效果。在传统的控制方法中,它们依赖数学模型。但是,由于操作臂的参数不能精确得到,模型参数与实际参数不匹配时,便会产生伺服误差。当机器人工作环境及工作目标的性质和特征在工作过程中随时间发生变化时,控制系统的特性有未知和不定的特性。这未知因素和不定性使控制系统性能降低。因此,采用传统的控制方案已不能满足控制要求。在研究被控对象的模型存在不确定性及未知环境交互作用较强情况下的控制时,智能控制方法得到了成功的应用。近年来,随着人们对机器人高速高精度要求的不断提高,使得整个机器人系统对其控制部分的要求也越来越高,开发具有智能的机器人已经成为人们研究的热点。

2.2 机器人智能控制的现状

近几年,机器人智能控制在理论和应用方面都有较大的进展。在模糊控制方面,由J·J·Buckley 等人论证了模糊系统的逼近特性; E·H·Mamdan 首次将模糊理论运用于一台实际机器人,把模糊控制技术在机器人中的应用得以展现。而且,模糊系统在机器人的建模、控制、对柔性臂的控制、模糊补偿控制、以及移动机器人路径规划等各个领域都得到了广泛的应用。

在机器人神经网络控制方面,CMCA (Cere-bella Model Cont roller Articulation) 是应用较早的一种控制方法,它的最大特点是实时性好,尤其适应于多自由度操作臂的控制,W·T·Miller 等还进行了实验研究,验证了该方法的有效性。

相关文档
最新文档