数学平行线PPT课件
合集下载
平行线(课件)(共23张PPT)四年级上册数学冀教版
画两条直线,即一组平行线。 两条直线,即一组平行线。
①固定三角板,沿着一 条直角边画出一条直 线。
②用直尺紧靠三角板的另 一条直角边,固定直尺,向 下平移三角坂。
③沿着三角板最初画 直线的那条直角边画 出另一条直线。
利用直尺和三角板画平行线时,直尺和三角板让须紧靠,才能保证作图的准确性。
你能根据“两条平行线之间所有垂直线段的长度都相等” 这一性质,说明长方形、正方形的对边分别平行吗?
1.从课后习题中选取; 2.完成练习册本课时的习题。
a
h1=
h2=
h1 h2 h3 h4 h5 h6
h3=
h4=
b
h5=
h6=
两条平行线之间,所有垂直线段的长度都相等。
你能画出一组平行线吗?小组交流讨论一下, 看看你们一共能想出多少种方法。
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
沿方格纸的横向(或竖向)
沿直尺的上下两条-边画
②
③ ④ ⑤⑥ ⑦
②与⑤互相平行;③与④互相平行;⑥与⑦互相平行 ①与②互相垂直;②与⑤互相垂直
5. 工人师傅在施工时,经常用铅锤来观测建筑物
是否和地面垂直。
【选自教材P84页 问题讨论】
活 学 活 用
5. 工人师傅在施工时,经常用铅锤来观测建筑物
是否和地面垂直。
【选自教材P84页 问题讨论】
活 学 活 用
平行线
冀教版四年级上册
动手小能手
自己动手试一试吧,与同桌交流一下你是怎样做的?
40cm
40cm
(1)根据画框上的吊 扣,先确定在墙上钉钉 子的位置。 (2)调整画框,使两 个吊扣的位置距离房顶 一样高,做好标记。 (3)在标记位置钉好 钉子后,把风景画挂上, 这样才能把风景画挂得 端正、美观。
人教版七年级数学下册《平行线的判定》课件ppt
思考:根据平行线的定义,如果同一平面内的两条直线不相交,就可以判断 这两条直线平行.但是,由于直线无限延伸,检验它们是否相交有困难,所 以难以直接根据两条直线是否相交来判定是否平行,那么有没有其他判定方 法呢?
1.放 2.靠 3.推
4.画
平行线画法
E C
A
D B
F
思考 (1)画图过程中,什么角始终保持相等? (2)直线a,b位置关系如何?
图1
2.如图2
∵∠B=∠_C__G__F__,∴ AB∥ CD(同位角相等,两直线平行.)
∵∠BGC=∠__F_____,∴ CD∥ EF(同位角相等,两直线平行.)
∵AB∥ CD ,CD∥ EF,
∴ AB∥___E__F__(如果两条直线都与第三条直线平行,那么这 )
图2
两条直线也互相平行.
3.下图中若∠1=55° ,∠2=55°,直线AB、CD平行吗?为什么?
也互相平行.)
已知∠3=45 °,∠1与∠2互余,试说明 AB//CD ?
解:∵∠1=∠2(对顶角相等)
A C
∠1+∠2=90°(已知Байду номын сангаас ∴∠1=∠2=45°
3
1
2
∵ ∠3=45°(已知) ∴∠ 2=∠3
B
D
∴ AB∥CD(内错角相等,两直线平行)
做一做
内错角相等, 两直线平行.
同旁内角互补, 两直线平行.
c
a 3 2
1 b
3.如图.(1)从∠1=∠4,可以推出 AB ∥ CD ,理由是内错角相等,两直线平行 . (2)从∠ABC +∠BCD =180°,可以推出AB∥CD ,理由是同旁内角互补,两直线平行. (3)从∠ 3 =∠ 2 ,可以推出AD∥BC,理由是 内错角相等,两直线平行 . (4)从∠5=∠ ABC ,可以推出AB∥CD,理由是 同位角相等,两直线平行 .
7.3 平行线的判定课件(30张PPT)北师大版八年级数学上册
(4) 从∠5 =∠ ABC ,可以推出 AB∥CD, 理由是 同位角相等,两直线平行 .
A
D
3
1
4
2
5
B
C
5. 如图,已知∠1 =∠3,AC 平分∠DAB,你能判定
哪两条直线平行?请说明理由.
解:AB∥CD. 理由如下:
D
∵ AC 平分∠DAB (已知),
C 3
∴∠1 =∠2 (角平分线的定义).
A
2 54 DB
∴ __C_E__∥__A_B__ (同旁内角互补,两直线平行).
④ ∵∠4 +_∠__3__= 180°(已知),
∴ AB∥CE (同旁内角互补,两直线平行).
例2 如图,已知∠MCA =∠A,∠DEC =∠B,那么 M
DE∥MN 吗?为什么?
AD C
解:∵∠MCA =∠A(已知),
2. 如图所示,∠1 = 75°,要使 a∥b,则∠2 等于
( C) A. 75° B. 95°
1
a
C. 105° D. 115°
2
b
【解析】∠1 的同位角与∠2 互为补角,所以∠2 =
180° - 75° = 105°.
3. 如图,已知∠1 = 30°,若∠2 或∠3 满足条件 _∠__2_=__1_5_0_°_或__∠__3__=__3_0_°,则 a∥b.
想一想
我们可以用下图的方法作出平行线,你能说说其 中的道理吗?
典例精析 例1 根据条件完成填空.
① ∵∠2 =∠6(已知),
E
∴ _A_B_∥_C_D_ (同位角相等,两直线平行).
21
② ∵∠3 =∠5(已知),
A 34 B
数学七年级人教版 5.3.1 平行线的性质 课件(共16张PPT)
如图:已知a//b, 那么2与 3有什么关系呢?
c
a
2
3
b
1
平行线的性质3 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
平行线的性质 (1)两条平行线被第三条直线所截,同位角相等; (2)两条平行线被第三条直线所截,内错角相等; (3)两条平行线被第三条直线所截,同旁内角互补。
平行线的性质
:
讲
授 者
路 井
朱
镇
王 杰
中 学
问题1:判定两条直线平行,我们学过 的方法有哪几种?
方法1:同位角相等,两直线平行.
方法2:内错角相等,两直线平行. 方法3:同旁内角互补,两直线平行.
问题2:根据同位角相等可以判定两 直线平行,反过来如果两直线平行同 位角之间有什么关系呢?内错角,同 旁内角之间又有什么关系呢?
15、一年之计,莫如树谷;十年之计 ,莫如 树木; 终身之 计,莫 如树人 。2021年8月2021/8/112021/8/112021/8/118/11/2021
16、提出一个问题往往比解决一个更 重要。 因为解 决问题 也许仅 是一个 数学上 或实验 上的技 能而已 ,而提 出新的 问题, 却需要 有创造 性的想 像力, 而且标 志着科 学的真 正进步 。2021/8/112021/8/11August 11, 2021
得到
判定
得到
两直线平行
性质 已知
小结
平行线的性质
图形
同 位
a
角b
1 2 c
内 错
a3
角b
2
c
同 旁
a
内
42
角b
c
北师大版数学八年级上册平行线的性质课件
线平行,同旁内角互补;②同位角相等,两直线
平行;③内错角相等,两直线平行;④两直线平行,同
位角相等.
其中是平行线特征的是( D )
A. ①
B. ②③
C. ④
D. ①④
2.如图所示,A,C两地之间要修一条公路,在A地测得公路的
走向为北偏东50°,如果A,C两地同时开工,那么在C地应按
B
M D
F
例2.如图,AB∥DE,已知∠B=40°,∠BCD=20°,则 ∠D=__2_0_°_.
解析:过点C作GH∥AB.
GH//AB, AB//DE GH∥DE
∠B=∠BCH ∠B=40°
∠BCH=40° ∠BCD=20°
∠D=∠DCH ∠DCH=20°
∠D=20°
例3.如图,已知∠1=∠2,∠3+∠4=180°,证明:AB∥EF.
来证明这个定理吗?
已知:如图,直线l1 //l2,∠1和∠2是直线l1,l2被直线l截出
的内错角. 求证:∠1=∠2.
l
1
l1
证明:∵ l1//l2(已知),
2
3
l2
∴∠1=∠3(两直线平行,同位角相等).
又∵∠2=∠3(对顶角相等),
∴∠1=∠2(等量代换).
定理 两条平行直线被第三条直线所截,同旁内角互补. 简述为:两直线平行,同旁内角互补.
解:∵∠1=∠2 (已知) , ∴AB∥CD (内错角相等,两直线平行). ∵∠3+∠4=180° (已知), ∴CD∥EF (同旁内角互补,两直线平行). ∴AB∥EF.
课堂小结
平行线的判定与性质的区分 1.平行线的判定是根据两角的数量关系得到两条直线 的位置关系,而平行线的性质是由两条直线的位置关 系得到两角的数量关系. 2.平行线的判定的条件是平行线的性质的结论, 而平行线的判定的结论是平行线的性质的条件.
平行;③内错角相等,两直线平行;④两直线平行,同
位角相等.
其中是平行线特征的是( D )
A. ①
B. ②③
C. ④
D. ①④
2.如图所示,A,C两地之间要修一条公路,在A地测得公路的
走向为北偏东50°,如果A,C两地同时开工,那么在C地应按
B
M D
F
例2.如图,AB∥DE,已知∠B=40°,∠BCD=20°,则 ∠D=__2_0_°_.
解析:过点C作GH∥AB.
GH//AB, AB//DE GH∥DE
∠B=∠BCH ∠B=40°
∠BCH=40° ∠BCD=20°
∠D=∠DCH ∠DCH=20°
∠D=20°
例3.如图,已知∠1=∠2,∠3+∠4=180°,证明:AB∥EF.
来证明这个定理吗?
已知:如图,直线l1 //l2,∠1和∠2是直线l1,l2被直线l截出
的内错角. 求证:∠1=∠2.
l
1
l1
证明:∵ l1//l2(已知),
2
3
l2
∴∠1=∠3(两直线平行,同位角相等).
又∵∠2=∠3(对顶角相等),
∴∠1=∠2(等量代换).
定理 两条平行直线被第三条直线所截,同旁内角互补. 简述为:两直线平行,同旁内角互补.
解:∵∠1=∠2 (已知) , ∴AB∥CD (内错角相等,两直线平行). ∵∠3+∠4=180° (已知), ∴CD∥EF (同旁内角互补,两直线平行). ∴AB∥EF.
课堂小结
平行线的判定与性质的区分 1.平行线的判定是根据两角的数量关系得到两条直线 的位置关系,而平行线的性质是由两条直线的位置关 系得到两角的数量关系. 2.平行线的判定的条件是平行线的性质的结论, 而平行线的判定的结论是平行线的性质的条件.
华东师大版七年级数学上册 5.2.2 平行线的判定课件(共24张PPT)
∠2 = ∠3 ,则____//____.
>
m
<
>
/m
<
>
m
<
>
m
<
>
/m
<
>
/m
<
>
m
<
>
/m
<
7.如图:∠1 和 ∠2 分别为直线 3 与直线
1 和 2 相交所成的角.如果 ∠2 = 60∘ ,那
么当 ∠1 = ____时,可判定
1 //2 .
60∘
>
m
<
>
/m
<
8.小明把一副三角板摆放在桌面上,如图所示,其中边
判定方法3:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
文字语言:
图形语言:
同旁内角互补,两直线平行.
符号语言:
∵∠1 + ∠2 = 180° (已知),
∴ a∥b (同旁内角互补,两直线平行).
a
1
2
b
小试牛刀:
根据图形填空:
(1) ∵ ∠1 = ∠2 (已知)
∴ ____//____(内错角相等,两直线平行)
华 东 师 大 版 七 年 级 上 册
第5章相交线与平行线
5.2.2平行线的判定
学习目标:
知识和
技能
情感态
度与价
值观
过程与
方法
掌握平行线的
判定方法
经历探究直线
平行的条件的
过程,掌握直
线平行的条件
经历观察、操
作、交流等活
>
m
<
>
/m
<
>
m
<
>
m
<
>
/m
<
>
/m
<
>
m
<
>
/m
<
7.如图:∠1 和 ∠2 分别为直线 3 与直线
1 和 2 相交所成的角.如果 ∠2 = 60∘ ,那
么当 ∠1 = ____时,可判定
1 //2 .
60∘
>
m
<
>
/m
<
8.小明把一副三角板摆放在桌面上,如图所示,其中边
判定方法3:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
文字语言:
图形语言:
同旁内角互补,两直线平行.
符号语言:
∵∠1 + ∠2 = 180° (已知),
∴ a∥b (同旁内角互补,两直线平行).
a
1
2
b
小试牛刀:
根据图形填空:
(1) ∵ ∠1 = ∠2 (已知)
∴ ____//____(内错角相等,两直线平行)
华 东 师 大 版 七 年 级 上 册
第5章相交线与平行线
5.2.2平行线的判定
学习目标:
知识和
技能
情感态
度与价
值观
过程与
方法
掌握平行线的
判定方法
经历探究直线
平行的条件的
过程,掌握直
线平行的条件
经历观察、操
作、交流等活
七年级数学5.2.2平行线的判定PPT课件
如图:B= D=45°, C=135°,
问图中有哪些直线平行?
A
D
答:AB//CD,AD//BC B
C
∵ B=45°(已知)
C=135°(已知) B+ C=180° AB//CD(同旁内角互补,两直线平行) 同理:AD//BC
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
纸条,
(点阵中相邻的四个点构成正方形).
E
G
A
B
C
D
F
H
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
画平行线的事 实
同位角相等, 两直线平行。
同旁内角互补, 两直线平行。
内错角相等, 两直线平行。
判定方法3 两条直线被第三条直线所截,如果 同旁内角互补,那么这两条直线平行
简单说成:同旁内角互补,两直线平行
1a
几何语言: ∵∠1+∠4=1800(已知)
3
4
2b
∴a∥b(同旁内角互补,两直线平行)
想一想 经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用
简记为“垂直于同一直线的两直线平行”。
∵ a⊥b,a⊥c(已知) ∴ b//c(垂直于同一直线的两条直线平行)
a
1
c
2
b
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
《平行线》七年级初一数学下册PPT课件
A.对角线互相平分的四边形是平行四边形
B.两组对角分别相等的四边形是平行四边形
C.两组对边分别相等的四边形是平行四边形
D.两组对边分别平行的四边形是平行四边形
【答案】A
【详解】
解:由已知可得AO=CO,BO=DO,所以四边形ABCD是平行四边形,依
据是对角线互相平分的四边形是平行四边形.
故选:A.
02
)
A.两条相交的直线叫做平行线
B.如果a∥b,b∥c,则a不与c平行
C.在直线外一点,只能画出一条直线与已知直线平行
D.两条不平行的射线,在同一平面内一定相交
【详解】
A.在同一平面内,不相交的两条直线叫平行线,故本选项错误;
B.如果a∥b,b∥c,则a与c平行,故本选项错误;
C.在直线外一点,只能画出一条直线与已知直线平行,故本选项正确;
也互相平行。
几何语言表达式:
∵ a∥n, m∥n (已知)
∴ a∥m (平行线的传递性)
c
b
a
随堂测试
1.在同一个平面内,两条直线的位置关系是(
A.平行或垂直
B.相交或垂直
C.平行或相交
D.不能确定
)
【解析】在同一个平面内,两条直线的位置关系是平行或相交,故选C.
随堂测试
2.下列说法中正确的是(
∴a与c的距离=4-1=3(cm);
当直线c不在a、b之间时,
∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,
∴a与c的距离=4+1=5(cm),
综上所述,a与c的距离为3cm或5cm.故选:C.
课堂互动
课后回顾
01
02
03
探索并掌握平行公理
B.两组对角分别相等的四边形是平行四边形
C.两组对边分别相等的四边形是平行四边形
D.两组对边分别平行的四边形是平行四边形
【答案】A
【详解】
解:由已知可得AO=CO,BO=DO,所以四边形ABCD是平行四边形,依
据是对角线互相平分的四边形是平行四边形.
故选:A.
02
)
A.两条相交的直线叫做平行线
B.如果a∥b,b∥c,则a不与c平行
C.在直线外一点,只能画出一条直线与已知直线平行
D.两条不平行的射线,在同一平面内一定相交
【详解】
A.在同一平面内,不相交的两条直线叫平行线,故本选项错误;
B.如果a∥b,b∥c,则a与c平行,故本选项错误;
C.在直线外一点,只能画出一条直线与已知直线平行,故本选项正确;
也互相平行。
几何语言表达式:
∵ a∥n, m∥n (已知)
∴ a∥m (平行线的传递性)
c
b
a
随堂测试
1.在同一个平面内,两条直线的位置关系是(
A.平行或垂直
B.相交或垂直
C.平行或相交
D.不能确定
)
【解析】在同一个平面内,两条直线的位置关系是平行或相交,故选C.
随堂测试
2.下列说法中正确的是(
∴a与c的距离=4-1=3(cm);
当直线c不在a、b之间时,
∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,
∴a与c的距离=4+1=5(cm),
综上所述,a与c的距离为3cm或5cm.故选:C.
课堂互动
课后回顾
01
02
03
探索并掌握平行公理
2024年苏科版七年级数学上册 6.4 平行线(课件)
3. 同位角的位置 关系具有 “ 同上、 同左”“同上、同
右”“同下、同左”“同下、同右”的特征;
内错角的位置关系具有“同内、异侧”的特征;
同旁内角的位置关系具有“同内、同侧”的特征.
知4-讲
2. 特别提醒 (1)同位角、内错角、同旁内角指的是两个角
一点, 有且只有一条直线与这条直线平行. 其中正确
的有( )
A. 3 个
B. 2 个
C. 1 个
D. 0 个
知3-练
解题秘方:根据平行线基本事实1 判断即可. 解:过直线外一点只能画一条直线与已知直线平行,而过 直线上一点画不出与该直线平行的直线. 一条直线的平行 线有无数条. 故只有③正确. 答案:C
知3-练
思路点拨 对于此类辨析题,要正确解答,必须要抓住相关
的内容,特别是关键字词及其重要特征,要在比较中 理解,再在理解的基础上进行记忆.
知3-练
例 5 如图6.4-8,如果CD∥AB,CE∥AB,那么C,D,E 三点是否共线?你能说明理由吗?
知3-练
解题秘方:紧扣平行线基本事实1 解答. 解:C,D,E三点共线. 理由如下: 因为CD∥AB,CE∥AB, 根据过直线AB外一点C有且只有一条直线与直线AB平行, 可知CD,CE在同一条直线上. 所以C,D,E三点共线.
特别提醒
知2-练
本题是操作探究题,要按照题目的操作要求,用工具
严格按步骤进行,如用三角板画平行线推移时,经过点的
边是三角板落在已知直线上的那一边,而不是任意一边.只
Hale Waihona Puke 有画图正确,测量数据才会准确,最后判断的结论也才会
符合题意.
知识点 3 平行线基本事实1
知3-讲
人教版七年级数学下册《平行线》课件ppt
相交就是平行; D.不相交的两条直线是平行线
2.下列说法正确的是( D ) A、一条直线的平行线有且只有一条 B、经过一点有且只有一条直线与已知直线平行 C、经过一点有两条直线与某一直线平行 D、过直线外一点有且只有一条直线与已知直线平行
3.下列推理正确的是( C )
A.因为a // d,b // c,所以c // d B.因为a // c,b // d,所以c // d C.因为a // b,a // c,所以b // c D.因为a // b,c // d,所以a // c
平行线基本事实的推论(平行线的传递性): 如果两条直线都与第三条直线平行,那么这两条直线互相平行.
几何语言表达: ∵a//c , c//b(已知) a//b(如果两条直线都和第三条直 线平行,那么这两条直线也互相平行)
acb
工人师傅在架设电线时,为了检验三条电线是否平行,工人师傅只 检验其中两条是否与第三条平行即可.这种作法的依据是( ) A.两点确定一条直线; B.两点之间线段最短; C.经过直线外一点有且只有一条直线与已知直线平行; D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
4.完成下列推理,并在括号内注明理由. (1)如图,因为AB // DE,BC // DE(已知),所以A,B,C三点在同一直线;上 (经过直线外一点,有且只有一条直线与这条直线平行)
A··B C·
D
E
(2)如图,因为AB // CD,CD // EF(已知),所以__A_B__ // __E__F__. ( 如果两条直线都和第三条直线平行,那么这两条直线也互相平行 )
平行线的表示法:
我们通常用“//”表示平行.
A
B
AB ∥ CD
C
2.下列说法正确的是( D ) A、一条直线的平行线有且只有一条 B、经过一点有且只有一条直线与已知直线平行 C、经过一点有两条直线与某一直线平行 D、过直线外一点有且只有一条直线与已知直线平行
3.下列推理正确的是( C )
A.因为a // d,b // c,所以c // d B.因为a // c,b // d,所以c // d C.因为a // b,a // c,所以b // c D.因为a // b,c // d,所以a // c
平行线基本事实的推论(平行线的传递性): 如果两条直线都与第三条直线平行,那么这两条直线互相平行.
几何语言表达: ∵a//c , c//b(已知) a//b(如果两条直线都和第三条直 线平行,那么这两条直线也互相平行)
acb
工人师傅在架设电线时,为了检验三条电线是否平行,工人师傅只 检验其中两条是否与第三条平行即可.这种作法的依据是( ) A.两点确定一条直线; B.两点之间线段最短; C.经过直线外一点有且只有一条直线与已知直线平行; D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
4.完成下列推理,并在括号内注明理由. (1)如图,因为AB // DE,BC // DE(已知),所以A,B,C三点在同一直线;上 (经过直线外一点,有且只有一条直线与这条直线平行)
A··B C·
D
E
(2)如图,因为AB // CD,CD // EF(已知),所以__A_B__ // __E__F__. ( 如果两条直线都和第三条直线平行,那么这两条直线也互相平行 )
平行线的表示法:
我们通常用“//”表示平行.
A
B
AB ∥ CD
C
七年级数学下册教学课件《平行线的性质》
d
c
21 a
34
65 b
78
对应训练
1.如图,直线a∥b,c是截线,若∠1=60°,则∠2的度数为 __1_2_0_°_.
2.如图,已知AB∥CD,BC是∠ABD 的平分线,若∠2=64°, 则∠3=__5_8_°__.
探究点2 两直线平行,内错角相等
你能结合图形,由性质1推出两条平行线被第三条直线截得的
内错角之间的关系吗?
c
两条直线平行
21 a
34
同位角相等
转化
内错角相等
65 b
78
探究点2 两直线平行,内错角相等
你能结合图形,由性质1推出两条平行线被第三条直线截得的
内错角之间的关系吗?
c
解:∵a∥b(已知), ∴∠1=∠5(两直线平行,同位角相等).
21 a
34
又∵∠1=∠3(对顶角相等),
∴∠3=∠5(等量代换).
拓展提升
我们生活中经常接触的小刀刀柄外形是一个直角梯形(下底 挖去一小半圆),刀片上、下是平行的.把处于闭合状态的 刀片打开,得到如图所示的图形. (1)若∠1=55°,求∠2的度数; (2)在刀片打开过程中,若∠2始终为钝角,试说明 ∠2=∠1+90°.
解:(1)如图,延长CB交AD于点E. 由题意可知∠BAG=90°,AG∥CE, ∴∠EAG=∠1+∠BAG=55°+90°=145°, ∠EAG=∠DEC. ∴∠DEC=145°. ∵刀片上、下是平行的,即AD∥CF, ∴∠2=∠DEC=145°. (2)由(1)可知 ∠DEC=∠DAG=∠1+∠BAG=∠1+90°, ∠2=∠DEC,∴∠2=∠1+90°.
21 a
认识平行线ppt优秀课件
平行线理论的发展历程
随着数学的发展,人们对平行线 理论的认识逐渐深入。
中世纪欧洲数学家进一步探索了 平行线的性质和定理,并尝试解
决一些关于平行线的难题。
19世纪,非欧几里德几何学的 出现对平行线理论产生了深远影 响,人们开始认识到平行线并非
总是相交于无穷远点。
平行线在现代数学中的应用
01
02
03
02 平行线的应用
CHAPTER
几何作图中的应用
平行线在几何作图中具有重要作用, 可以用于确定图形的基本形状和尺寸 。
平行线还可以用于解决几何作图问题 ,例如通过平行线将一个复杂图形分 解为简单图形,便于分析和计算。
通过平行线,可以绘制出各种几何图 形,如三角形、四边形、圆形等,为 进一步研究几何性质和定理奠定基础 。
03 平行线的历史与发展
CHAPTER
平行线理论的起源
平行线理论最早可以追溯到古 希腊时期,当时数学家们开始 研究几何学,并探索了平行线 的性质和定义。
欧几里德在《几何原本》中首 次给出了平行线的定义,并研 究了它们的性质和定理。
古希腊数学家还发现了一些关 于平行线的有趣定理,如“平 行线间的角相等”和“同位角 相等”。
平行线具有传递性、同位角相等、内 错角相等、同旁内角互补等性质。
平行线的表示方法
用平行符号“//”表示两条直线平行 。
平行线的性质
同位角相等
内错角相等
两条平行线被一条横截线所截,同位角相 等。
两条平行线被一条横截线所截,内错角相 等。
同旁内角互补
平行线的性质的应用
两条平行线被一条横截线所截,同旁内角 互补,即两个同旁内角之和为180度。
在线性代数中,向量空间中的子空间可以由平行线定义,而线性变换可以用来研究平行线的 性质和行为。
人教版初一数学7年级下册 第5章(相交线与平行线)平行线 课件(共42张ppt)
③百米直跑道的两边.
A.3个
B.2个
C.1个
D.0个
2 下列说法中,正确的有( B ) ①在同一平面内不相交的两条线段必平行; ②在同一平面内不相交的两条直线必平行; ③在同一平面内不平行的两条线段必相交; ④在同一平面内不平行的两条直线必相交. A.1个 B.2个 C.3个 D.4个
3 a,b,c是平面内任意三条直线,交点可以有 ( B) A.1个或2个或3个 B.0个或1个或2个或3个 C.1个或2个 D.以上都不对
例6 如图,P是三角形ABC内部的任意一点. (1)过P点向左画射线PM∥BC交AB于点M,过 P点向右画射线PN∥BC交AC于点N; (2)在(1)中画出的图形中,∠MPN的度数一定等 于180°,你能说明其中的道理吗?
导引:在(1)中,按照过直线外一点画已知直线的平行线 的方法画图即可.在(2)中,要说明∠MPN=180°, 可转化为说明点M, P, N在同一条直线上.
(来自《教材》)
解:(1)如图(1)所示. (2)如图(2)所示. (1)
(来自《教材》)
(2)
2 在如图所示的各图形中,过点M画PQ∥AB. 解:略.
知识点 3 平行线的基本事实1:确定性
(1) 经过点C可以画几条直 a
线与直线AB平行? A
(2) 过点D画一条直线与
AB平行.
b
C
B D
(3) 通过画图,你发
解:与棱AD平行的棱有A′D′,B′C′,BC, 记作AD∥A′D′,AD∥B′C′,AD∥BC. 与棱D′C′平行的棱有DC,AB,A′B′, 记作D′C′∥DC, D′C′∥AB, D′C′∥A′B′.
总结
找平行线要注意两点: (1)在同一平面内; (2)不相交(无限延伸).
2024版小学数学四年级《认识平行线》课件
平行线的判定
同位角相等,两直线平行; 内错角相等,两直线平行。
拓展延伸:平行线在更高年级数学中的应用
三角形中的平行线
平行四边形中的平行线
在三角形中,平行线的性质可以用来证明三 角形的一些性质,如等腰三角形的底角相等。
平行四边形两组对边分别平行,利用这一性 质可以推导出平行四边形的面积公式。
空间几何中的平行线
平行线的判定
01
同位角相等,两直线平 行。
02
内错角相等,两直线平 行。
03
同旁内角互补,两直线 平行。
04
同一平面பைடு நூலகம்,垂直于同 一条直线的两条线段互 相平行。
平行线的应用
03
平行线在几何图形中的应用
平行四边形 平行四边形的对边是平行的,这是平行四边形的一个基本 性质。通过这个性质,我们可以推导出平行四边形的其他 性质,如对角线互相平分等。
01
建筑设计
在建筑设计中,平行线的概念被广泛应用。例如,建筑物的墙壁、地板
和天花板通常都是平行的,这样可以确保建筑物的稳定性和美观性。
02 03
道路规划
在道路规划中,平行线的概念也非常重要。例如,高速公路的两侧通常 是平行的,这样可以确保车辆行驶的平稳和安全。同时,平行线的概念 也可以应用于铁路、地铁等交通路线的规划中。
梯形
梯形有一组对边是平行的。这种特殊的性质使得梯形在几 何学中有着独特的地位,例如在计算面积时,我们会使用 到这一性质。
平面图形的构造 在几何图形中,平行线可以作为构造其他图形的基础。例 如,通过一组平行线和一组相交线,我们可以构造出网格 状的图形,进而研究图形的性质和特点。
平行线在实际生活中的应用
小学数学四年级《认识 平行线》课件
7.4 平行线的性质课件 (30张PPT)北师大版八年级数学上册
所以梯形的另外两个角的度数分别是 80°、65°.
3、如图,由AB//CD,可以得到(C)易错
(A)∠1=∠2
(B)∠2=∠3
(C)∠1=∠4
(D)∠3=∠4
4、如图,已知A、B、C同在一条直线上,D、E、F同在一 条直线上,且∠A=∠F,∠C=∠D,判断AE与BF的位置关 系,并说明理由.
解: ∵∠C=∠D
∴∠1 = ∠D(两直线平行,内错角相等)
∵∠B = ∠D(已知)
∴∠1 = ∠B(等量代换)
∴AD∥BC(同位角相等,两直线平行)
D C
例2 已知:如图,AB∥CD,∠B =∠D.
求证:AD∥BC. 证法三: 如图,连接 BD (构造两组内错角). ∵ AB∥CD (已知),
A
12
B
D
3 4
C
∴∠1 =∠4 (两直线平行,内错角相等).
条直线与这条直线平行”相矛盾. 这说明∠1 ≠ ∠2 的假设不成立,所以 ∠1 =∠2.
总结归纳
一般地,平行线具有如下性质: 性质1 (定理) 两条平行线被第三条直线所截,同位角
简单说成:两直线平行,同位角相等.
c
应用格式:
1
∵ a∥b(已知),
a
∴∠1 =∠2
2
(两直线平行,同位角相等). b
议一议
(1) 从∠1 = 110° 可以知道∠2 是多少度?为什么?
(2) 从∠1 = 110° 可以知道∠3 是多少度?为什么?
(3) 从∠1 = 110° 可以知道∠4 是多少度?为什么?
解:(1) ∠2 = 110°,
两直线平行,内错角相等. (2)∠3 = 110°,
两直线平行,同位角相等. (3)∠4 = 70°,
七年级数学下册教学课件《平行线的判定》
1.如图,直线AB,CD被直线EF所截,∠1=55°,下列条件
中能判定AB//CD的是( C )
A.∠2=35° B.∠2=45° C.∠2=55° D.∠2=125°
2.如图,若∠1=∠2,则 _A_B__//_D__E_;若∠2=∠3, 则_B__C_∥__E_F_.
问题3 能否利用内错角,或同旁内角来判定两条直线
同一个平面内,两条直线 不__相__交___
同__位__角__相__等__,两直线平行
内__错__角__相__等__,两直线平行
同__旁__内__角__互__补__,两直线平行
作业布置 1.教材P15习题5.2第1,2,4,5题.
(1)由∠CBE=∠A可以判定哪两条直线平行?
根据是什么?
D
C
答:(1)AD∥BC,根据是
“同位角相等,两直线平行”;
A
B
E
(2)由∠CBE=∠C可以判定哪两条直线平行? 根据是什么?
D
(2)DC∥AB,根据是“内
错角相等,两直线平行”;
A
C
B
E
知识结构
随堂训练,课堂总结
平行线的 判定
定义法 判定方法
总结
判定方法2:两条直线被第三条直线所截,如果 内错角相等,那么这两条直线平行. 简单说成:内错角相等,两直线平行.
c 3
a
2 b
符号语言: 因为∠2=∠3 , 所以 a∥b.
对应训练
1.如图是一条街道的两个拐角,若∠ABC与∠BCD均 为140°,则街道AB与CD的位置关系是__A_B__//_C_D__.
例 (1)如图,当∠1=∠3时,直线a,b平行吗? (2)当∠2+∠3=180°时,直线a,b平行吗? 为什么?
中能判定AB//CD的是( C )
A.∠2=35° B.∠2=45° C.∠2=55° D.∠2=125°
2.如图,若∠1=∠2,则 _A_B__//_D__E_;若∠2=∠3, 则_B__C_∥__E_F_.
问题3 能否利用内错角,或同旁内角来判定两条直线
同一个平面内,两条直线 不__相__交___
同__位__角__相__等__,两直线平行
内__错__角__相__等__,两直线平行
同__旁__内__角__互__补__,两直线平行
作业布置 1.教材P15习题5.2第1,2,4,5题.
(1)由∠CBE=∠A可以判定哪两条直线平行?
根据是什么?
D
C
答:(1)AD∥BC,根据是
“同位角相等,两直线平行”;
A
B
E
(2)由∠CBE=∠C可以判定哪两条直线平行? 根据是什么?
D
(2)DC∥AB,根据是“内
错角相等,两直线平行”;
A
C
B
E
知识结构
随堂训练,课堂总结
平行线的 判定
定义法 判定方法
总结
判定方法2:两条直线被第三条直线所截,如果 内错角相等,那么这两条直线平行. 简单说成:内错角相等,两直线平行.
c 3
a
2 b
符号语言: 因为∠2=∠3 , 所以 a∥b.
对应训练
1.如图是一条街道的两个拐角,若∠ABC与∠BCD均 为140°,则街道AB与CD的位置关系是__A_B__//_C_D__.
例 (1)如图,当∠1=∠3时,直线a,b平行吗? (2)当∠2+∠3=180°时,直线a,b平行吗? 为什么?
人教版初一数学 5.3.1 平行线的性质PPT课件
探究新知 两直线平行,内错角相等吗?
探究新知
已知:如图,直线l1//l2,∠1和∠2是直线l1,l2被 直线l3 截出的内错角.
求证:∠1=∠2. 证明:∵l1//l2(已知), ∴∠1=∠3(两直线平行,同位角相等). 又∵∠2=∠3(对顶角相等), ∴∠1=∠2(等量代换).
探究新知 两直线平行,同旁内角有什么关系?
课后作业
1.教材第20页 练习第1,2题,第22, 23页习题5.3第2,4,5题. 2.七彩作业.
探究新知
学生活动三【典例精讲】 例 如图,已知平行线AB,CD 被直线AE 所截. (1)从∠1=110°可以知道∠2是多少度吗?为什么? 解:∠2=110°. 理由:两直线平行,内错角相等.
探究新知
例 如图,已知平行线AB,CD 被直线AE 所截. (2)从∠1=110°可以知道∠3是多少度吗?为什么? 解:∠3=110°. 理由:两直线平行,同位角相等.
回顾复习
通过上题可知平行线的判定方法有什么? 1.同位角相等,两直线平行. 2.内错角相等,两直线平行. 3.同旁内角互补,两直线平行.
反过来,如果两条直线平行,那么同位角、内错 角、同旁内角各有什么关系呢?
探究新知
学生活动一【一起探究】 我们知道,同位角相等,两直线平行;反过来,
若两直线平行,同位角会有什么关系?
探究新知
例 如图,已知平行线AB,CD 被直线AE 所截. (3)从∠1=110°可以知道∠4是多少度吗?为什么? 解:∠4=70°. 理由:两直线平行,同旁内角互补.
拓展应用
如图,将一个三角尺的直角顶点放在直尺的一
边上,当∠1=35°时,∠2的度数为( C )
A.35°
B.45°
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
· · C
D
CD ∥AB
m∥n m
2020年10月2日
n∥m n
7
做一做
一个长方体如图,和AA'平行的 棱有多少条?和AB平行的棱有多 少条?请用符号把它们表示出来。
和AA'平行的棱有3条:
BB'∥AA', CC'∥AA',
D
DD'∥AA'.
A
和AB平行的棱有3条:
A'B'∥AB, C'D'∥AB,
10
性质:(平行公理)
一般地,经过直线外一点,有 且只有一条直线平行于已知直 线。
2020年10月2日
11
练习:
(1),平行
(2)如图,在 ΔABC中,P是AC 边上一点,过点P分别画AB,BC 的平行线。
B
2020年10月2日
A
·P
C
12
探究活动:
你能用所学的几何作图方法临摹下面的 图案吗?请试一试,并涂上你喜欢的颜 色。
2020年10月2日
13
2020年10月2日
14
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
D'
2020C年1D0月∥2日AB.
A'
C B
C' B' 8
自主学习
给你一条直线AB,如何画出它的平行线 呢?
A
B
可以画多少条平行线呢?
2020年10月2日
9
想一想
平行线的画法
给你一条直线AB,及直线外一点P,过 点P画出它的平行线。
.P
A
B
过点P能否再画一条直线与AB平行?
2020年10月2日
§5.2.1
2020年10月2日
1
2020年10月2日
高速公路
2
滑雪
2020年10月2日
3
双杆
2020年10月2日
铁轨
4
扶 梯
2020年10月2日
5
定义:
在同一个平面内, 不相交的两条直线 叫做平行线
m
a
n
b
2020年10月2日
6
平行线的表示:
我们通常用“//”表示平行。
· · A
B
AB ∥ CD
汇报人:XXX 汇报日期:20XX年10月10日
15