06电容式传感器的位移特性实验

06电容式传感器的位移特性实验
06电容式传感器的位移特性实验

中南大学

仪器与自动检测实验报告

冶金科学与工程院系冶金专业10级试验班级

姓名陈晓晨学号0505100102 同组者席昭等

实验日期2013年4月_08日指导教师_________

实验名称:电容式传感器的位移特性实验

一、实验目的:

了解电容传感器的结构及特点

二、实验仪器:

电容传感器、电容传感器模块、测微头、数显直流电压表、直流稳压电源

三、实验原理:

电容式传感器是指能将被测物理量的变化转换为电容量变化的一种传感器它实

质上是具有一个可变参数的电容器。利用平板电容器原理:

式中,S为极板面积,d为极板间距离,*力真空介电常数,上「介质相对介电常数,由

可以看出当被测物理量使I民吆或发生变化时,电容量随之发生改变,如

果保持其中两个参数不变而仅改变另一参数,就可以将该参数的变化单值地转换为电容量的变化。所以电容传感器可以分为三种类型:改变极间距离的变间隙式,改变极板面积的变面积式和改变介质电常数的变介电常数式。这里采用变面积式,如图11-1两只平板电容器共享一个下极板,当下极板随被测物体移动时,两只电容器上下极板的有效面积一只增大,一只减小,将三个极板用导线引出,形成差动电容输出。

图 11-1

四、实验内容与步骤

1.按图11-2将电容传感器安装在电容传感器模块上,将传感器引线插入实验模

块插座中。

图IU2

2 ?将电容传感器模块的输出U接到数显直流电压表。

3?接入土 15V电源,合上主控台电源开关,将电容传感器调至中间位置,调节Rw,

使得数显直流电压表显示为0 (选择2V档)。(Rw确定后不能改动)

4 ?旋动测微头推进电容传感器的共享极板(下极板),每隔0.2mm记下位移量X 与输出电压值V的变化,填入下表

X(mm) 20 20.2 20.4 20.6 20.8

V(V) 0 -0.003 -0.005 -0.006 -0.008

X(mm) 21 21.2 21.4 21.6 21.8

V(V) -0.009 -0.01 -0.011 -0.013 -0.015

五、实验数据处理:

1 ?根据表11-1的数据计算电容传感器的系统灵敏度S和非线性误差S 。

数据处理:

X(mm) 20 20.2 20.4 20.6 20.8 V(V) 0 -0.003 -0.005 -0.006 -0.008 X(mm) 21 21.2 21.4 21.6 21.8 V(V) -0.009 -0.01 -0.011 -0.013 -0.015

灵敏度 S=-0.0075V/mm

六、实验结果分析

通过本次实验,同学们在老师的悉心指导下,了解了电容传感器的结构及特 点。总体来说,这个实验还是比较简单的。主要的基本原理,在基础课上都有学 过,因而理解起来相对容易。实验过程主要就是认真去对待, 这样才能尽可能的 减小实验误差。

尤其要注意的一点是,在接入土 15V 电源,合上主控台电源开关,将电容传感器 调至中间位置,调节Rw,使得直流电压表显示为零时后,Rw 位置不能再改变了。 其实在这个实验中,我们意识到了熟悉原理的重要性。 因为只有这样,我们才能 从原理的本质去解释实验中的现象和实验所得的结果。

X-V 变化曲线

21 21.5 22

-0.014

-0.016

5

220.5 -0.004 19 -0.002

-0.008 -0.01

-0.012

压电出输

温度传感器实验

实验二(2)温度传感器实验 实验时间 2017.01.12 实验编号 无 同组同学 邓奡 一、实验目的 1、了解各种温度传感器(热电偶、铂热电阻、PN 结温敏二极管、半导体热敏电阻、集成温度传感器)的测温原理; 2、掌握热电偶的冷端补偿原理; 3、掌握热电偶的标定过程; 4、了解各种温度传感器的性能特点并比较上述几种传感器的性能。 二、实验原理 1、热电偶测温原理 由两根不同质的导体熔接而成的,其形成的闭合回路叫做热电回路,当 两端处于不同温度时回路产生一定的电流,这表明电路中有电势产生,此电势即为热电势。 试验中使用两种热电偶:镍铬—镍硅(K 分度)、镍铬—铜镍(E 分度)。图2.3.5所示为热电偶的工作原理,图中:T 为热端,0T 为冷端,热电势为)()(0T E T E E AB AB t -=。 热电偶冷端温度不为0℃时(下式中的1T ),需对所测热电势进行修正,修正公式为:),(),(),(0110T T E T T E T T E +=,即: 实际电动势+测量所得电动势+温度修正电势 对热电偶进行标定时,以K 分度热电偶作为标准热电偶来校准E 分度热 电偶。 2、铂热电阻 铂热电阻的阻值与温度的关系近似线性,当温度在C 650T C 0?≤≤?时,

)1(20BT AT R R T ++=, 式中:T R ——铂热电阻在T ℃时的电阻值 0R ——铂热电阻在0℃时的电阻值 A ——系数(=C ??/103.96847-31) B ——系数(= C ??/105.847--71) 3、PN 结温敏二极管 半导体PN 结具有良好的温度线性,PN 结特性表达公式为: γln be e kT U =?, 式中,γ为与PN 结结构相关的常数; k 为波尔兹曼常数,K J /1038.1k 23-?=; e 为电子电荷量,C 1910602.1e -?=; T 为被测物体的热力学温度(K )。 当一个PN 结制成后,当其正向电流保持不变时,PN 结正向压降随温度 的变化近似于线性,大约以2mV/℃的斜率随温度下降,利用PN 结的这一特性可以进行温度的测量。 4、热敏电阻 热敏电阻是利用半导体的电阻值随温度升高而急剧下降这一特性制成的 热敏元件,灵敏度高,可以测量小于0.01℃的温差变化。 热敏电阻分为正温度系数热敏电阻PTC 、负温度系数热敏电阻NTC 和在 某一特定温度下电阻值发生突然变化的临界温度电阻器CTR 。 实验中使用NTC ,热敏电阻的阻值与温度的关系近似符合指数规律,为:)11(00e T T B t R R -=。式中: T 为被测温度(K),16.273t +=T 0T 为参考温度(K),16.27300+=t T T R 为温度T 时热敏电阻的阻值 0R 为温度0T 时热敏电阻的阻值 B 为热敏电阻的材料常数,由实验获得,一般为2000~6000K 5、集成温度传感器 用集成工艺制成的双端电流型温度传感器,在一定温度范围内按1uA/K 的恒定比值输出与温度成正比的电流,通过对电流的测量即可知道温度值(K 氏温度),经K 氏-摄氏转换电路直接得到摄氏温度值。

霍尔传感器位移特性实验

实验14 直流激励时霍尔传感器位移特性实验 141270046 自动化杨蕾生 一、实验目的: 了解直流激励时霍尔式传感器的特性。 二、基本原理: 根据霍尔效应,霍尔电势U H=K H IB,当霍尔元件处在梯度磁场中运动时,它的电势会发生变化,利用这一性质可以进行位移测量。 三、需用器件与单元: 主机箱、霍尔传感器实验模板、霍尔传感器、测微头、数显单元。 四、实验步骤: 1、霍尔传感器和测微头的安装、使用参阅实验九。按图14示意图接线(实验模板的输出V o1接主机箱电压表Vin),将主机箱上的电压表量程(显示选择)开关打到2V档。 2、检查接线无误后,开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 3、以某个方向调节测微头2mm位移,记录电压表读数作为实验起始点;再反方向调节测微头每增加0.2mm记下一个读数,将读数填入表14。

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的是什么量的变化? 答:本人认为应该是实际的输入、输出与拟合的理想的直线的偏离程度的变化,当X不同的时候,实际的输出值与根据拟合直线得到的数值的偏离值是不相同的。 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 实验数据如下: 表9-2

(1)由上图可知灵敏度为S=ΔV/ΔX=-0.9354V/mm (2)由上图可得非线性误差: 当x=1mm时, Y=-0.9354×1+1.849=0.9136 Δm =Y-0.89=0.0236V yFS=1.88V δf =Δm /yFS×100%=1.256% 当x=3mm时: Y=-0.9354×3+1.849=-0.9572V Δm =Y-(-0.94)=-0.0172V yFS=1.88V δf =Δm /yFS×100%=0.915% 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进 行补偿。 答:(1)零位误差。零位误差由不等位电势所造成,产生不等位电势的主要原因是:两个霍尔电极没有安装在同一等位面上;材料不均匀造成电阻分布不均匀;控制电极接触不良,造成电流分布不均匀。补偿方法是加一不等位电势补偿电路。 (2)温度误差。因为半导体对温度很敏感,因而其霍尔系数、电阻率、霍尔电势的输入、输出电阻等均随温度有明显的变化,导致了霍尔元件产生温度误差。补偿方法是采用恒流源供电和输入回路并联电阻。

DS18B20温度传感器实验

DS18B20温度传感器实验Proteus仿真原理图: DS18B20内部结构:

/************************* 源程序 ****************************/ #include #include #define uint unsigned int #define uchar unsigned char #define delayNOP() {_nop_();_nop_();_nop_();_nop_();} sbit DQ = P3^3; sbit LCD_RS = P2^0; sbit LCD_RW = P2^1; sbit LCD_EN = P2^2; uchar code Temp_Disp_Title[]={"Current Temp : "}; uchar Current_Temp_Display_Buffer[]={" TEMP: "}; uchar code Temperature_Char[8] = { 0x0c,0x12,0x12,0x0c,0x00,0x00,0x00,0x0 0 }; uchar code df_Table[]= { 0,1,1,2,3,3,4,4,5,6,6,7,8,8,9,9 }; uchar CurrentT = 0; uchar Temp_Value[]={0x00,0x00}; uchar Display_Digit[]={0,0,0,0}; bit DS18B20_IS_OK = 1; void DelayXus(uint x) { uchar i; while(x--) { for(i=0;i<200;i++); } } bit LCD_Busy_Check(){ bit result; LCD_RS = 0; LCD_RW = 1; LCD_EN = 1; delayNOP(); result = (bit)(P0&0x80); LCD_EN=0; return result; } void Write_LCD_Command(uchar cmd) { while(LCD_Busy_Check()); LCD_RS = 0; LCD_RW = 0; LCD_EN = 0; _nop_(); _nop_(); P0 = cmd; delayNOP(); LCD_EN = 1; delayNOP(); LCD_EN = 0; }

温度传感器实验设计概要

成都理工大学工程 技术学院 单片机课程设计报告 数字温度计设计

摘要 在这个信息化高速发展的时代,单片机作为一种最经典的微控制器,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,作为自动化专业的学生,我们学习了单片机,就应该把它熟练应用到生活之中来。本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。本文设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。 关键词:单片机,数字控制,数码管显示,温度计,DS18B20,AT89S52。

目录 1概述 (4) 1.1设计目的 (4) 1.2设计原理 (4) 1.3设计难点 (4) 2 系统总体方案及硬件设计...................................................... 错误!未定义书签。 2.1数字温度计设计方案论证 (4) 2.2.1 主控制器 (5) 2.4 系统整体硬件电路设计 (7) 3系统软件设计 (8) 3.1初始化程序 (8) 3.2读出温度子程序 (9) 3.3读、写时序子程序 (10) 3.4 温度处理子程序 (11) 3.5 显示程序 (12) 4 Proteus软件仿真 (13) 5硬件实物 (14) 6课程设计体会 (15) 附录1: (14) 附录2: (21)

1概述 1.1设计目的 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,可广泛用于食品库、冷库、粮库、温室大棚等需要控制温度的地方。目前,该产品已在温控系统中得到广泛的应用。 1.2设计原理 本系统是一个基于单片机AT89S52的数字温度计的设计,用来测量环境温度,测量范围为-50℃—110℃度。整个设计系统分为4部分:单片机控制、温度传感器、数码显示以及键盘控制电路。整个设计是以AT89S52为核心,通过数字温度传感器DS18B20来实现环境温度的采集和A/D转换,同时因其输出为数字形式,且为串行输出,这就方便了单片机进行数据处理,但同时也对编程提出了更高的要求。单片机把采集到的温度进行相应的转换后,使之能够方便地在数码管上输出。LED采用三位一体共阳的数码管。 1.3设计难点此设计的重点在于编程,程序要实现温度的采集、转换、显示和上下限温度报警,其外围电路所用器件较少,相对简单,实现容易。 2 系统总体方案及硬件设计 2.1数字温度计设计方案论证 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D 转换电路,感温电路比较麻烦。进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 2.2总体设计框图 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,用3位共阴LED数码管以串口传送数据实现温度显示。

实验十九 开关式霍尔传感器测转速实验

实验十九开关式霍尔传感器测转速实验 一、实验目的:了解开关式霍尔传感器测转速的应用。 二、基本原理:开关式霍尔传感器是线性霍尔元件的输出信号经放大器放大,再经施密特电路整形成矩形波(开关信号)输出的传感器。开关式霍尔传感器测转速的原理框图19—1所示。当被测圆盘上装上6只磁性体时,圆盘每转一周磁场就变化6次,开关式霍尔传感器就同频率f相应变化输出,再经转速表显示转速n。 图19—1开关式霍尔传感器测转速原理框图 三、需用器件与单元:主机箱中的转速调节0~24V直流稳压电源、+5V直流稳压电源、电压表、频率\转速表;霍尔转速传感器、转动源。 四、实验步骤: 1、根据图19—2将霍尔转速传感器安装于霍尔架上,传感器的端面对准转盘上的磁钢并调节升降杆使传感器端面与磁钢之间的间隙大约为2~3mm。 2、将主机箱中的转速调节电源0~24V旋钮调到最小(逆时针方向转到底)后接入电压表(电压表量程切换开关打到20V档);其它接线按图19—2所示连接(注意霍尔转速传感器的三根引线的序号);将频频\转速表的开关按到转速档。 3、检查接线无误后合上主机箱电源开关,在小于12V范围内(电压表监测)调节主机箱的转速调节电源(调节电压改变直流电机电枢电压),观察电机转动及转速表的显示情况。

图19—2 霍尔转速传感器实验安装、接线示意图 4、从2V开始记录每增加1V相应电机转速的数据(待电机转速比较稳定后读取数据);画出电机的V-n(电机电枢电压与电机转速的关系)特性曲线。实验完毕,关闭电源。 n(转/ 406286108132157179203225250分) V(mv)2003004635006017037999019991104 电机的V-n(电机电枢电压与电机转速的关系)特性曲线 五、思考题: 利用开关式霍尔传感器测转速时被测对象要满足什么条件? 被测物能够阻挡或透过或反射霍尔信号,般都是一个发射头一个接收头若发射接收安装在同侧,则被测物必须能反射该信号,发射接收安装在对侧,则被测物必须能阻挡透过该信

霍尔传感器制作实训报告

佛山职业技术学院实训报告 课程名称传感器及应用 报告内容霍尔传感器制作与调试专业电气自动化技术 班级08152 姓名陈红杰 学号31 二0一0年六月 佛山职业技术学院

《传感器及应用》 霍尔传感器制作实训报告 班级 08152 学号 31 姓名陈红杰时间2009-2010第二学期 指导老师张教雄谢应然 项目名称霍尔传感器电路制作与 调试 一、实验目的与要求: 1.对霍尔传感器的实物(电路部分)进行一个基本的了解。 2.了解双层PCB板以及一定(霍尔传感器)的焊接排版的技术和工艺。 二、实验仪器、设备与材料: 1.认识霍尔传感器(电路部分)的元件(附图如下): 2.焊接电路PCB板(双层)和对电路设计的排版工艺的了解。 3.对霍尔传感器的电路原理图进行基本的分析(附图如下):

霍尔传感器原理图: 霍尔开关电路(霍尔数字电路),由三 端7812稳压器,霍尔片差分放大器THS119, 三端可调分流稳压器TL431及双路JFET的输 入运放TL082和输出级组成。在外磁场的作 用下,当感应强度超过导通阀值时,霍尔电路 输出管导通,输出低电平 TL082是一通用的J-FET双运用算放大 器,其特点有,较低输入偏置电压和偏移电 流,输出没有短路保护,输入级具有较高的 输入阻抗,内建频率被子偿电路,较高的压 摆率。最大工作电压为18V。TL082是霍尔传 感器的核心处理部位。(CON2接口对应霍尔 元件THS119) 霍尔元件THS119封装图

印刷板: 3211 2 2 12 121 2121 21 21212 1 21 2 1 4321 1234 8 7653213 211 2321 121 2 1212 直流电源输入24V ,由IN4148、三端稳压管7812和TL431(串接一个电阻)构成的稳压支路,得到不同的电压。霍尔元件THS119是采样核心元件,值得一提的是Z2这个稳压元件。在实际运用当中精密稳压集成电路TL431并不一定要用实物,可以用一个NPN 型三极管来串接一个电阻来等效代替。 整个电路的设计运用了闭环温度反馈来实现自我保护。主要的设计是RT1热敏电阻,对电路在工作时的表面温度进行控制。这样的设计能很好的起到一个自我保护。 因为我们知道,霍尔传感器的PCB 板是封装在塑料外壳里,由于电路的工作环境的问题,导致电路几乎没有更好的散热(外壳有些导热)。至此,用到RT1热敏电阻来进行温度控制保护显得非常合理。 三、实验操作(焊接): 1.霍尔传感器PCB 双层印制电路板的焊接。 2.了解电路的元件的安排和电路设计线路的排版。

温度传感器实验

DH-SJ5温度传感器设计性实验装置 使 用 说 明 书 杭州大华科教仪器研究所 杭州大华仪器制造有限公司

一、温度传感器概述 温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量。测温传感器就是将温度信息转换成易于传递和处理的电信号的传感器。 一、测温传感器的分类 1.1电阻式传感器 热电阻式传感器是利用导电物体的电阻率随温度而变化的效应制成的传感器。热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。它分为金属热电阻和半导体热电阻两大类。金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 R t =R t0[1+α (t-t 0)] 式中,R t 为温度t 时的阻值;R t0为温度t 0(通常t 0=0℃)时对应电阻值;α为温度系数。 半导体热敏电阻的阻值和温度关系为 t B t Ae R = 式中R t 为温度为t 时的阻值;A 、B 取决于半导体材料的结构的常数。 常用的热电阻有铂热电阻、热敏电阻和铜热电阻。其中铂电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 金属铂具有电阻温度系数大,感应灵敏;电阻率高,元件尺寸小;电阻值随温度变化而变化基本呈线性关系;在测温范围内,物理、化学性能稳定,长期复现性好,测量精度高,是目前公认制造热电阻的最好材料。但铂在高温下,易受还原性介质的污染,使铂丝变脆并改变电阻与温度之间的线性关系,因此使用时应装在保护套管中。用铂的此种物理特性制成的传感器称为铂电阻温度传感器,利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃,TCR=(R 100-R 0)/(R 0×100) ,R 0为0℃的阻值,R 100为100℃的阻值,按IEC751国际标准,温度系数TCR=0.003851,Pt100(R 0=100Ω)、Pt1000(R 0=1000Ω)为统一设计型铂电阻。铂热电阻的特点是物理化学性能稳定。尤其是耐氧化能力强、测量精度高、应用温度范围广,有很好的重现性,是中低温区(-200℃~650℃)最常用的一种温度检测器。 热敏电阻(Thermally Sensitive Resistor,简称为Thermistor),是对温度敏感的电阻的总称,是一种电阻元件,即电阻值随温度变化的电阻。一般分为两种基本类型:负温度系数热敏电阻NTC (Negative Temperature Coefficient )和正温度系数热敏电阻PTC (Positive Temperature Coefficient )。NTC 热敏电阻表现为随温度的上升,其电阻值下降;而PTC 热敏电阻正好相反。 NTC 热敏热电阻大多数是由Mn(锰)、Ni(镍)、Co(钴)、Fe(铁)、Cu(铜)等金属的氧化物经过烧结而成的半导体材料制成。因此,不能在太高的温度场合下使用。不竟然,其使用范围有的也可以达到了-200℃~700℃,但一般的情况下,其通常的使用范围在-100℃~300℃。 NTC 热敏热电阻热响应时间一般跟封装形式、阻值、材料常数(热敏指数)、热时间常数有关。材料常数(热敏指数)B 值反映了两个温度之间的电阻变化,热敏电阻的特性就是由它的大小决定的,B 值(K )被定义为:2 12 1212111lg lg 3026.211ln ln T T R R T T R R B --?=--= ; R T1:温度 T 1(K )时的零功率电阻值;R T2 :温度 T 2(K )时的零功率电阻值;T 1,T 2 :

扩散硅压阻式压力传感器的压力测量实验

实验十一 扩散硅压阻式压力传感器的压力测量实验 一、实验目的: 了解扩散硅压阻式压力传感器测量压力的原理与方法。 二、实验仪器 压力传感器模块、温度传感器模块、数显单元、直流稳压源+5V 、±15V。 三、实验原理 在具有压阻效应的半导体材料上用扩散或离子注入法,摩托罗拉公司设计出X 形硅压力传感器如下图所示:在单晶硅膜片表面形成4个阻值相等的电阻条。并将它们连接成惠斯通电桥,电桥电源端和输出端引出,用制造集成电路的方法封装起来,制成扩散硅压阻式压力传感器。 扩散硅压力传感器的工作原理:在X 形硅压力传感器的一个方向上加偏置电压形成电流 i ,当敏感芯片没有外加压力作用,内部电桥处于平衡状态,当有剪切力作用时,在垂直电流方向将会产生电场变化i E ??=ρ,该电场的变化引起电位变化,则在端可得到被与电流 垂直方向的两测压力引起的输出电压Uo 。 i d E d U O ???=?=ρ (11-1) 式中d为元件两端距离。 实验接线图如图11-2所示,MPX10有4个引出脚,1脚接地、2脚为U o+、3脚接+5V电源、4脚为Uo-;当P1>P2时,输出为正;P1

温度传感器实验

温度传感器实验 传感器是将非电信号转换为电信号的装置,因为电信号容易传递和处理。温度是物体冷热程度的标志,温度传感器就是将温度转换成电信号的传感器。 一.测温传感器的分类 电阻式传感器。常用的有铂热电阻、热敏电阻和铜热电阻。其中铂电阻(Pt100)精确度最高,重现性和稳定性很好,不仅应用广泛,而且被制成标准的基准仪。热敏电阻(Thermally Sensitive Resistor,简称Thermistor),是温度敏感的电阻的总称,是属于热电阻的一部分,一般分为负温度系数热敏电阻NTC(Negative Temperature Coefficient)和正温度系数热敏电阻PTC(Positive Temperature Coefficient)。NTC的电阻值随温度的上升而下降;PTC正好相反。 其它传感器。半导体PN结温度传感器,晶体温度传感器,非接触型温度传感器,热电偶温度传感器,光纤温度传感器,液压温度传感器,智能温度传感器。 二.DH-SJ5温度传感器实验装置 DH-SJ5型温度传感实验装置以九孔板为实验平台,包括铂电阻Pt100、热敏电阻(NTC 和PTC)、铜电阻Cu50、铜-康铜热电偶、PN结、AD590和LM35等分离的温度传感器探头,各种电子元件。能提供了多种测温电路和方法。 本装置采用Pt100铂电阻测温,智能温度控制器控温,控温精度高、范围广、可自由设定所需的温度,数字显示;用低电压恒流加热、安全可靠、无污染,加热电流连续可调;分离的温度传感器,形象直观,组合方便,可比较不同传感器的温度特性;降温实验可采用风扇快速降温;整体结构设计新颖,紧凑合理,外型美观大方。 主要技术指标:电源:AC220V±10%(50/60Hz),工作温度0~40℃,相对湿度<80%,无腐蚀性场合,控温范围:室温~120℃,控温精度:±0.2℃,分辨率:0.1℃。 温控仪与恒温炉的连线如图1,Pt100的插头与温控仪上的插座颜色应当对应连接。 图1DH-SJ5温度传感器实验装置 恒温炉上方有六个插孔,可以插一个测温的Pt100和五个待测量的温度传感器。 警告:在做实验中或做完实验后,禁止手触传感器的钢护套,防止烫伤!

【人力资源】实验4-18用压力传感器和温度传感器资料

第五章 热学实验 热学实验是大学物理实验中的重要内容。在理想热学实验中,应遵循两条基本原则:其一是保持系统为孤立系统;其二是测量一个系统的状态参量时,应保证系统处于平衡态。我们的实验内容设计了对空气的比热容比进行测定。 §5.1空气比热容比的测定 气体的定压比热容与定容比热容之比称为气体的绝热指数,它是一个重要的热力学常数,在热力学方程中经常用到,本实验用新型扩散硅压力传感器测空气的压强,用电流型集成温度传感器测空气的温度变化,从而得到空气的绝热指数;要求观察热力学现象,掌握测量空气绝热指数的一种方法,并了解压力传感器和电流型集成温度传感器的使用方法及特性。 【预习重点】 1.了解理想气体物态方程,知道理想气体的等温及绝热过程特征和过程方程。 2.预习定压比热容与定容比热容的定义,进而明确二者之比即绝热指数的定义。 3.认真预习实验原理及测量公式。 【实验目的】 1.用绝热膨胀法测定空气的比热容比。 2.观测热力学过程中状态变化及基本物理规律。 3.了解压力传感器和电流型集成温度传感器的使用方法及特性。 【实验原理】 理想气体的压强P 、体积V 和温度T 在准静态绝热过程中,遵守绝热过程方程:PV γ 等于恒量,其中γ是气体的定压比热容P C 和定容比热容V C 之比,通常称γ=V P C C /为该气体的比热容比(亦称绝热指数)。 如图5.1.1所示,我们以贮气瓶内空气(近似为理想气体)作为研究的热学系统,试进行如下实验过程。

(1)首先打开放气阀A ,贮气瓶与大气相通,再关闭A ,瓶内充满与周围空气同温(设为0T )同压(设为0P )的气体。 (2)打开充气阀B ,用充气球向瓶内打气,充入一定量的气体,然后关闭充气阀B 。此时瓶内空气被压缩,压强增大,温度升高。等待内部气体温度稳定,即达到与周围温度平衡,此时的气体处于状态I (1P ,1V ,0T )。 (3)迅速打开放气阀A ,使瓶内气体与大气相通,当瓶内压强降至0P 时,立刻关闭放气阀A ,将有体积为ΔV 的气体喷泻出贮气瓶。由于放气过程较快,瓶内保留的气体来不及与外界进行热交换,可以认为是一个绝热膨胀的过程。在此过程后瓶中的气体由状态I (1P ,1V ,0T )转变为状态II (0P ,2V ,1T )。2V 为贮气瓶容积,1V 为保留在瓶中这部分气体在状态I (1P ,0T )时的体积。 (4)由于瓶内气体温度1T 低于室温0T ,所以瓶内气体慢慢从外界吸热,直至达到室温 0T 为止,此时瓶内气体压强也随之增大为2P 。则稳定后的气体状态为III (2P ,2V ,0T )。从 状态II →状态III 的过程可以看作是一个等容吸热的过程。由状态I →II →III 的过程如图5.1.2所示。 图5.1.1 试验装置简图 图5.1.2 气体状态变化及P-V

实验名称用霍尔传感器测定螺线管磁场

实验名称:用霍尔传感器测定螺线管磁场 姓 名 学 号 班 级 桌 号 教 室 基教1108 实验日期 20 年 月 日 时段 同组同学 指导教师 一、实验目的(请先参阅实验教材上《磁场测量》的内容,然后充分阅读实验报告!) 1、验证霍尔传感器输出电势差与螺线管内磁感应强度成正比。 2、测量集成线性霍尔传感器的灵敏度。 3、测量螺线管内磁感应强度与位置之间的关系,求得螺线管均匀磁场范围及边缘的磁感应强度。 4、学习补偿原理在磁场测量中的应用。 二、实验仪器 FD-ICH-II 新型螺线管磁场测定仪,包括:实验主机、螺线管、集成霍尔传感器探测棒、单刀双掷开关、双刀双掷换向开关、、连接导线(4红,4黑)若干组成。其仪器装置如图1所示。 图1 新型螺线管磁场测定仪仪器装置 三、实验原理 把一块半导体薄片(锗片或硅片)放在垂直于它的磁场B 中,如图2所示,当沿AA ′方向(Y 轴方向)通过电流I 时,薄片内定向移动的载流子受到洛伦兹力f B 的作用而发生偏转。从而在DD ′间产生电位差U H ,这一现象称为 ,这个电位差称为 。

由电磁理论可得: U H = (1) 式中,K H = ned 1 称为霍尔元件的灵敏度,n 为载流子浓度,e 为载流子电荷电量,d 为半导体薄片厚度。 虽然从理论上讲霍尔元件在无磁场作用(即B=0)时,U H =0,但实际中,在产生霍尔效应的同时,还伴随着几个副效应,它们分别是 ; ; ; 。所以用数字电压表测时U H 并不为零,这是由于半导体材料结晶不均匀及各电极不对称等引起附加电势差,该电势差U 0称为剩余电压。 随着科技的发展,新的集成化(IC)元件不断被研制成功。本实验采用SS95A 型集成霍尔传感器(结构示意图如图3所示)是一种高灵敏度集成霍尔传感器,它由霍尔元件、放大器和薄膜电阻剩余电压补偿器组成。测量时输出信号大,并且剩余电压的影响已被消除。对SS95A 型集成霍尔传感器,它有三根引线,分别是:“V +”、“V -”、“V out ”。其中“V +”和“V -”构成“电流输入端”,“V out ”和“V -”构成“电压输出端”。由于SS95A 型集成霍尔传感器,它的工作电流已设定,被称为标准工作电流,使用传感器时,必须使工作电流处在该标准状态。在实验时,只要在磁感应强度为零(零磁场)条件下,调节“V +”、“V -”所接的“霍尔片工作电压”调节旋钮,使霍尔片传感器输出电压为2.500V(在数字电压表上显示),则传感器就可处在标准工作状态之下。 图3 95A 型集成霍尔元件内部结构图 图2 霍耳效应原理图

DS18B20温度传感器实验

DS18B20温度传感器实验 TEMP1 EQU 5AH ;符号位和百位公用的存放单元TEMP2 EQU 5BH ;十位存放单元 TEMP3 EQU 5CH ;个位存放单元 TEMP4 EQU 5DH ; TEMP5 EQU 5EH TEMP6 EQU 5FH ;数据临时存放单元 TEMP7 EQU 60H TEMP8 EQU 61H ORG 0000H AJMP MAIN

ORG 0020H

MAIN: MOV SP,#70H LCALL INT ;调用DS18B20初始化函数 MAIN1: LCALL GET_TEMP ;调用温度转换函数 LCALL CHULI ;调用温度计算函数 LCALL DISP ;调用温度显示函数 AJMP MAIN1 ;循环 INT: L0: SETB P3.7 ;先释放DQ总线 MOV R2,#250 ;给R2赋延时初值,同时可让DQ保持高电平2us L1: CLR P3.7 ;给DQ一个复位低电平 DJNZ R2,L1 ;保持低电平的时间至少为480us SETB P3.7 ;再次拉高DQ释放总线 MOV R2,#25 L2: DJNZ R2,L2 ;保持15us-60us CLR C ORL C,P3.7 ;判断是否收到低脉冲 JC L0

MOV R6,#100 L3: ORL C,P3.7 DJNZ R6,L3 ;存在低脉冲保持保持60us-240us ; JC L0 ;否则继续从头开始,继续判断 SETB P3.7 RET ;调用温度转换函数 GET_TEMP: CLR PSW.4 SETB PSW.3 ;设置工作寄存器当前所在的区域 CLR EA ;使用DS18B20前一定要禁止任何中断LCALL INT ;初始化DS18B20 MOV A,#0CCH ;送入跳过ROM命令 LCALL WRITE MOV A,#44H ;送入温度转换命令 LCALL WRITE LCALL INT ;温度转换完成,再次初始化18b20 MOV A,#0CCH ;送入跳过ROM命令 LCALL WRITE MOV A,#0BEH ;送入读温度暂存器命令 LCALL WRITE

MSP430内部温度传感器测试程序

MSP430内部温度传感器测试程序 //MSP430基础实验开发组件 - ADC12内部模块演示程序之内部温度传感器 //时钟设置: ////ACLK = n/a, MCLK = SMCLK = default DCO ~ 800kHz, ADC12CLK = ADC12OSC //当前演示程序功能描述: ////利用MSP430F14X内部的温度传感器,通过ADC12的通道10进行AD转换 ////计算取得摄氏温度和华氏温度,通过断点在View->Watch中观察温度值 ////由于定标问题, 可能会存在温度的误差 #include unsigned int long temp; unsigned int long TemperF; //华氏温度 unsigned int long TemperC; //摄氏温度 void main(void) { WDTCTL = WDTPW + WDTHOLD; //关闭系统看门狗 ADC12CTL0 = SHT0_8 + REFON + ADC12ON; //内部1.5V参考电压,打开ADC12模块,设置采样保持定时器 ADC12CTL1 = SHP; //采使用采样定时器 ADC12MCTL0 = SREF_1 + INCH_10; //参考电压和通道选择 ADC12IE = BIT0; //ADC12MEM0 ADC12CTL0 |= ENC; //允许转换 _BIS_SR(GIE); //开启系统中断 while(1) { ADC12CTL0 |= ADC12SC; //开始采样并AD转换 //oF = ((x/4096)*1500mV)-923mV)*1/1.97mV = x*761/4096 - 468 //IntDegF = (ADC12MEM0 - 2519)* 761/4096 TemperF = (temp - 2519) * 761; TemperF = TemperF / 4096; //简化的华氏温度转换公式

实验三 热电阻、热点偶测温特性实验

实验三热电阻、热电偶测温特性实验 一、实验目的:了解热电阻的特性与应用,了解热电偶测量温度的性能与应用范围。。 二、基本原理: 1、热电阻: 利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用铂电阻和铜电阻在0-630.74℃以内,电阻Rt与温度t的关系为: R t=R0(1+A t+B t2) R0系温度为0℃时的电阻。本实验R0=100℃,A t=3.9684×10-2/℃,B t=-5.847×10-7/℃2,铂电阻现是三线连接,其中一端接二根引线主要为消除引线电阻对测量的影响。 2、热电偶 当两种不同的金属组成回路,如二个接点有温度差,就会产生热电势,这就是热电效应。温度高的接点称工作端,将其置于被测温度场,以相应电路就可间接测得被测温度值,温度低的接点就称冷端(也称自由端),冷端可以是室温值或经补偿后的0℃、25℃。 三、需用器件与单元:加热源、K型热电偶(红+,黑-)、P t100热电阻、温度控制单元、温度传感器实验模板、数显单元、万用表,热电偶K型、E 型、加热源。 四、实验步骤: (一)热电阻: 1、注意:首先根据实验台型号,仔细阅读“温控仪表操作说”,学会基 本参数设定。 2、将热电偶插入台面三源板加热源的一个传感器安置孔中。将K型热电偶自由端引线插入主控面板上的热电偶EK插孔中,红线为正极,黑色为负极,注意热电偶护套中已安置了二支热电偶,K型和E型,它们热电势值不同,从热电偶分度表中可以判别K型和E型(E型热电势大)热电偶。E型(蓝+,绿-);k型(红+,黑-) 3、将加热器的220V电源插头插入主控箱面板上的220V控制电源插座上。

压力传感器(大学物理)

一、实验目的 1. 了解应变压力传感器的组成、结构及工作参数。 2. 了解非电量的转换及测量方法——电桥法。 3. 掌握非平衡电桥的测量技术。 4. 掌握应变压力传感器灵敏度及物体重量的测量。 5. 了解多个应变压力传感器的线性组成、调整与定标。 二、实验原理 压力传感器是把一种非电量转换成电信号的传感器。弹性体在压力(重量)作用下产生形变(应变),导致(按电桥方式联接)粘贴于弹性体中的应变片,产生电阻变化的过程。 压力传感器的主要指标是它的最大载重(压力)、灵敏度、输出输入电阻值、工作电压(激励电压)(VIN)、输出电压(VOUT)范围。 压力传感器是由特殊工艺材料制成的弹性体、电阻应变片、温度补偿电路组成;并采用非平衡电桥方式联接,最后密封在弹性体中。 弹性体: 一般由合金材料冶炼制成,加工成S 型、长条形、圆柱型等。为了产生一定弹性,挖空或部分挖空其内部。 电阻应变片: 金属导体的电阻R 与其电阻率ρ、长度L 、截面A 的大小有关。 A L R ρ = (1) 导体在承受机械形变过程中,电阻率、长度、截面都要发生变化,从而导致其电阻变化。 A A L L R R ?- ?+ ?=?ρ ρ (2) 这样就把所承爱的应力转变成应变,进而转换成电阻的变化。因此电阻应变片能将弹性体上应力的变化转换为电阻的变化。 电阻应变片的结构:电阻应变片一般由基底片、敏感栅、引线及履盖片用粘合剂粘合而成。 电阻应变片的结构如图1所示: 1-敏感栅(金属电阻丝) 2-基底片 3-覆盖层 4-引出线 图1 电阻丝应变片结构示意图 敏感栅:是感应弹性应变的敏感部分。敏感栅由直径约0.01~0.05毫米高电阻系数的细丝弯曲成栅状,它实际上是一个电阻元件,是电阻应变片感受构件应变的敏感部分.敏感栅用粘合剂固定在基底片上。b ×l 称为应变片的使用面积(应变片工作宽度,应变片标距(工作基长)l ),应变片的规格一般以使用面积和电阻值来表示,如3×10平方毫米,350欧姆。 基底片:基底将构件上的应变准确地传递到敏感栅上去.因此基底必须做得很薄,一般为0.03~0.06毫米,使它能与试件及敏感栅牢固地粘结在一起,另外它还具有良好的绝缘性、抗潮性和耐热性.基底材料有纸、胶膜和玻璃纤维布等。 引出线的作用是将敏感栅电阻元件与测量电路相连接,一般由0.1-0.2毫米低阻镀锡钢丝制成,并与敏感栅两输出端相焊接,覆盖片起保护作用.

实验十一 LM35温度传感器特性实验

实验十一 LM35温度传感器特性实验 【实验目的】 1、了解LM35温度传感器的基本原理和温度特性的测量方法; 2、测量LM35温度传感器输出电压与温度的特性曲线; 【实验仪器】 电磁学综合实验平台、LM35温度传感器、加热井、温度传感器特性实验模板 【实验原理】 1.电压型集成温度传感器(LM35) LM35温度传感器,标准T0-92工业封装,其准确度一般为±0.5℃。(有几种级别)由于其输出为电压,且线性极好,故只要配上电压源,数字式电压表就可以构成一个精密数字测温系统。内部的激光校准保证了极高的准确度及一致性,且无须校准。输出电压的温度系数K V=10.0mV/℃,利用下式可计算出被测温度t(℃): U O=K V*t=(10mV/℃)*t 即: t(℃)= U O/10mV (11-1)LM35温度传感器的电路符号见图11-1,V o为输出端实验测量时只要直接测量其输出端电压U o,即可知待测量的温度。 图11-1

图11-2LM35传感器特性实验连接图 【实验步骤】 1、按图11-2,将实验平台加热输出与加热井(加热接口)连接,实验台风扇接口与加热井(风扇接口)连接。 2、调节PID控温表,设置SV:在表面板上按一下(SET)按键,SV表头的温度显示个位将会闪烁;按面板上的“▲”或“▼”键调整设置个位的温度;在按面板上按一下(SET)按键即可,SV表头的温度显示个位将会闪烁,再按“<”键使表头的温度显示十位闪烁,按面板上的“▲”或“▼”键调整设置十位的温度;用同样方法还可设置百位的温度。调好SV所需设定的温度后,再按一下(SET)按键即可完成设置。将加热开关选择(快)档加热,待30秒后,仪器开始加热,控温表即可自动控制温度。调节不同温度,设定参照步骤2进行调节。 3、根据不同的实验连接不同的连接线,可参照上图。 【实验数据】 1、LM35传感器(工作电压5V)(直流电压表2V档测量) 表11-1 t(℃) 30 40 50 60 70 80 90 100 U 2、描绘.LM35传感器曲线,求出.LM35随温度变化的灵敏度S(mV/℃), 【注意事项】 1、加热器温度不能加热到120℃以上,否则将可能损坏加热器。

大学物理实验-温度传感器实验报告(可编辑修改word版)

关于温度传感器特性的实验研究 摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC 电阻随温度升高而减小;PTC 电阻随温度升高而增大;但两者的线性性都不好。热电偶的温差电动势关于温度有很好的线性性质。PN 节作为常用的测温元件,线性性质也较好。本实验还利用PN 节测出了波尔兹曼常量和禁带宽度,与标准值符合的较好。 关键词:定标转化拟合数学软件 EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR 1.引言 温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系。 2.热电阻的特性 2.1实验原理 2.1.1Pt100 铂电阻的测温原理 和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性。利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。铂电阻温度传感器精度高,应用温度范围广,是中低温区(- 200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。 按IEC751 国际标准,铂电阻温度系数TCR 定义如下: TCR=(R100-R0)/(R0×100) (1.1) 其中R100 和R0 分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到Pt100 的TCR 为0.003851。 Pt100 铂电阻的阻值随温度变化的计算公式如下: Rt=R0[1+At+B t2+C(t-100)t3] (-200℃

相关文档
最新文档