数字信号处理实验指导书

合集下载

数字信号处理实验指导书(M)

数字信号处理实验指导书(M)

数字信号处理实验电子信息科学与技术实验室2007年7月目录实验一离散时间信号的时域表示 (3)实验二离散信号的卷积和 (6)实验三离散傅立叶变换及其特性验证 (8)实验四信号处理中FFT的应用 (11)实验五离散系统的Z域分析 (15)实验六无限冲激响应(IIR)数字滤波器的三种结构 (19)实验七冲激响应不变法IIR数字滤波器设计 (23)实验八双线性变换法IIR数字滤波器设计 (26)实验一 离散时间信号的时域表示一、实验目的1、熟悉Matlab 命令,掌握离散时间信号-序列的时域表示方法。

2、掌握用Matlab 描绘二维图像的方法。

3、掌握用Matlab 对序列进行基本的运算和时域变换的方法。

二、实验原理与计算方法(一)序列的表示方法 序列的表示方法有列举法、解析法和图形法,相应的用Matlab 也可以有这样几种表示方法,分别介绍如下:1、列举法 在Matlab 中,用一个列向量来表示一个有限长序列,由于一个列向量并不包含位置信息,因此需要用表示位置的n 和表示量值的x 两个向量来表示任意一个序列,如:例1.1:>>n=[-3,-2,-1,0,1,2,3,4]; >>x=[2,1,-1,0,1,4,3,7];如果不对向量的位置进行定义,则Matlab 默认该序列的起始位置为n=0。

由于内存有限,Matlab 不能表示一个无限序列。

2、解析法对于有解析表达式的确定信号,首先定义序列的范围即n 的值,然后直接写出该序列的表达式,如:例1.2:实现实指数序列nn x )9.0()(=,100≤≤n 的Matlab 程序为:>>n=[0:10]; >>x=(0.9).^n;例 1.3:实现正余弦序列)5.0sin(2)31.0cos(3)(n n n x πππ++=,155≤≤n 的Matlab 程序为:>>n=[5:15];>>x=3*cos(0.1*pi*n+pi/3)+2*sin(0.5*pi*n); 3、图形法在Matlab 中用图形法表示一个序列,是在前两种表示方法的基础上将序列的各个量值描绘出来,即首先对序列进行定义,然后用相应的画图语句画图,如:例1.4:绘制在例1.1中用列举法表示的序列的图形,则在向量定义之后加如下相应的绘图语句:>>stem(n,x);此时得到的图形的横坐标范围由向量n 的值决定,为-3到4,纵坐标的范围由向量x 的值决定,为-1到7。

数字信号处理实验指导书

数字信号处理实验指导书

数字信号处理实验指导书实验一离散时间与系统的傅立叶分析一、实验目的用傅立叶变换对信号和系统进行频域分析。

二、实验原理对信号进行频域分析就是对信号进行傅立叶变换。

对系统进行频域分析即对它的单位脉冲响应进行傅立叶变换,得到系统的传输函数。

也可以由差分方程经过;傅立叶变换直接求它的传输函数。

传输函数代表的就是系统的频率响应特性。

但传输函数是ω的连续函数,计算机只能计算出有限个离散频率点的传输函数值,因此得到传输函数以后,应该在0~2л之间取许多点,计算这些点的传输函数的值,并取它们的包络,该包络才是需要的频率特性。

当然,点数取得多一些,该包络才能接近真正的频率特性。

注意:非周期信号的频率特性是ω的连续函数,而周期信号的频率特性是离散谱,它们的计算公式不一样,响应的波形也不一样。

三、实验内容‘1.已知系统用下面差分方程描述:y(n)=x(n)十ay(n一1)试在a=0.95和a=一0.5两种情况下用傅立叶变换分析系统的频率特性。

要求写出系统的传输函数和幅度响应,并打印|H(e jw)|~ω曲线。

2.已知两系统分别用下面差分方程描述:y1(n)=x(n)+x(n一1)y2(n)=x(n)一x(n一1)试分别写出它们的传输函数和幅度响应,并分别打印|H(e jw)|~ω曲线。

3.已知信号x(n)=R3(n),试分析它的频域特性,要求打印|H(e jw)|~ω曲线。

4.假设x(n)=a(n),将x(n)以2为周期进行周期延拓,得到x(n),试分析它的频率特性,并画出它的幅频特性。

四、实验用MATLAB函数介绍1.abs功能:求绝对值(复数的模)。

y=abs(x):计算实数x的绝对值。

当x为复数时得到x的模(幅度值)。

当x为向量时,计算其每个元素的模,返回模向量y。

2.angle功能:求相角。

Ph=angle(x):计算复向量x的相角(rad)。

Ph值介于-л和+л之间.3.freqz:计算数字滤波器H(z)的频率响应。

《数字信号处理》实验指导书(完整)

《数字信号处理》实验指导书(完整)

《数字信号处理》实验指导书通信教研室安阳工学院二零零九年三月第1章 系统响应及系统稳定性1.1 实验目的● 学会运用MATLAB 求解离散时间系统的零状态响应;● 学会运用MATLAB 求解离散时间系统的单位取样响应;● 学会运用MATLAB 求解离散时间系统的卷积和。

1.2 实验原理及实例分析1.2.1 离散时间系统的响应离散时间LTI 系统可用线性常系数差分方程来描述,即∑∑==-=-Mj jN i i j n x b i n y a 00)()( (1-1) 其中,i a (0=i ,1,…,N )和j b (0=j ,1,…,M )为实常数。

MATLAB 中函数filter 可对式(13-1)的差分方程在指定时间范围内的输入序列所产生的响应进行求解。

函数filter 的语句格式为y=filter(b,a,x)其中,x 为输入的离散序列;y 为输出的离散序列;y 的长度与x 的长度一样;b 与a 分别为差分方程右端与左端的系数向量。

【实例1-1】 已知某LTI 系统的差分方程为)1(2)()2(2)1(4)(3-+=-+--n x n x n y n y n y试用MATLAB 命令绘出当激励信号为)()2/1()(n u n x n=时,该系统的零状态响应。

解:MATLAB 源程序为>>a=[3 -4 2];>>b=[1 2];>>n=0:30;>>x=(1/2).^n;>>y=filter(b,a,x);>>stem(n,y,'fill'),grid on>>xlabel('n'),title('系统响应y(n)')程序运行结果如图1-1所示。

1.2.2 离散时间系统的单位取样响应系统的单位取样响应定义为系统在)(n 激励下系统的零状态响应,用)(n h 表示。

数字信号处理实验指导书

数字信号处理实验指导书

注意此书用的时候N要先付值数字信号处理实验指导书目录前言 (1)第一章MATLAB基础知识 (1)第二章MATLAB基本数值运算 (4)第三章MATLAB的图形处理功能 (8)第四章MATLAB的程序设计 (11)第五章常用数字信号处理函数 (16)第六章MATLAB在数字信号处理中的应用 (23)实验一常见离散信号的MATLAB产生和图形显示 (33)实验二离散系统的频率响应分析和零、极点分布 (37)实验三序列线性卷积、圆周卷积的计算及其关系的研究 (39)实验四利用DFT分析信号的频谱 (41)实验五信号时间尺度变换的研究 (43)实验六快速傅里叶变换及其应用 (47)实验七IIR滤波器的实现与应用 (56)实验八FIR滤波器的实现与应用 (61)第一章MATLAB基础知识§1-1 MA TLAB软件简介MATLAB,Matrix Laboratory的缩写,是由Mathworks公司开发的一套用于科学工程计算的可视化高性能语言,具有强大的矩阵运算能力。

它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个界面友好的用户环境,在这个环境中,问题与求解都能方便地以数学的语言(主要是矩阵形式)或图形方式表示出来。

与大家常用的Fortran 和C等高级语言相比,MA TLAB的语法规则更简单,更贴近人的思维方式,被称为“草稿纸式的语言”。

§1-2 MA TLAB应用入门1.MATLAB的安装与卸载MATLAB软件在用户接口时具有较强的亲和力,其安装过程比较典型,直接运行光盘中的安装向导支撑程序SETUP.exe,按其提示一步步选择即可。

MATLAB自身带有卸载程序,在其安装目录下有uninstall子目录,运行该目录下uninstall.exe的即可;也可以通过Windows系统的安装卸载程序进行卸载。

2.MATLAB的启动与退出MATLAB安装完成后,会自动在Windows桌面上生成一个MA TLAB图标,它是指向安装目录下\bin\win32\matlab.exe的链接,双击这个图标即可来到MATLAB集成环境的基本窗口;也可以在开始菜单的程序选项中选择MATLAB 快捷方式;还可以在MA TLAB的安装路径的bin子目录中双击可执行文件matlab.exe。

数字信号处理指导书

数字信号处理指导书

实验一卷积运算1. 实验目的(1) MATLAB中序列的表示;(2) 序列的图形显示;(3) 序列的卷积计算。

2. 实验原理与方法(1) 信号在MATLAB中的表示方法MATLAB中用两个参数向量来表示有限长序列x(n),一个是x(n)中各点的样值向量,一个是各点的位置向量。

两个向量长度相等,假设位置向量的第m 个元素的值为k,则样值向量的第m个元素的值即为x(k)。

(2) 序列的图形显示MATLAB中可调用stem函数来显示序列,其具体形式为:stem(X,Y)stem(...,'fill')stem(...,LineSpec)(3) 序列的卷积运算卷积和是离散信号与系统分析的有效方法和工具,两个序列x(n)和h(n)的卷积和定义为:∑∞-∞=-= =mmnhmxnhnxny)()()(*)()(利用MATLAB求离散序列卷积和的专用函数conv可以实现离散信号卷积和的计算。

其具体形式为:w = conv(u,v)3. 实验内容及步骤(1) 熟悉MATLAB造作环境,复习时域离散信号和系统的相关知识。

(2) 编写实验程序,产生以下序列并显示其图形:14234()()403()3470()c o s 01543()s in774x n R n n n x n n n x n n n x n nn ππ=-≤≤⎧⎪=-≤≤⎨⎪⎩=≤≤=-≤≤其它(3) 编制程序,计算x 2(n)*x 1(n)、x 3(n)*x 1(n)、x 4(n)*x 1(n),并显示其计算结果。

(4) 手动计算上述卷积和,并与程序运行结果进行比较。

4.实验方式及要求每人一台安装有Matlab7.0的计算机,在计算机上编程仿真。

一人一组,独立完成。

5. 思考题脚本文件与函数文件编写上有什么区别?如何利用函数文件完成任意两序列的卷积运算?6. 实验报告要求(1) 简述实验目的及实验原理。

(2) 按实验步骤附上实验过程中离散序列的时域波形,并对所得结果进行分析和解释。

《数字信号处理》实验指导书

《数字信号处理》实验指导书
1
R6(n)
0.5
0 0.2
0
5
10
15
20
25 n
30
35
40
45
ቤተ መጻሕፍቲ ባይዱ
50
Magnitude
0.1
0 4
-3
-2
-1
0 Frequency(rad)
1
2
3
Phase
2 0 -2 -4 -3 -2 -1 0 Frequency(rad) 1 2 3
k=0 时的直流分量及其合成的波形:
0.5
the Kth harmonic
the Kth harmonic
0
the Kth harmonic
0 5 10 15 20 25 n 30 35 40 45 50
0
-0.5
-0.5
0
5
10
15
20
sum of the first K+1 harmonics
1
sum of the first K+1 harmonics
25 n
30
35
0
-0.5
-0.5
0
5
10
15
20
sum of the first K+1 harmonics
1
sum of the first K+1 harmonics
25 n
30
35
40
45
50
1
0.5
0.5
0 0 5 10 15 20 25 n 30 35 40 45 50
0 0 5 10 15 20 25 n 30 35 40 45 50

数字信号处理实验指导书

数字信号处理实验指导书
5
j j
括幅频特性和相频特性)曲线。并将其和第 4 步中得到的结果进行比较。
七. 实验报告内容与要求
1. 简述实验目的、实验原理及实验方法和步骤。 2. 对各实验所得结果进行分析和解释。 3. 打印程序清单和要求的各信号波形。 4. 总结实验中的主要结论。 5. 简要回答思考题。
八. 思考
1. 信号的频域特性即信号的傅立叶变换利用 MATLAB 程序如何实现? 2. 信号的频域特性即频率响应函数 H (e ) 利用 MATLAB 程序如何求取?
4
X (e j ) FT [ x(n)]
n
x ( n) e

j n
(2.1)
序列和信号的傅立叶变换是ω的连续函数, 而计算机只能计算出有限个离散频率点的 函数值。因此在取得频谱函数后,应该在 0~2π之间取许多点,计算这些点的频谱函数 的值,并取它们的包络,该包络才是需要的频率特性。当然,点数取得多一些,该包络才
y(n) 0.05 x(n) 0.05 x(n 1) 0.9 y(n 1) 的响应 y2 (n) ,并绘出 y2 (n) 的时域特性曲
线。
( n) ,并绘出 y1 ( n) 的 5. 利用卷积函数 conv () 求信号 x1 ( n) 通过系统 h1 (n) 的响应 y1
j 能接近真正得频率特性。通常对 X (e ) 在[0,2π]上取模 X (e ) ,绘出幅频特性曲
j
线进行观察分析。系统的频域特性,通常是指求系统频率响应函数 H (e ) ,即系统单位 脉冲响应 h(n)的傅里叶变换。 对于线性时不变时域离散系统,当系统的输入序列为 x(n) ,系统的单位脉冲响应为 为 h(n) ,则线性时不变系统的输出序列为

《数字信号处理实验》指导书

《数字信号处理实验》指导书

《数字信号处理实验》实验1 常用信号产生实验目的:学习用MATLAB编程产生各种常见信号。

实验内容:1、矩阵操作:输入矩阵:x=[1 2 3 4;5 4 3 2;3 4 5 6;7 6 5 4]引用 x的第二、三行;引用 x的第三、四列;求矩阵的转置;求矩阵的逆;2、单位脉冲序列:产生δ(n)函数;产生δ(n-3)函数;3、产生阶跃序列:产生U(n)序列;产生U(n-n0)序列;4、产生指数序列:x(n)=0.5n⎪⎭⎫⎝⎛4 35、产生正弦序列:x=2sin(2π*50/12+π/6)6、产生取样函数:7、产生白噪声:产生[0,1]上均匀分布的随机信号:产生均值为0,方差为1的高斯随机信号:8、生成一个幅度按指数衰减的正弦信号:x(t)=Asin(w0t+phi).*exp(-a*t)9、产生三角波:实验要求:打印出程序、图形及运行结果,并分析实验结果。

实验2 利用MATLAB 进行信号分析实验目的:学习用MATLAB 编程进行信号分析实验内容:1数字滤波器的频率响应:数字滤波器的系统函数为:H(z)=21214.013.02.0----++++z z z z , 求其幅频特性和相频特性:2、离散系统零极点图:b =[0.2 0.1 0.3 0.1 0.2];a=[1.0 -1.1 1.5 -0.7 0.3];画出其零极点图3、数字滤波器的冲激响应:b=[0.2 0.1 0.3 0.1 0.2];a=[1.0 -1.1 1.5 -0.7 0.3];求滤波器的冲激响应。

4、 计算离散卷积:x=[1 1 1 1 0 0];y=[2 2 3 4];求x(n)*y(n)。

5、 系统函数转换:(1)将H(z)=)5)(2)(3.0()1)(5.0)(1.0(------z z z z z z 转换为直接型结构。

(2)将H (z )=3213210.31.123.7105.065.06.11-------+--+-zz z z z z 转换为级联型结构。

《数字信号处理》实验指导书(全)

《数字信号处理》实验指导书(全)

数字信号处理实验指导书电子信息工程学院2012年6月目录实验一离散信号产生和基本运算 (3)实验二基于MATLAB的离散系统时域分析 (7)实验三基于ICETEK-F2812-A 教学系统软件的离散系统时域分析 (9)实验四基于MATLAB 的FFT 算法的应用 (16)实验五基于ICETEK-F2812-A 的FFT 算法分析 (18)实验六基于ICETEK-F2812-A 的数字滤波器设计 (20)实验七基于ICETEK-F2812-A的交通灯综合控制 (24)实验八基于BWDSP100的步进电机控制 (26)实验一离散信号产生和基本运算一、实验目的(1)掌握MATLAB最基本的矩阵运算语句。

(2)掌握对常用离散信号的理解与运算实现。

二、实验原理1.向量的生成a.利用冒号“:”运算生成向量,其语句格式有两种:A=m:nB=m:p:n第一种格式用于生成不长为1的均匀等分向量,m和n分别代表向量的起始值和终止值,n>m 。

第二种格式用于生成步长为p的均匀等分的向量。

b.利用函数linspace()生成向量,linspace()的调用格式为:A=linspace(m,n)B=linspace(m,n,s)第一种格式生成从起始值m开始到终止值n之间的线性等分的100元素的行向量。

第二种格式生成从起始值m开始到终止值n之间的s个线性等分点的行向量。

2.矩阵的算术运算a.加法和减法对于同维矩阵指令的A+BA-B对于矩阵和标量(一个数)的加减运算,指令为:A+3A-9b.乘法和除法运算A*B 是数学中的矩阵乘法,遵循矩阵乘法规则A.*B 是同维矩阵对应位置元素做乘法B=inv(A)是求矩阵的逆A/B 是数学中的矩阵除法,遵循矩阵除法规则A./B 是同维矩阵对应位置元素相除另'A表示矩阵的转置运算3.数组函数下面列举一些基本函数,他们的用法和格式都相同。

sin(A),cos(A),exp(A),log(A)(相当于ln)sqrt(A)开平方 abs(A)求模 real(A)求实部 imag(A)求虚部 式中A 可以是标量也可以是矩阵 例: 利用等差向量产生一个正弦值向量 t=0:0.1:10 A=sin(t) plot(A)这时候即可看到一个绘有正弦曲线的窗口弹出 另:每条语句后面加“;”表示不要显示当前语句的执行结果 不加“;”表示要显示当前语句的执行结果。

数字信号处理实验指导书

数字信号处理实验指导书
(2) 程序 1-2:正弦序列的产生和绘制
% Program P1_2
% Generation of a sinusoidal sequence
n = 0:40;
பைடு நூலகம்f = 0.1;
phase = 0;
A = 1.5;
arg = 2*pi*f*n - phase;
x = A*cos(arg);
clf;
% Clear old graph
附录A MATLAB系统的常用概念 .........................................................................28
附录B
信号处理工具箱函数...........................................................................33
分析,从而进一步研究它们的性质。 2.熟悉离散时间序列的 3 种表示方法:离散时间傅立叶变换(DTFT),离
散傅立叶变换(DFT)和 Z 变换。
二.实验相关知识准备 1.用到的 MATLAB 命令 运算符和特殊字符: < > .* ^ .^ 语言构造与调试: error function pause 基本函数: angle conj rem 数据分析和傅立叶变换函数: fft ifft max min 工具箱: freqz impz residuez zplane
数字信号处理 实验指导书
长沙理工大学电气与信息工程学院


实验一:离散时间信号的时域分析........................................................................3 实验二:离散时间系统的时域分析........................................................................6 实验三:离散时间信号的频域分析........................................................................9 实验四:线性时不变离散时间系统的频域分析..................................................13 实验五: IIR数字滤波器的设计...........................................................................17 实验六: FIR数字滤波器的设计..........................................................................24

《数字信号处理》实验指导书

《数字信号处理》实验指导书

实验一 采样率对信号频谱的影响一、实验目的1.理解采样定理; 2.掌握采样频率确定方法; 3.理解频谱的概念; 4.理解三种频率之间的关系。

二、实验原理理想采样过程是连续信号x a (t )与冲激函数串M (t )的乘积的过程∑∞-∞=-=k skT t t M )()(δ (1))()()(ˆt M t x t xa a = (2) 式中T s 为采样间隔。

因此,理想采样过程可以看作是脉冲调制过程,调制信号是连续信号x a (t ),载波信号是冲激函数串M (t )。

显然)()()()()(ˆs k s ak s aa kT t kT xkT t t xt x-=-=∑∑∞-∞=∞-∞=δδ (3)所以,)(ˆt xa 实际上是x a (t )在离散时间kT s 上的取值的集合,即)(ˆs a kT x 。

对信号采样我们最关心的问题是,信号经过采样后是否会丢失信息,或者说能否不失真地恢复原来的模拟信号。

下面从频域出发,根据理想采样信号的频谱)(ˆΩj X a和原来模拟信号的频谱)(Ωj X 之间的关系,来讨论采样不失真的条件∑∞-∞=Ω-Ω=Ωk ssakj j X T j X )(1)(ˆ (4)上式表明,一个连续信号经过理想采样后,其频谱将以采样频率Ωs =2π/T s 为间隔周期延拓,其频谱的幅度与原模拟信号频谱的幅度相差一个常数因子1/T s 。

只要各延拓分量与原频谱分量之间不发生频率上的交叠,则可以完全恢复原来的模拟信号。

根据式(4)可知,要保证各延拓分量与原频谱分量之间不发生频率上的交叠,则必须满足Ωs ≥2Ω。

这就是奈奎斯特采样定理:要想连续信号采样后能够不失真地还原原信号,采样频率必须大于或等于被采样信号最高频率的两倍h s Ω≥Ω2,或者h s f f 2≥,或者2hs T T ≤(5) 即对于最高频率的信号一个周期内至少要采样两点,式中Ωh 、f s 、T h 分别为被采样模拟信号的最高角频率、频率和最小周期。

数字信号处理实验指导书

数字信号处理实验指导书

实验一 信号、系统及系统响应1、实验目的:(1)熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。

(2)熟悉时域离散系统的时域特性。

(3)利用卷积方法观察分析系统的时域特性。

(4)掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。

2、实验仪器:PC 机一台 MATLAB 软件 3、实验原理:采样是连续信号数字处理的第一个关键环节。

对一个连续信号)(t x a 进行理想采样的过程可用下式表示。

)()()(ˆt p t x t xa a = 其中)(ˆt xa 为)(t x a 的理想采样,)(t p 为周期冲激脉冲, 即 ∑∞-∞=-=n nT t t p )()(δ;由频域卷积定理,得)]([1)(ˆs a am j X Tj X Ω-Ω=Ω ※ 上式表明,)(ˆΩj X a为)(Ωj X a 的周期延拓,其延拓周期为采样角频率(T s /2π=Ω)。

采样前后的频谱示意图见课本。

只有满足采样定理时,才不会发生频率混叠失真。

在计算机上用高级语言计算)(ˆΩj X a 很不方便,下面给出用序列的傅里叶变换来计算)(ˆΩj X a的方法。

课本中(2.4.7)式∑∞-∞=-=r ajwr TT w j X T e X )]2([1)(π,表示序列的傅里叶变换)(jwe X 和模拟信号)(t x a 的傅里叶变换)(Ωj X a 之间的关系式。

与※式比较,可得T w jw a e X j X Ω==Ω|)()(ˆ,这说明两者之间只在频率度量上差一个常数因子T 。

实验过程中应注意这一差别。

为了在数字计算机上观察分析各种序列的频域特性,通常对)(jwe X 在[]π2,0上进行M 点采样来观察分析。

对长度为N 的有限长序列x(n), 有∑-=-=1)()(N n n jw jw k ke n x eX其中 1,,1,02-==M k k Mw k ,π通常M 应取得大一些,以便观察谱的细节变化。

《数字信号处理》实验指导书(正文)

《数字信号处理》实验指导书(正文)

实验一 离散时间信号分析一、实验目的1.掌握各种常用的序列,理解其数学表达式和波形表示。

2.掌握在计算机中生成及绘制数字信号波形的方法。

3.掌握序列的相加、相乘、移位、反褶等基本运算及计算机实现与作用。

4.掌握线性卷积软件实现的方法。

5.掌握计算机的使用方法和常用系统软件及应用软件的使用。

6.通过编程,上机调试程序,进一步增强使用计算机解决问题的能力。

二、实验原理1.序列的基本概念离散时间信号在数学上可用时间序列来表示,其中代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为∞<<∞-n 的整数,n 取其它值)(n x 没有意义。

离散时间信号可以是由模拟信号通过采样得到,例如对)(t x a 模拟信号进行等间隔采样,采样间隔为T ,得到一个{})(nT x a 有序的数字序列就是离散时间信号,简称序列。

2.常用序列常用序列有:单位脉冲序列(单位采样))(n δ、单位阶跃序列)(n u 、矩形序列)(n R N 、实指数序列、复指数序列、正弦型序列等。

3.序列的基本运算序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。

4.序列的卷积运算∑∞∞-*=-=)()()()()(n h n x m n h m x n y上式的运算关系称为卷积运算,式中代表两个序列卷积运算。

两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。

其计算的过程包括以下4个步骤。

(1)反褶:先将)(n x 和)(n h 的变量n 换成m ,变成)(m x 和)(m h ,再将)(m h 以纵轴为对称轴反褶成)(m h -。

(2)移位:将)(m h -移位n ,得)(m n h -。

当n 为正数时,右移n 位;当n 为负数时,左移n 位。

(3)相乘:将)(m n h -和)(m x 的对应点值相乘。

(4)求和:将以上所有对应点的乘积累加起来,即得)(n y 。

《数字信号处理》实验指导书

《数字信号处理》实验指导书

的相角, Ai 就是极点 pi 到单位圆上的点 e jω 的矢量长度(距离),而θ i 就是该矢量 的相角,因此有:
M
∏ B e j(ψ1 +ψ 2 +⋅⋅⋅⋅+ψ M ) j
H (e jω ) =
j =1 N
= H (e jω ) e jϕ (ω )
∏ A e j(θ1+θ2 +⋅⋅⋅⋅+θ N ) i
(1) 设有直流信号 g(t)=1,现对它进行均匀取样,形成序列 g(n)=1。试讨 论若对该序列分别作加窗、补零,信号频谱结构有何变化。 四、实验过程及结果(含程序)
12
13
14
15
16
实验三 IIR 数字滤波器的设计
一、实验目的 (1)掌握双线性变换法及脉冲相应不变法设计 IIR 数字滤波器的具体设计 方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和 带通 IIR 数字滤波器的计算机编程。 (2)观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双 线性变换法及脉冲响应不变法的特点。 (3)熟悉 Butterworth 滤波器、Chebyshev 滤波器和椭圆滤波器的频率特 性
《数字信号处理》
实验指导书
班级: 学号: 姓名: 苏州科技学院 电子教研室
实验一 信号、系统及系统响应
一、实验目的
(1) 熟悉 MATLAB 平台的使用,掌握离散信号、离散系统的 MATLAB 实现。 (2)掌握根据系统函数绘制系统零极点分布图的基本原理和方法。 (3)理解离散系统频率特性分析的基本原理,掌握根据系统函数零极点分布来分 析离散系统频率响应的几何矢量法。
17
变换类型 低通
Байду номын сангаас

数字信号处理实验指导书

数字信号处理实验指导书

1.5
1
0.5
0
-0.5
-1
-1.5
-2
0
2
4
6
8
10
12
14
16
18
20
(3)用 impz 函数 a1=[1,0.75,0.125]; b1=[1,-1]; impz(b1,a1,21);
Impulse Response 1.5
1
0.5
Amplitude
0
-0.5
-1
-1.5
-2
0
2
4
6
8
10 12 n (samples)
5
……
程序计算结果: I.
y[n] + 0.75 y[n − 1] + 0.125 y[n − 2] = x[n] − x[n − 1]
a. 单位冲激响应: (1) 用 filter 函数 a1=[1,0.75,0.125]; b1=[1,-1]; n=0:20; x1=[1 zeros(1,20)]; y1filter=filter(b1,a1,x1); stem(n,y1filter); title('y1filter'); xlabel('x'); ylabel('y');
3. 编制程序求解下列两个系统的单位冲激响应和阶跃响应,并绘出其图形。要求分
别用 filter、conv、impz 三种函数完成。
y[n] + 0.75 y[n − 1] + 0.125 y[n − 2] = x[n] − x[n − 1] y[n] = 0.25{x[n − 1] + x[n − 2] + x[n − 3] + x[n − 4]}

数字信号处理实验指导书

数字信号处理实验指导书

《数字信号处理》实验指导书编写:刘梦亭审核:司玉娟阎维和适用专业:电子信息工程电子信息科学与技术通信工程等电子信息与工程系2009年9月目录实验一:离散时间信号分析 (1)实验二:离散时间系统分析 (3)实验三:离散系统的Z域分析 (6)实验四:FFT频谱分析及应用 (9)实验五:IIR数字滤波器的设计 (12)实验六:FIR数字滤波器的设计 (16)附录: MATLAB基本操作及常用命令 (20)实验一:离散时间信号分析实验学时:2学时 实验类型:验证 实验要求:必修 一、实验目的1) 掌握离散卷积计算方法; 2) 学会差分方程的迭代解法;3) 了解全响应、零输入响应、零状态响应和初始状态的物理意义和具体求法; 二、实验内容 1、信号的加数学描述 )()()(21n x n x n x += MATLAB 实现 21X X X +=设[ x10=[1 0.7 0.4 0.1 0]; x20=[0.1 0.3 0.5 0.7 0.9 1];]2、信号的乘数学描述 )()()(21n x n x n x *= MATLAB 实现 2.1X X X *=设[ x10=[1 0.7 0.4 0.1 0]; x20=[0.1 0.3 0.5 0.7 0.9 1];]3、计算卷积用MATLAB 计算序列{-2 0 1 –1 3}和序列{1 2 0 -1}的离散卷积。

首先用手工计算,然后用MATLAB 编程验证。

三、实验组织运行要求1、学生在进行实验前必须进行充分的预习,熟悉实验内容;2、学生根据实验要求,读懂并理解相应的程序;3、学生严格遵守实验室的各项规章制度,注意人身和设备安全,配合和服从实验室人员管理;4、教师在学生实验过程中予以必要的辅导,独立完成实验;5、采用集中授课形式。

四、实验条件1、具有WINDOWS 98/2000/NT/XP 操作系统的计算机一台; 2.、MATLAB 编程软件。

数字信号处理实验指导书

数字信号处理实验指导书

实验一DES 综合外设实验1.1实验目的和要求DES320E 提供了键盘,液晶,数码管,直流电机,步进电机,交通灯等外设。

本实验学习这些外设的控制原理。

本实验为大型综合性实验,要求学生掌握DSP编程的基本方法。

通过实验,学生能编写外设控制程序。

例如,使用交通灯和定时器实现十字路口红绿灯的控制,直流电机的调速控制,使用液晶数码管显示和键盘实现计算器等。

1.2实验原理1) C54XX 的I O 空间读写C54XX 提供64K 字的I O 空间访问能力。

在汇编指令中分别提供了读和写命令:portr和p ortw。

你也可以在C中实现该I O 操作,方法如下:首先定义I O 空间变量,如:ioport unsigned portXXXX;/* 其中,XXXX 代表具体I O 口地址*/然后,就可以象访问普通变量一样访问I O 口。

如portXXXX=0x55;/* 将0x55 写到X XXX 指定的I O 口*/2) 交通灯的控制DES320E 提供了 12 个 LED,其控制地址为 IO 空间的 0x0c000h。

该地址的 D0-11比特位分别对应这12 个L ED。

将1写入可以点亮L ED,0 则关闭。

3) 直流电机控制DES320E 实验系统配有一个小型直流电机,可以 DSP 编程完成直流电机的调速控制。

其控制方法为:当向0x0e000h(…VC5402 的I O 空间)的D0 比特位写入1时,电机正向转动;当写入 0 时,电机反向转动。

用户可以通过 D0 位为 1 或 0 的持续时间(即D0 输出方波的占空比)控制电机的转速。

注意,使用直流电机时,应该先接通电机的电源,方法如下:向I O 空间的0x8000 地址的D0 比特位写入1。

若要关闭电源,请写入0。

当写入1或0时,你可以听到继电器动作的声音。

4) 步进电机的控制DES320E 实验系统还配有一个步进电机。

IO 空间的0x0f000h 的D0,D1,D2,D3 四个比特位分别对应步进电机的四相驱动端。

数字信号处理实验指导书(修订版)

数字信号处理实验指导书(修订版)

目录实验一卷积实验 (1)实验二DFT和FFT实验 (5)实验三用双线性变换法设计IIR数字滤波器 (11)实验四用窗函数法设计FIR数字滤波器 (16)实验一卷积实验一.实验目的1.熟悉离散信号和系统的MATLAB 表示和产生方法;2.熟悉线性卷积的MATLAB编程方法;3利用卷积方法观察分析系统的时域特性。

二实验原理(一) 离散时间信号的MATLAB表示序列x(n)={2,6,1,2,0,3,4,5,6},用MATLAB语句表示为:n=[-4 -3 -2 -1 0 1 2 3 4];x=[ 2 6 1 2 0 3 4 5 6];其中:n表示取样时间点,x表示对应时间点的值。

如果不需要采样位置信息或这个信息是多余的时候(例如序列从n=0开始),用户可以只使用x向量来表示序列。

1.单位样值序列产生函数IMPSEQ.Mfunction[x,n]=impseq(n0,n1,n2)%产生x(n)=delta(n-n0);n1<=n<=n2;n=[n1:n2];x=[(n-n0)==0];在命令行窗口里执行:>>x= impseq(20,0,100);>> stem(x)有:2.单位阶跃序列产生函数STEPSEQ.Mfunction[x,n]=stepseq(n0,n1,n2)%产生x(n)=u(n-n0);n1<=n<=n2;n=[n1:n2];x=[(n-n0)>=0]; 在命令行窗口里执行:>>x=stepseq(20,0,100);>> stem(x)有:3正余弦信号的产生:% x(n)=1.5cos(0.02*pi*n) -150<=n<=150 n=-150:150x=1.5*cos(0.02*pi*n);stem(n,x)4.产生均值为0,方差为1的高斯随机噪声序列。

n=-150:150;Noise=randn(1,301);stem(n, Noise)(二) 序列的卷积一个线性系统一般应满足下式:y(n)=T[x(n)]由数字信号处理理论可知,线性系统的脉冲响应即为h(n),上式一般称为线性卷积,一般可以表示为:y(n)=x(n)*h(n)如果任意序列是无限长度的,就不能用MATLAB来直接计算卷积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档