灰水分散剂作用机理

灰水分散剂作用机理
灰水分散剂作用机理

前言

水煤浆加压气化技术中采用的煤气洗涤水实现循环回用,对于节水减污和提高能量有效利用率等有较大的意义,是煤气化工艺中的一项先进技术。由于洗涤水循环回用系统中水温和压力的范围较宽(温度50~240℃,压力1~60bar),系统存在气、液、固三相的物质和能量传递,工况条件复杂,水中的钙硬度、碱度和悬浮物含量都比较高并随水的不断回用而浓缩,结垢倾向较为严重,对整个系统的正常运行造成较大的影响。

其中,进沉降槽的煤灰等固悬物的含量达3.33%以上的洗涤回用水称为黑水(系统中黑水最高温度230℃左右),经沉降槽中混凝处理后的固悬物浓度小于0.1g/L的出水称为灰水(系统中灰水最高温度150℃左右)。

国内外曾在处理过程中采用一些分离技术,但由于操作繁琐、运行费用较高等缺点未得到广泛使用,在有些类似的浊循环水系统中,投加阻垢分散剂则是一种操作简单的处理手段,但由于投加药剂单一,不能同时满足系统中不同温度范围、不同固悬物含量等复杂水质条件的阻垢分散要求,因此对该系统的水处理的效果还未能保证工艺装备的长周期运行。

采用激冷式气化炉的气化技术,若要保持系统的稳定运行,最重要的条件之一就是保持水系统的通畅。

由于气化炉中水系统温度、压力、酸碱性变化,系统水工况的巨大差异都对水处理带来很大的困惑。

气化炉中的灰水,在炉内是高温高压酸性,而在灰水罐出口是低压中温碱性。为了减少脱盐水的用量,通常采用尽可能少排废水,灰水经循环利用后中钙、镁离子浓度时常能够高达上千毫克当量,造成系统结垢。

一旦高压灰水泵、洗涤塔循环泵、激冷环结垢后,水系统循环不畅,不能保证气化系统长周期运行!而由于煤炭中杂质含量异常复杂,导致灰水系统运行工况苛刻加剧,一般市售循环水所有的水处理药剂-阻垢分散剂就不能达到有效的阻垢作用。

对于在气化炉这种复杂工况下有效防止垢的形成,我们公司经与华东理工大学和上海焦化有限公司三方友好合作,转让华东理工大学和上海焦化有限公司共同拥有的一种用于高温煤气洗涤水系统的阻垢分散剂及其制造方法的专利,该专利号为(ZL03115647.9),该产品已长期成功应用于国内多套煤化工装置,取得了良好的使用效果。采用激冷流程的粉煤气化技术,它的灰水系统与水煤浆气化类似。

为保证我们公司产品品质,所有产品出厂前均由华东理工大学环境工程学院进行高压试验室模拟测试,达到工业使用标准,并由研发单位长期对生产产品及不同水质进行技术跟综监测,确保作用效果保持稳定或更超越,该产品我公司命名为XGM-9煤气化灰水阻垢剂。

该产品可以有效地阻止富有钙、镁离子的灰水在管壁和叶轮上结垢。

本阻垢分散剂可在高压和300℃以下的条件下放心使用,灰水中掺量为十万分之五左右。

该产品已成功地长期应用于以水煤浆和粉煤为原料的气化炉灰水系统,作为灰水系统阻垢分散稳定剂,可以防止汽化炉激冷环、高压水泵和管道等的结垢和腐蚀,使生产设备能正常运转,保证装置“长、满、优”的生产需求。

结垢原理分析

高温煤气洗涤水循环回用过程主要涉及混凝重力沉降、灰水系统、黑水输送、黑水闪蒸、合成气洗涤和激冷气化炉冷却等部分。

从理论上推断,灰水槽--洗涤器尽管温度85-150℃,但结垢主要由于碳酸钙造成;气化炉黑水进水至激冷环主要是碳酸钙与悬浮固体颗粒形成垢层;激冷环及黑水出管中,主要是悬浮颗粒沉积,碳酸钙沉积可能性较小;黑水中压闪蒸过程中碳酸钙与颗粒沉积物共沉淀造

成垢层。

上海焦化公司德士古装置高温煤气洗涤工艺循环水系统中,通过水质与高压灰水泵的垢层取样分析证明了上述理论推断。从水质分析结果可以看出:灰水为高硬度、高碱度、高pH值的严重结垢型水质。黑水的碱度比灰水更高,而且固悬物的含量非常高。在工艺过程中,因灰水与含有大量微小颗粒物质的高温煤气有直接接触,从而使灰水组成更为复杂多变。

而且,灰水进入文氏洗涤器和气化炉之前被加压至4.0Mpa高压,温度高达220℃,更大大增加了阻垢分散处理的难度。

从垢样分析结果可以看出:垢样中硅酸盐含量最高,碳酸盐、CaO含量次之,同时还含有一定量的MgO,Fe2O3与有机物。因此,可以认为垢样的主要组分为CaCO3、CaSiO3、MgSiO3、Fe2O3、SiO2和有机物。成垢组分主要由两部分带入,一部分是补充水中的碱度和硬度,另一部分是煤中含有的CaO、SiO2、Fe2O3、Al2O3等成分。

煤中含有一定量的CaO、SiO2、Fe2O3、Al2O3等,在水煤浆加压气化燃烧后,随煤气洗涤水进入黑水中,经黑水絮凝沉降虽已除掉大部分,但仍有少量以CaSiO3、FeOOH、Ca (Al02)2等形式进入灰水中,这些少量物质的溶度积均远远低于CaCO3,它们在灰水被加压、加热时首先形成晶核,从而诱发碳酸钙垢结晶产生而形成共沉积。

因此,要求阻垢分散剂必须对SiO2、FeOOH、Al2O3等具有良好的分散作用,才能全面有效地抑制灰水系统的结垢。

一般采用FeOOH(氧化铁水中的存在形式)为典型分散体进行试验评定。

由于洗涤水中含有大量微小颗粒的固悬物,这些固悬物的存在不仅能诱发碳酸钙垢的形成,还能吸附阻垢分散剂,从而降低阻垢分散的活性。因此要求阻垢分散剂必须具有极好的分散性能,不仅分散洗涤水中的碳酸钙、硅酸钙、氧化铁等结晶颗粒,抑制结垢,而且要分散黑水中的各种固悬物,控制其沉积。

高温煤气洗涤水结垢障碍的主要原因是硬度、碱度较高,加上固悬物含量高且种类较多。本研究在总结前人研究成果的基础上,选择代表性悬浮物氧化铁(其水中的主要存在形式α-羟基氧化铁),采用接种生长法和扫描显微镜(SEM)直接观察碳酸钙晶体生长过程,比较磺酸共聚物与有机磷酸类阻垢剂作用的差异,以探讨洗涤水循环回用过程中阻垢分散剂的作用机理。

由于阻垢分散剂中同时含有强酸基团(-SO3H)、弱酸基团(-COOH)、非离子基团(-C-O-R-C=O,-OH),这些官能团在阻垢分散方面起着各不相同的作用。弱酸基团对难溶盐微晶的活性部份有着强的吸附作用,从而起到低剂量效应抑制结晶产生。强酸基团则保持有轻微的离子特性,从而有助于难溶盐解离。而非离子基团对固悬物有着较强的吸附作用,并将其分散在水中。这些基团经有效结合产生协同效应,使药剂具有良好的阻垢分散性能。

当灰水中加入阻垢分散剂后,阻垢分散剂通过物理或化学作用被吸附到碳酸钙微晶及其他悬浮物离子表面。吸附了阻垢分散剂的小晶体合悬浮物表面形成了双电层,改变了颗粒表面原来的电荷状况,在静电作用下,颗粒相互排斥,这样避免了颗粒碰撞后长大沉积,并将碳酸钙微晶及悬浮物微粒分散在灰水中。

阻垢分散剂不仅对小晶体有分散作用,而且对灰水中悬浮物亦有分散作用。同时它也能吸附与设备和管线的接触面,形成一个吸附层。吸附层阻止了微晶和悬浮物在接触面上的沉积,下图示意了阻垢分散剂的这种作用:

①小晶体及悬浮颗粒②阻垢分散剂③设备表面

聚异丁烯概述

第一章聚异丁烯相关概述 第一节聚异丁烯的定义与分类 一、聚异丁烯的定义 聚异丁烯(Polyisobutylene PIB)是异丁烯的均聚物,由于制备方法及工艺条件不同,聚异丁烯的分子量可在不同的范围内变化。 二、聚异丁烯的分类 聚异丁烯(PIB)由异丁烯聚合而成,按分子量高低不同,分为低分子量聚异丁烯、中分子量聚异丁烯、高分子量聚异丁烯;按末端乙烯基摩尔分数高低不同,分为高活性聚异丁烯和低活性聚异丁烯;按卫生程度不同,分为食品级聚异丁烯和工业级聚异丁烯;按聚合工艺不同,分为本体法聚异丁烯和溶剂法聚异丁烯;按原料来源来不同,分为纯异丁烯聚异丁烯和混合碳四聚异丁烯;按催化剂不同,分为铝系聚异丁烯和硼系聚异丁烯。 一般来说,分子量在350到3500之间的材料称低分子量聚异丁烯,分子量在一万到十万之间为中分子量产品,分子量在十万至一千万之间的为高分子量产品。分子量在三万以下的产品通常呈液态,分子量较高的材料则呈固态。 有两种聚合物商品通常不称为聚异丁烯:一种是丁基橡胶,丁基橡胶是异丁烯和1%-3%的异戊二烯的共聚物,丁基橡胶与聚异丁烯在胶粘剂、密封剂、填料等方面的应用有竞争关系。一种是聚丁烯-1。聚丁烯-1在低分子量时和聚异丁烯的性能很相近,但在中高分子量时性能的差异就明显起来。 第二节聚异丁烯的其他概念 一、结构

异丁烯的结构是: 异丁烯聚合成聚异丁烯的反应及聚异丁烯的结构是: 聚异丁烯的规则骨架结构是: 聚异丁烯的末端双键结构是: 二、聚异丁烯的物理性质和化学性质 聚异丁烯(PIB)是异丁烯(IB)的阳离子聚合产物,其性能可按聚异丁烯分子量的大小分述如下。 1 聚异丁烯的性能 聚异丁烯是无色、无味、无毒的异丁烯均聚物。由于制备方法和工艺条件的

阻垢分散剂作用原理说明

阻垢分散剂作用原理说明 阻垢分散剂作用机理可分为鳌合、分散和晶格畸变三步。且在实验室评定试验中,分散作用是鳌合作用的补救措施,晶格畸变作用是分散作用的补救措施。 鳌合作用 由中心离子和某些合乎一定条件的同一多齿配位体的两个或两个以上配位原子键合而成的具有环状结构的配合物的过程称为鳌合作用。鳌合作用的结果是使得成垢阳离子(如ca2+,Mg2+等)与鳌合剂作用生成稳定的鳌合物,从而阻止其与成垢阴离子(如co32一,5042一,Po4,一和51032一等)的接触,使得成垢的几率大大下降。 分散作用 分散作用的结果是阻止成垢粒子间的相互接触和凝聚,从而可阻止垢的生长。成垢粒子可以是钙、镁离子,也可以是由千百个CaCO3和MgCO3分子组成的成垢颗粒,还可以是尘埃、泥沙或其他水不溶物。分散剂是具有一定相对分子质量(或聚合度)的聚合物,分散性能的高低与相对分子质量(或聚合度)的大小密切相关。聚合度过低,则被吸附分散的粒子数少,分散效率低;聚合度过高,则被吸附分散的粒子数过多,水体变浑浊,甚至形成絮体(此时的作用与絮凝剂相近)。与鳌合作用相比,分散作用是高效的。实验表明,1 mg分散剂可使10

一100 mg的成垢粒子稳定存在于循环水中,在中高硬度水中,阻垢分散剂的分散功能起主要作用。 1.3晶格畸变作用 当系统的硬度、碱度较高,所投人的鳌合剂、分散剂不足以完全阻止它们析出的时候,它们就不可避免地析出。如果没有分散剂的存在,垢的生长将服从晶体生长的一般规律,所形成的垢坚固地附着在热交换器表面上。如果有足量的分散剂的存在,由于成垢粒子(由成百上千个CaCO3分子组成)被分散剂吸附、包围,阻止了成垢粒子在其规则的晶格点阵上排列,从而使所生成的污垢松软、易被水流的冲刷而带走。 根据阻垢分散剂的作用机理,阻垢分散剂常被用在锅炉水处理、循环水处理等行业中。

阻垢分散剂在气化炉灰水系统应用

阻垢分散剂在气化炉灰水系统应用 作者:丁磊, 曾庆宇, Ding Lei, Zeng Qingyu 作者单位:神华宁煤集团煤炭化学工业分公司,宁夏 银川,750411 刊名: 煤化工 英文刊名:Coal Chemical Industry 年,卷(期):2012,40(1) 本文读者也读过(10条) 1.高春雷.马飞.Gao Chunlei.Ma Fei阻垢分散剂在新型气化炉水系统的应用[期刊论文]-中氮肥2006(4) 2.王旸.WANG Yang加氢裂化装置高压空冷器管束泄漏原因初步分析及对策[期刊论文]-腐蚀与防护2006,27(8) 3.余存烨.YU Cun-ye石化水冷器用材与防腐蚀评述[期刊论文]-腐蚀与防护2005,26(12) 4.陈亮.陈天明.曾建华.杨森祥.杨洪波改善方圆坯铸机钢水可浇性技术研究[会议论文]-2010 5.丁勇.齐邦峰.代秀川.DING Yong.QI Bang-feng.DAI Xiu-chuan炼油工业中的环烷酸腐蚀[期刊论文]-腐蚀与防护2006,27(9) 6.邓彤.张建业.Deng Tong.Zhang Jianye化工装置试车的相关问题探讨[期刊论文]-煤化工2012,40(1) 7.江镇海热电厂工业循环冷却水腐蚀在线监测系统[期刊论文]-腐蚀与防护2006,27(10) 8.周立国.Zhou Liguo汽轮机叶片的盐垢处理及预防[期刊论文]-煤化工2010,38(6) 9.张俊喜.颜立成.魏增福.汪知恩.ZHANG Jun-xi.YAN Li-cheng.WEI Zeng-fu.WANG Zhi-en电厂热力设备用黄铜的阴极保护研究[期刊论文]-腐蚀与防护2006,27(3) 10.孟超.曲政.MENG Chao.QU Zheng滨海电厂海水循环水系统中的电偶腐蚀与防护[期刊论文]-腐蚀与防护2006,27(4) 本文链接:https://www.360docs.net/doc/bd16271034.html,/Periodical_mhg201201016.aspx

水性涂料分散剂

水性分散剂----钠盐 聚羧酸钠盐型分散剂,广泛用于水性涂料领域。由于它具有极佳的分子量及相当窄的分子量分布,因此在乳胶漆的制造过程中,与整个涂料体系的相容性很好,在分散体系中,能在物料表面均匀形成吸附双电层,减小颜料粒子二次絮凝的趋势,从而提高了涂料的储存稳定性。该产品对重钙、轻钙高岭土、钛白粉、碳酸锌、硫酸钡、滑石粉、氢氧化铝、氧化锆等多种无机粉体具有优良的分散效果。尤其适用于重质碳酸钙的研磨分散,用量少,只需加入少量就可制成高浓度、低粘度的颜料分散液。使用量建议用量为颜填料质量的0.2-0.8%。 优点: 水溶性高效分散剂,用量少,通用性强,对各种颜填料都具有较好的分散效果,并且与涂料配方中的其他助剂及乳液有良好的配伍性。 用途: 白土、碳酸钙、二氧化钛等所有颜料的分散; 水性涂料。 保质期: 12个月 水性分散剂-----铵盐 聚丙烯酸铵盐的聚合物, 是一种耐水型分散剂,具有降低研磨料粘度、改善涂料的储存稳定性、增加光泽和流平性等特点,广泛用于建筑涂料、各种水性工业漆和颜料浓缩浆等。用量低,有效提高漆膜的耐水性,特别适用于高光泽的漆膜。通用性强,对钛白粉、滑石粉、碳酸钙、氧化锌、立德粉、高岭土、群青等各种无机颜(填)料都具有良好的分散效果。使用量建议用量为颜填料质量的0.2-0.8%。 优点: 水溶性高效分散剂,通用性强,用量少,润湿效果好,起泡性低,耐水性好,与聚氨酯类增稠剂有极好的配伍性,对各种颜填料都具有较好的分散效果。 产品的质量指标: 固含量:40±1%, 外观:黄色透明液体 粘度:150-400 mPa.s(25℃,60rpm) pH 值:6-8 比重:1.25-1.38 溶解性:易溶于水 用途: 白土、碳酸钙、二氧化钛等所有颜料的分散; 水性涂料。 保质期: 12个月

水分散粒剂(WDG)悬浮率问题的解决办法

水分散粒剂(WDG)悬浮率问题的解决办法 二十世纪八十年代,美国和欧洲相继开发出一种农药新剂型——水分散粒剂。自1979年瑞士汽巴嘉基公司开发出第一个90%莠去津水分散性粒剂以来,经过欧美广泛推广,充分显示出它的生命力。尤其是进入90年代后,由于市场竞争更加激烈,人们的环保意识愈来愈强,对高效低毒农药的呼声越来越高。目前世界上许多大公司都在致力于研究开发新的水分散性粒剂。 国际农药工业协会联合会将水分散性粒剂(WDG)其定义为:入水后能迅速崩解和分散后使用的颗粒剂。水分散性粒剂主要由农药活性成分、润湿剂、分散剂、崩解剂、稳定剂、粘结剂和填料等助剂载体要素组成。 水分散性粒剂的优点在于:①不用有机溶剂,大大降低了环境污染;喷洒时没有粉尘飞扬,对作业者安全,减少了对环境的污染;②有效成分含量高,添加的助剂少,产品相对密度大,体积小、易包装、易贮存与运输,具有很强的经济效益和社会效益;③物理化学稳定性好,特别是在水中不稳定的农药,制成水分散粒剂后,更稳定;④入水易崩解,分散性好,悬浮率高,药效高。⑤流动性好,不粘壁,包装易处理;⑥安全性好、与环境相容、附加值高,市场潜力大,被认为是2l世纪最具发展前景的剂型之一。 近几年来我国在农药水分散粒剂领域的研究方面区域活跃,但大部分农药企业限于助剂、技术、设备的原因,无法开展农药水分散粒剂的研究。 在研制水分散粒剂配方过程中,技术工程师往往需要寻找能够提高水分散粒剂悬浮率和崩解性能的助剂,现将几种常用助剂介绍如下: 一.分散助悬剂达润ProDis Q303: 是提高水分散粒剂悬浮率、快速崩解、分散助剂,可应用于农药杀菌剂、杀虫剂、除草剂等水分散粒剂配方中,性能卓越。 1. 助剂中独特的卷曲状线型结构,其亲水基团与疏水基团在水中形成交错网格状,使粒子崩解后形成的水悬液更加稳定,持久提高悬浮率。 2. ProDis Q303助剂亲水性好,添加到水分散粒剂配方中,粒子能在水中全部快速分散,呈现云雾状崩解。 3. 崩解助悬剂ProDis Q303,粉末状,流动性好,不结块,使用方便,与其它助剂相容性好。 4.用途和用量:用于水分散粒剂配方中,作为提高悬浮率、分散、润湿助剂,推荐用量为:3—8 %,与朗钛达润600C崩解助悬剂等助剂配合使用,效果更佳。 二.分散剂达润600C: 1.性能特点:朗钛达润?分散剂600C是聚羧酸盐类分散剂,外观灰白色均匀粉末。具有优异的润湿、分散性能,能够显著提高水分散粒剂的分散性和悬浮率,在水分散粒剂配方中应用广泛。

几种常用煤气化技术的优缺点

几种煤气化技术介绍 煤气化技术发展迅猛,种类很多,目前在国内应用的主要有:传统的固定床间歇式煤气化、德士古水煤浆气化、多元料浆加压气化、四喷嘴对置式水煤浆气化、壳牌粉煤气化、GSP气化、航天炉煤气化、灰熔聚流化床煤气化、恩德炉煤气化等等,下别分别加以介绍。 一Texaco水煤浆加压气化技术 德士古水煤浆加压气化技术1983年投入商业运行后,发展迅速,目前在山东鲁南、上海三联供、安徽淮南、山西渭河等厂家共计13台设备成功运行,在合成氨和甲醇领域有成功的使用经验。 Texaco水煤浆气化过程包括煤浆制备、煤浆气化、灰水处理等工序:将煤、石灰石<助熔剂)、添加剂和NaOH称量后加入到磨煤机中,与一定量的水混合后磨成一定粒度的水煤浆;煤浆同高压给料泵与空分装置来的氧气一起进入气化炉,在1300~1400℃下送入气化炉工艺喷嘴洗涤器进入碳化塔,冷却除尘后进入CO变换工序,一部分灰水返回碳洗塔作洗涤水,经泵进入气化炉,另一部分灰水作废水处理。 其优点如下: <1)适用于加压下<中、高压)气化,成功的工业化气化压力一般在 4.0MPa 和6.5Mpa。在较高气化压力下,可以降低合成气压缩能耗。 <2)气化炉进料稳定,因为气化炉的进料由可以调速的高压煤浆泵输送,所以煤浆的流量和压力容易得到保证。便于气化炉的负荷调节,使装置具有较大的操作弹性。 <3)工艺技术成熟可靠,设备国产化率高。同等生产规模,装置投资少。 该技术的缺点是: <1)因为气化炉采用的是热壁,为延长耐火衬里的使用寿命,煤的灰熔点尽可能的低,通常要求不大于1300℃。对于灰熔点较高的煤,为了降低煤的灰熔点,必须添加一定量的助熔剂,这样就降低了煤浆的有效浓度,增加了煤耗和氧耗,降低了生产的经济效益。而且,煤种的选择面也受到了限制,不能实现原料采购本地化。 <2)烧嘴的使用寿命短,停车更换烧嘴频繁<一般45~60天更换一次),为稳定后工序生产必须设置备用炉。无形中就增加了建设投资。 <3)一般一年至一年半更换一次炉内耐火砖。 二多喷嘴对置式水煤浆加压气化技术 该技术由华东理工大学洁净煤技术研究所于遵宏教授带领的科研团队,经过20多年的研究,和兖矿集团有限公司合作,成功开发的具有完全自主知识产权、国际首创的多喷嘴对置式水煤浆气化技术,并成功地实现了产业化,拥有近20项发明专利和实用新型专利。目前在山东德州和鲁南均有工业化装置成功运行。

2012青岛会11-农药水分散粒剂助剂填料的选择及工艺优化

农药水分散粒剂助剂填料的选择及工艺优化 (刘斌汤江华) 丰县百农思达农用化学品有限公司

前言 农药水分散粒剂是近年来新兴的一种 环保型制剂,因产品是颗粒状的,避免了 可湿性粉剂粉尘飞扬和有机溶剂闪点低等 缺点,便于安全运输,对环境友好,是绿 色农药制剂发展方向之一。良好的助剂填 料配伍组合加上合理的生产工艺支持使水 分散粒剂能在水中快速崩解并具有良好稳 定的分散和悬浮。下面就简要的介绍农药 水分散粒剂助剂填料的选择及工艺优化。 更多资料https://www.360docs.net/doc/bd16271034.html,

一助剂的选择 1分散剂的选择 农药水分散粒剂主要技术指标有悬浮率、崩解性、润湿性及热稳定性等。他们之间又有一定的相关性。良好的崩解性、润湿性及分散性又有利于提高悬浮率。水分散粒剂悬浮率的高低是判断一个配方技术是否合理的重要指标,并最终对产品的药效产生影响。若获得良好的悬浮率,分散剂是水分散粒剂配方中重要组分之一。分散剂是指能阻止固-液分散体系中固体粒子的相互凝 聚,使固体微粒在液相中能较长时间保持均匀分散的一类物质。粒子被润

湿后必须分散成造粒前的粒度,分散悬浮在水中才能够喷雾使用。而分散后的粒子易发生团聚, 从而影响悬浮率。必须借助分散剂的作用才能保 持粒子在水中的分散和悬浮。同可湿粉相比水分 散粒剂中使用的分散剂要求有更强的分散性,更 稳定的分散作用。目前所用分散剂种类主要有聚 羧酸盐类、木质素磺酸盐、烷基萘磺酸盐甲醛 缩合物、无机盐类等。由于每种原药分子结构和 官能团不一样,在选择分散剂时应当根据原药的 特性进行选择。特别是杂环和多环化合物选用单 一品种的分散剂很难达到理想效果,必须选择2 种或2种以上分散剂进行搭配才能达到理想效果。 更多资料https://www.360docs.net/doc/bd16271034.html,

灰水阻垢剂说明

TT-881煤化工专用灰水阻垢分散剂 一、产品研发说明: 在煤化工行业中,水煤气气化造气工艺由于使用了熔点较高的煤 灰,为了降低煤灰的熔点,加入了助熔剂CaCQCaCC受热分解成Cao 一部分Cao与二氧化硅、三氧化二铝等反应降低了灰的熔点,但剩余的Cao存在煤气洗涤水中,大大提高了灰水的碱度和硬度,使得灰水成为高碱度高硬度的严重结垢型水质,此外灰水在进入文氏洗涤塔前要升温升压,这进一步加大了处理灰水结垢的难度,使得设备不得不在运行一段时间后停产除垢,严重降低了生产效率。 针对这一现状,图泰环保开发了TT-881系列煤化工专用灰水阻垢分散剂,本产品摒弃了传统的有机磷、全有机等传统的水处理剂理念,引入了高效绿色的新型接枝多链型高分子聚合分散剂,使得本产品在 咼温、咼压、咼灰分、咼碱度、咼硬度、咼PH的条件下,仍具有很好的阻垢与分散性能,尤其对硅酸盐、铝酸盐以及固体悬浮物有很好的阻垢分散作用,能显著改善灰水结垢情况,提高生产效率。 二、产品指标说明 项目指标 外观淡黄色透明液体

说明:该指标为TT-881系列标准产品指标,具体指标需根据客户实 际水质及工况要求,以满足客户要求为准! 三、产品使用说明: TT-881系列阻垢缓蚀剂推荐现场投加量为10-50ppm,具体投加量可根据客户实际水质及工况进行调整。 投加方式为直接按比例加入药剂箱或者直接冲击式加入。 四、产品包装运输、投加使用说明: TT-881系列阻垢缓蚀剂使用化工专用塑料桶包装,有25KG 和200KG或250KG等规格(或根据客户要求)。 运输过程中要求推积限制2层,轻取轻放,不得暴力装卸。 本品投加时注意加强劳动保护,如佩戴橡胶手套,护目眼镜等。介绍几种欧洲的煤炭粉尘解决方案

分散崩解剂D909S,水分散粒剂专用助剂

分散崩解剂D909S,水分散粒剂专用助剂 一.达润崩解分散剂wgwin D909S的应用: 1.用于农药水分散粒剂(WG)中。能够提高粒子的崩解性、分散性和悬浮率。 2.用于农药水分散粒剂配方中,大大提高粒子稳定性,热贮和常温下稳定性好,久贮后粒子仍然保持良好的崩解性能和高悬浮率。 3.在水分散粒剂配方中添加分散剂D909S,造粒时不发粘,耐热性能好,粒型整齐,表面光洁。 4.用于水分散粒剂配方中,粒子崩解速度快,拖尾性能好。减少在水中的絮凝现象,使用时不堵喷头。 5.D909S适合于各种造粒方式中,如旋转造粒、沸腾床造粒、螺杆式挤压造粒等。 6D909S用于可湿粉中,优于常用的扩散剂,大大提高崩解性和悬浮率。使可湿粉快速分散于水中,不堵喷头。 7.D909S用于悬浮剂中。提高分散性,防止悬浮剂结块、析水和分层。入水后快速分散。 二.达润分散剂D909S性质: 1.本品属萘磺酸盐类分散剂。外观为浅褐色粉末,可溶于水。 2.耐高温,抗硬水,耐酸碱。 三.推荐用量: 1.在水分散粒剂配方中用量为 2.5—6.0% 2.在可湿粉配方中用量2.0%以上 3.在悬浮剂中用量2%以上 **不同剂型中用量不同,根据实际需要调整。与本公司分散剂wgwin 600C配合使用,效果更佳

四.应用举例:重点推荐崩解分散剂D909S用于水分散粒剂配方中 80%嘧菌酯水分散粒剂配方嘧菌酯………………80%崩解分散剂D909S………8%崩解剂………………5%润湿剂………………3%填料…………………补足50%烯酰吗啉水分散粒剂配方烯酰吗啉………………50%崩解分散剂D909S………6%崩解剂………………15% 润湿剂………………3% 填料…………………补足 70%吡虫啉水分散粒剂配方 吡虫啉………………70% 崩解分散剂D909S………6% 崩解剂………………10% 润湿剂………………2% 填料…………………补足40%啶虫脒水分散粒剂配方 啶虫脒………………40% 崩解分散剂D909S………3% 崩解剂………………25% 润湿剂………………3% 填料…………………补足 60%噻嗪酮水分散粒剂配方 噻嗪酮……………60% 崩解分散剂D909S………6% 崩解剂………………10%50%嘧霉胺水分散粒剂配方嘧霉胺………………50% 崩解分散剂D909S………5%崩解剂………………15%

分散剂的作用原理和作用过程

分散剂的作用原理和作用过程 轻化0802 12号黄卓英 能使固液悬浮体中的固体粒子稳定分散于介质中的表面活性剂称为分散剂。分散就是将固体颗粒均匀分布于分散液的过程,分散液具有一定的稳定性。 作用原理: 机理:1.吸附于固体颗粒的表面,使凝聚的固体颗粒表面易于湿润。 2.高分子型的分散剂,在固体颗粒的表面形成吸附层,使固体颗粒表面的电荷增加,提高形成立体阻碍的颗粒间的反作用力。 3.使固体粒子表面形成双分子层结构,外层分散剂极性端与水有较强亲合力,增加了固体粒子被水润湿的程度.固体颗粒之间因静电斥力而远离 4.使体系均匀,悬浮性能增加,不沉淀,使整个体系物化性质一样 以上所述,使用分散剂能安定地分散液体中的固体颗粒。 选择分散剂 在我们涂料生产过程中,颜料分散是一个很主要的生产环节,它直接关系到涂料的储存,施工,外观以及漆膜的性能等,所以合理地选择分散剂就是一个很重要的生产环节。但涂料浆体分散的好坏不光和分散剂有关系,和涂料配方的制定以及原料的选择都有关系。分散剂顾名思议,就是把各种粉体合理地分散在溶剂中,通过一定的电荷排斥原理或高分子位阻效应,使各种固体很稳定地悬浮在溶剂(或分散液)中。 双电层原理 水性涂料使用的分散剂必须水溶,它们被选择地吸附到粉体与水的界面上。目前常用的是阴离子型,它们在水中电离形成阴离子,并具有一定的表面活性,被粉体表面吸附。粉状粒子表面吸附分散剂后形成双电层,阴离子被粒子表面紧密吸附,被称为表面离子。在介质中带相反电荷的离子称为反离子。它们被表面离子通过静电吸附,反离子中的一部分与粒子及表面离子结合的比较紧密,它们称束缚反离子。它们在介质成为运动整体,带有负电荷,另一部分反离子则包围在周围,它们称为自由反离子,形成扩散层。这样在表面离子和反离子之间就形成双电层。 动电电位:微粒所带负电与扩散层所带正电形成双电层,称动电电位。热力电位:所有阴离子与阳离子之间形成的双电层,相应的电位. 起分散作用的是动电电位而不是热力电位,动电电位电荷不均衡,有电荷排斥现象,而热力电位属于电荷平衡现象。如果介质中增大反离子的浓度,而扩散层中的自由反离子会由于静电斥力被迫进入束缚反离子层,这样双电层被压缩,动电电位下降,当全部自由反离子变为束缚反离子后,动电电位为零,称之为等电点。没有电荷排斥,体系没有稳定性发生絮凝。 位阻效应 一个稳定分散体系的形成,除了利用静电排斥,即吸附于粒子表面的负电荷互相排斥,以阻止粒子与粒子之间的吸附/聚集而最后形成大颗粒而分层/沉降之外,还要利用空间位阻效应的理论,即在已吸附负电荷的粒子互相接近时,使它们互相滑动错开,这类起空间位阻

水煤浆气化装置灰水系统除硬技术探究

水煤浆气化装置灰水系统除硬技术探究 摘要:近年来,随着我国经济的不断发展和社会的不断进步,各个领域都有了 一定上的技术提升。这些化肥生产的公司也在生产的装置上,以及技术上进行了 相应的改变。随着我国节能环保的不断推出,以及绿色发展的不断进行水煤浆气 化系统结垢装置方面存在的问题,严重的干扰的相关企业的正常发展。下面将结 合河南的某化肥公司进行水煤浆气化装置中灰水槽的钙含量以及硬度进行相应的 分析,同时,针对三种除应技术进行对比,分别包括电絮凝除硬技术、酸性气除 硬技术以及膜吸收除硬技术,通过对比后最终选用的处理技术为酸性气除硬技术。关键词:水煤浆;灰水系统;除硬技术 引言:用于水煤浆气化工艺可以更好地利用资源,为企业创造更多的经济效益, 因此备受关注。但是在水煤浆气化灰水系统的运行中发现,水煤浆企划装置系统 存在着严重的结垢问题。为了更好地解决存在的污垢问题,维持系统的长时间稳 定运转,提高企业的经济效益,就要对灰水系统的除硬技术进行研究,在原有的 雏鹰基础上进行相应的提升,降低水煤浆气化装置长时间的结垢难题。下面将对 水煤气化装指灰水系统除应技术进行相应的研究和分析,并提出自己的观点,以 供相关企业参考。 一、水煤浆气化灰水系统 1.1水煤浆气化灰水系统中存在的问题 由于我国能源分布存在着缺少石油天然气,但存在着丰富的煤的特点,因此,基 于我国的能源分布更好地利用煤炭资源,降低在使用过程中的污染问题,是现阶 段符合我国国情发展以及能源多元化的重要手段,利用一定的技术进行煤炭资源 的清洁利用处理,是推动我国能源更好地利用以及经济发展的重要手段。这其中 最常出现的就是水煤浆气化灰水系统的使用。但水煤浆气化灰水系统的应用过程 中还存在着大量的问题。由于在水煤浆系统运行的初期所需要的补水量非常大, 系统经过一次脱盐用的水量高达每小时125立方米,这个过程中,造成氨水的量 消耗的极大,同时,在废水排除系统外管道出现了严重的腐蚀和结垢现象。这些 问题主要表现在以下几个方面: (1)水煤浆系统的系统补水和系统的各处冲水所需要用的水量巨大。在进行拖 延补水的过程中,大量高品质的水被补入灰水系统内,造成了高品质水的浪费。(2)高压闪蒸系统在实际的运行中达不到所要求的设计参数。由于达不到实际 工作所需,因此水中的酸性物质在高压闪蒸的过程中,不能被有效地处理,因此 导致设备的运行期间都处于酸性状态,对设备造成了一定的腐蚀性。 (3)灰水系统的处理中,排水过程没有相应的设置工艺指标。在进行灰水系统 的工艺指标设计时,是根据相关设备的液体位置进行分析来调整灰水系统的高低,没有根据相应的指标进行设计,因此导致灰水系统存在着浓缩性倍数整体较低的 情况。 (4)灰水系统中所使用的水质情况不够稳定。由于回水系统中的水质不够,稳定,存在着波动较大的情况,因此导致药剂的浓度波动也偏大,不能够更好地处 理水中的钙和镁离子美的聚集情况,对后期的管道和设备出现结垢的情况创造了 一定条件。 (5)灰水系统的水资源利用率较低。在实际运行的过程中,由于系统的补水量 消耗大,因此导致对水资源的利用率较低。例如在实际应用的过程中一吨安的取 水情况约为15立方米,而排出的水则达到七立方米,因此,在系统的应用过程

分散剂

分散剂 分散剂是一种在分子内同时具有亲油性和亲水性两种相反性质的界面活性剂。可均一分散那些难于溶解于液体的无机,有机颜料的固体颗粒,同时也能防止固体颗粒的沉降和凝聚,形成安定悬浮液所需的药剂。 种类 脂肪酸类、脂肪族酰胺类和酯类 石蜡类 金属皂类 低分子蜡类 分散剂机理 基本原理 选择分散剂 双电层原理 位阻效应 简介 解释 种类 脂肪酸类、脂肪族酰胺类和酯类 石蜡类 金属皂类 低分子蜡类 分散剂机理 基本原理 选择分散剂 双电层原理 位阻效应 展开 编辑本段简介 Dispersant(分散剂):一种化学品,加入水中增加其去颗粒的能力。Documentation(文件编制):关于装配的资料,解释基本的设计概念、元件和材料的类型与数量、专门的制造指示和最新版本。使用三种类型:原型机和少数量运行、标准生产线和/或生产数量、以及那些指定实际图形的政府合约。 编辑本段解释 工具书中的解释 促使物料颗粒均匀分散于介质中,形成稳定悬浮体的药剂。分散剂一般分为无机分散剂和有机分散剂两

大类。常用的无机分散剂有硅酸盐类(例如水玻璃)和碱金属磷酸盐类(例如三聚磷酸钠、六偏磷酸钠和焦磷酸钠等)。有机分散剂包括三乙基己基磷酸、十二烷基硫酸钠、甲基戊醇、纤维素衍生物、聚丙烯酰胺、古尔胶、脂肪酸聚乙二醇酯等。 学术文献中的解释 分散剂的定义是分散剂能降低分散体系中固体或液体粒子聚集的物质。在制备乳油和可湿性粉剂时加入分散剂和悬浮剂易于形成分散液和悬浮液,并且保持分散体系的相对稳定的功能。 化工词典中的解释 能提高和改善固体或液体物料分散性能的助剂。固体染料研磨时,加入分散剂,有助于颗粒粉碎并阻止已碎颗粒凝聚而保持分散体稳定。不溶于水的油性液体在高剪切力搅拌下,可分散成很小的液珠,停搅拌后,在界面张力的作用下很快分层,而加入分散剂后搅拌,则能形成稳定的乳浊液。其主要作用是降低液-液和固-液间的界面张力。因而分散剂也是表面活性剂。种类有阴离子型、阳离子型、非离子型、两性型和高分子型。阴离子型用得最多。编辑本段选择 一个优良的分散剂应满足以下要求: 1、分散性能好,防止填料粒子之间相互聚集; 2、与树脂、填料有适当的相容性;热稳定性良好; 3、成型加工时的流动性好;不引起颜色飘移; 4、不影响制品的性能;无毒、价廉。 分散剂的用量一般为母料质量的5% 编辑本段种类 脂肪酸类、脂肪族酰胺类和酯类 硬脂酰胺与高级醇并用,可改善润滑性和热稳定性,用量(质量分数,下同)0.3%-0.8%,还可作聚烯烃的滑爽剂;己烯基双硬脂酰胺,也称乙撑基双硬脂酰胺(EBS),是一种高熔点润滑剂,用量为0.5%~2%;硬脂酸单甘油酯(GMS),三硬脂酸甘油酯(HTG);油酸酰用量0.2%~0.5%;烃类石蜡固体,熔点为57~70℃,不溶于水,溶于有机溶剂,树脂中的分散性、相容性、热稳定性均差,用量一般在0.5%以下 石蜡类 尽管石蜡属于外润滑剂,但为非极性直链烃,不能润湿金属表面,也就是说不能阻止聚氯乙烯等树脂粘连金属壁,只有和硬脂酸、硬脂酸钙等并用时,才能发挥协同效应液体石蜡:凝固点-15 ̄-35℃,在挤出和注射成型加工时,与树脂的相容性较差,添加量一般为0.3%-0.5%,过多时,反而使加工性能变坏 微晶石蜡:由石油炼制过程中得到,其相对分子质量较大,且有许多异构体,熔点65-90℃,润滑性和热稳定性好,但分散性较差,用量一般为0.1%-0.2%,最好与硬脂酸丁酯、高级脂肪酸并用。 金属皂类 高级脂肪酸的金属盐类,称为金属皂,如硬脂酸钡(BaSt)适用于多种塑料,用量为0.5%左右;硬脂酸锌(ZnSt)适于聚烯烃、ABS等,用量为0.3%;硬脂酸钙(CaSt)适于通用塑料,外润滑用,用量0.2% ̄1.5%;其他硬脂酸皂如硬脂酸镉(CdSt)、硬脂酸镁(MgSt)、硬脂酸铜(CuSt)。 低分子蜡类 低分子蜡是以各种聚乙烯(均聚物或共聚物)、聚丙烯、聚苯乙烯或其他高分子改性物

分散剂在水煤浆中的作用

分散剂在水煤浆中的作用 水煤浆是粗颗粒悬浮体,煤炭属于疏水性物质,要使浆体具有良好的流变性和稳定性,即使是易成浆的煤种,同时配以高堆积率的粒度分布,若不加入化学添加剂(表面活性剂),要制成所希望的水煤浆是不可能的。在水煤浆制备中化学添加剂的主要作用在于改变煤粒的表面性质,使煤颗粒能够在水中分散,使煤浆体有良好的流动性和稳定性。根据作用不同,化学添加剂可分为分散剂、稳定剂和助剂三类。本文对水煤浆分散剂的种类、作用机理及其影响分散剂作用的因素进行讨论。 1 水煤浆用分散剂 分散剂的主要作用是使水煤浆具有良好的流变特性,也就是说适当降低水煤浆的粘度,使之具有良好的流动性;其次是使水煤浆具有理想的流型,最好是水煤浆能成为触变性液体。常用的分散剂主要有阴离子型和非离子型表面活性剂。 1.1 阴离子表面活性剂 除聚氧乙烯醚类改性阴离子表面活性剂外,聚合阴离子分散剂一般都不起泡,制浆时不需要另加消泡剂。 1.1.1 萘磺酸盐类 其中最典型的是萘磺酸钠甲醛缩合物,其适用范围广,能与各类分散剂混合使用。此分散剂制浆添加量视煤种的不同而不同,大约为干煤质量的0.5%~1.5%,特点是减粘作用及流型好,但通常稳定性差,常需和其他分散剂复配。 1.1.2 木质素磺酸盐 木质素磺酸盐作为分散剂的优点是原料丰富,易于加工,价格便宜,而且浆的稳定性好,一般用量为干煤质量的1%~2%;缺点是杂质含量大,因此,除易制浆煤种外,通常不单独应用。 木质素磺酸盐还可以经甲醛缩合制成木质素磺酸盐甲醛缩合物,用作水煤浆 +、Mg2+、Ca2+等。 分散剂,其平衡离子可以是Na+、NH 4 1.1.3 磺化腐植酸盐 将泥炭、褐煤或风化煤等在150℃下用碱抽提,再经磺化,必要时还可以用甲醛缩合,即可得棕黑色的固体产物磺化腐植酸盐类分散剂。此类分散剂的许多特点和木质素相似,但其分散性能更佳,可单独使用,添加量为干煤质量的1%~1.5%,缺点是浆的稳定性较差。 1.1.4 聚烯烃磺酸盐

橡胶加工助剂分散剂的合成及应用

.-:.。志。恐。;丝。。孟。。;晋主嚣量橡胶加工助剂—分散剂的合成及应用 王立新 (贵州省化工研究院,贵州贵阳.550002) 摘要介绍了金属脂肪酸盐和脂肪酸酯的合成方法,对国内分散剂产品的应用结果进行了分析,并与国外产 品作了对比实验。 美键词分散剂合成应用 中圈分类号1Q330.382 l前言 橡胶加工助剂是指对于橡胶胶料只能起物理性的作用,而不引起化学反应,同时使胶料的生产和加工成为可能的化合物。宝永嘉男认为加工助剂可以认为是胶料在加工阶段的操作性能而使用的材料…。如此,所包含的范围广泛,增塑剂、偶联剂、增粘剂等等都是,它们组成各异对胶料物理性能的影响各有不同,但都对加工性能的改善有所贡献。目前欧洲国家的观点更多的偏向前者。 就分散剂而言,它主要功能是改善胶料中炭黑及其它粉未料的分散状况,对胶料的物理性能基本无影响。 2分散剂的种类 具有橡胶分散效果的物质有脂肪酸、金属脂肪酸盐、脂肪酸酯、脂肪酸”1,高分子脂肪酸酯的缩合产品或与金属皂类的混台物,国外产品有M40,shuk【olwB212Di8pergatorFL和AFLux等系列产品,国内有AT—c、LTM—c、T一78、阶200等品 种。 3分散剂的合成 3.1脂肪酸 脂肪酸主要从植物油脂及动物油脂中提取分离。 3.2金属脂肪酸盐 多种脂肪酸盐中,最重要的是锌盐,反应式: 2R—C00H+Zn0叶(R—C0o)2Zn+nO 金属脂肪酸盐的合成一般可由脂肪酸与NaOH溶液以水为介质皂化,皂化完全后用锌盐溶液滴加,进行复分解反应,得到的产品经脱水干燥即 可。用此法得到的产品纯度较高、质量轻,但工艺过程复杂,废水排放量较大,不利于环保,且生产成本高。 使用脂肪酸与金属氧化物作用,可一步合成金属脂肪酸盐方法为:一般选用碳链较长的脂肪酸,将脂肪酸熔融后逐渐加入金属氧化物,并提高温度至100~120℃,反应进行,所产生的水在反应温度下变成气体,并大量鼓泡,用负压的方法将水蒸汽迅速移走,直到反应液中不再有气泡产生,反应结束。 3.3脂肪酸酯的合成反应式: R—cooH—R—oH兰!型!R—coo—R+H!o 用脂肪酸与醇类等摩尔反应,该反应为可逆反应,为使反应顺利进行,需将生成的水不断移走,才能使反应达到终点,同时酯化速度较慢,选取合适的催化剂是必要的,催化剂一般采用浓硫酸,对甲苯磺酸,HcI气体或碱性催化剂。使用催化剂后可提高酯化速度,酯化过程可在8~10h内完成。生成的水一般采用负压的方式将水移走,为防止酯化过程较长使反应物氧化而导致颜色加深,需在反应过程中通入N。,以隔离空气中氧。 3.4需要注意的是所使用的原料品质对合成的分散剂有较大影响,原料的杂质含量必须作一定控制,才能得到满意产品。 4分散剂的应用 4.1分散剂的作用 分散剂能够降低天然橡胶和合成橡胶的粘度,其具体表现为门尼粘度值下降,从而改善胶料的流动特性,并使混炼时间和能量消耗下降,加快填料、碳黑的分散。  万方数据

农药用聚羧酸盐类分散剂

丙烯酸-(甲基)丙烯酸酯共聚物等高分子分散剂属于均聚物或共聚物,通常在分散体系中可以起到空间稳定作用,有的带电高分子还可以通过静电稳定机制提高分散体系的稳定性,因而高分子分散剂比无机、有机小分子分散剂更为有效。聚羧酸盐类分散剂具有长碳链,较多活性吸附点以及能起到空间排斥作用的支链,由于其特殊的结构而对悬浮体系具有很好的分散性能。 聚羧酸类分散剂与传统木质素磺酸盐、萘磺酸盐甲醛缩合物钠盐分散剂相比有以下特点: ①聚羧酸类分散剂对悬浮体系中的离子,pH值以及温度等敏感程度小,分散稳定性高,不易出现沉降和絮凝; ②聚羧酸类分散剂提高了固体颗粒的含量,显著降低分散体系粘度,在高固含量下具有较好流动性,降低了原料成本,减少设备磨损; ③原材料选择范围广,可选择不同种类的共聚单体,分子结构与性能的可设计性强,易形成系列化产品。 聚羧酸类分散剂采用不同的不饱和单体接枝共聚而成,其代表产物繁多,但结构遵循一定规则,即在重复单元的末端或中间位置带有EO,-COOH,-COO-,-SO3-等活性基团。 聚羧酸类分散剂在分子主链或侧链上引入强极性基团:羧基、磺酸基、聚氧化乙烯基等使分子具有梳形结构,分子量分布范围为10000-100000,比较集中于5000左右。疏水基分子量控制在5000-7000左右,疏水链过长,无法完全吸附于颗粒表面而成环或与相邻颗粒表面结合,导致粒子间桥连絮凝;亲水基分子量控制在3000-5000左右,亲水链过长,分散剂易从农药颗粒表面脱落,且亲水链间易发生缠结导致絮凝。聚羧酸类分散剂链段中亲水部分比例要适宜,一般为20%-40%,如果比例过低,分散剂无法完全溶解,分散效果下降;比例过高,则分散剂溶剂化过强,分散剂与粒子间结合力相对削弱而脱落。 聚羧酸类分散剂分子所带官能团如羧基、磺酸基、聚氧乙烯基的数量、主链聚合度以及侧链链长等影响分散剂对农药颗粒的分散性。分子聚合度(相对分子量)的大小与羧基的含量对农药颗粒的分散效果有很大的影响。由于分子主链的疏水性和侧链的亲水性以及侧链(-OCH2CH2)的存在,也起到了一定的立体稳定作用,以防止无规则凝聚,从而有助于农药颗粒的分散。 聚羧酸类分散剂作用机理:水基性制剂形成的悬浮体系中的原药颗粒很小,与分散介质间存在巨大的相界面,裸露的原药颗粒界面间亲和力很强,吸引能很高,易导致原药颗

提高农药水分散粒剂悬浮率的方法及助剂

提高水分散粒剂悬浮率的方法和助剂 二十世纪八十年代,美国和欧洲相继开发出一种农药新剂型——水分散粒剂。自1979年瑞士汽巴嘉基公司开发出第一个90%莠去津水分散性粒剂以来,经过欧美广泛推广,充分显示出它的生命力。尤其是进入90年代后,由于市场竞争更加激烈,人们的环保意识愈来愈强,对高效低毒农药的呼声越来越高。目前世界上许多大公司都在致力于研究开发新的水分散性粒剂。 国际农药工业协会联合会将水分散性粒剂(WDG)其定义为:入水后能迅速崩解和分散后使用的颗粒剂。水分散性粒剂主要由农药活性成分、润湿剂、分散剂、崩解剂、稳定剂、粘结剂和填料等助剂载体要素组成。 水分散性粒剂的优点在于:①不用有机溶剂,大大降低了环境污染;喷洒时没有粉尘飞扬,对作业者安全,减少了对环境的污染;②有效成分含量高,添加的助剂少,产品相对密度大,体积小、易包装、易贮存与运输,具有很强的经济效益和社会效益;③物理化学稳定性好,特别是在水中不稳定的农药,制成水分散粒剂后,更稳定;④入水易崩解,分散性好,悬浮率高,药效高。⑤流动性好,不粘壁,包装易处理;⑥安全性好、与环境相容、附加值高,市场潜力大,被认为是2l世纪最具发展前景的剂型之一。 近几年来我国在农药水分散粒剂领域的研究方面区域活跃,但大部分农药企业限于助剂、技术、设备的原因,无法开展农药水分散粒剂的研究。 在研制水分散粒剂配方过程中,技术工程师往往需要寻找能够提高水分散粒剂悬浮率和崩解性能的助剂,现将几种常用助剂介绍如下: 一.分散助悬剂达润ProDis Q303: 是提高水分散粒剂悬浮率、快速崩解、分散助剂,可应用于农药杀菌剂、杀虫剂、除草剂等水分散粒剂配方中,性能卓越。 1. 助剂中独特的卷曲状线型结构,其亲水基团与疏水基团在水中形成交错网格状,使粒子崩解后形成的水悬液更加稳定,持久提高悬浮率。 2. ProDis Q303助剂亲水性好,添加到水分散粒剂配方中,粒子能在水中全部快速分散,呈现云雾状崩解。 3. 崩解助悬剂ProDis Q303,粉末状,流动性好,不结块,使用方便,与其它助剂相容性好。 4.用途和用量:用于水分散粒剂配方中,作为提高悬浮率、分散、润湿助剂,推荐用量为:3—8%,与朗钛达润600C崩解助悬剂等助剂配合使用,效果更佳。

高效灰水阻垢分散剂产品说明

高效灰水阻垢分散剂产品说明 一、前言 水煤浆气化造气工艺中灰水处理工艺包括冷却黑水、热量回收、溶解气体脱除、渣水分离和水循环使用。灰水具有高压、高温、高浊度、高硬度等特点,因此它在运行过程中,悬浮物的沉积、结垢、腐蚀等现象经常发生,严重影响设备的正常运行。LANXU-309高效灰水阻垢分散剂是我公司针对水煤浆气化工艺的特点开发的新一代阻垢分散剂,它特别适用于德士古水煤浆造气气化工艺中的灰水处理,能够有效减缓灰水结垢、腐蚀对生产的影响,减少污水排放提高灰水的重复利用率。 二、产品性能 1、LANXU-309分散性能 LANXU-309由多种单体共聚而成,它含有多个官能基团:强酸基(磺酸基)、弱酸基(羧酸基)、非离子性官能基团,其中弱酸基对悬浮颗粒表面仅有微弱的吸附力并且保留部分的分散作用。而其中的强酸基对悬浮颗粒表面仅有微弱的吸附力,其所带的负电荷对带有相同负电荷的悬浮颗粒具有排斥力,此排斥力阻止了悬浮颗粒凝结成大颗粒而沉积于热交换器上。非离子性官能基团不但对悬浮颗粒表面有较强的吸引力,还可以对悬浮颗粒产生排斥作用以防止其沉积。因此该共聚物可在任何操作条件下分散大部分的沉积物,而使热交换器保持表面清洁。 LANXU-309灰水分散剂的分散效果见下表。 灰水分散试验结果

由表可以看出,分散剂LANXU-309对高浊度灰水具有强力分散性。 高浊度水阻垢分散率 三、功能与特性: 1、低分子的膦酸盐具有耐高温不易水解的特点,磺酸盐共聚物对悬浮颗粒有极强的分散性能; 2、卓越的阻垢和分散性能有效提高灰水重复利用率,减少污水排放,节约水资源的同时保护环境,而且能够减轻后期污水处理压力; 3、适用于高温、高硬、高PH值的灰水处理系统,可在300°C以下的高温下使用具有良好的阻垢分散性能; 4、不仅对碳酸钙有优良的阻垢性能,对磷酸钙、硫酸钙和水合氧化铁也有很好的阻垢分散性能; 5、具有较好的缓蚀性,延长设备的使用寿命; 6、能够为用户创造更大的综合经济效益。 四、使用方法: 连续均匀加入系统中,添加量视水质和工况而定,建议投加量: 水中悬浮物≤100mg/1时,添加量为60-80ppm;当水中含悬浮物每增加5mg/1,药剂投加量增加1~2ppm 。 五、产品规格: 外观:淡黄色或浅棕色液体 密度:1.1±0.1 PH(1%溶液):2.0~5.0

润湿分散剂的分类特性与应用

润湿分散剂的分类特性与应用 摘要:论述了不同类别润湿分散剂的基本组成和应用特性,讨论了各种润湿分散剂在不同涂料中所应遵循的规则和选择方法。共讨论了八大类涂料工业常用的一些润湿分散剂品种。 关键词:润湿分散剂、高分子分散剂 润湿与分散是涂料制备的重要工艺过程。由于涂料品种的多样性,所使用的相关分散助剂也是品种繁多。市场上众多供应商提供了各具特色的品牌助剂,令人眼花缭乱。由于涂料助剂大多价格不菲,取舍之间更有着经济上的意义。因此,有必要对助剂的选择问题作一深入浅出的探讨,达到整体把握的目的。 不过,试图将润湿分散剂从化学上加以分类是困难的。原因是不同品牌的产品,其组成、结构差别非常大。从实际应用需要,运用物理化学原理和方法,对其进行大致分类则是可能和有意义的。 考察润湿分散剂的分类特性,宜从应用范围(主要是相容性问题)、极性、离子性以及分子量特征等方面进行。大的方面,按应用领域分为水性与油性以及通用型分散剂。功能上又区别为润湿剂和分散剂。实际上,这一区分带有很大的随意性;因为润湿与分散根本就是一个统一连续的过程。 1.0 水性润湿分散剂 1.1 润湿剂 都是一些低分子量(≤1500)的界面活性剂。主要作用是降低体系的界面张力;一般可在室温下把水溶液的表面张力从72达因/厘米,降至40达因/厘米以下。从而利于分散剂对颜料的作用。微观上,是促进颜料的可润湿性,使分散剂易于在颜料表面铺展而结合,形成所谓的锚固关系。另一方面,润湿剂这种降低体系表面张力的作用,还是涂料施工必不可少的性能。因为,高表面张力的涂料不易在基面上涂覆,易于出现流平不良等缺陷。应用于涂料配方中的润湿剂,有别于乳液合成用的表面活性剂。后者以离子型居多,而前者主要是非离子型的酚基或烷基聚氧乙烯类。 润湿剂的HLB值是衡量极性大小的重要参数。一般供应商可以提供这类数据。HLB值高则水溶性好,反之,则活性大。需要恰当把握。且过高的HLB易于导致涂料对商品色浆的接受性变差。易于出现浮色、发花等涂料质量和施工缺陷[1]。色浆与基础涂料之间HLB 差距过大,可能是水性涂料调色故障的主要原因。另外,泡沫的产生对涂料制造也是个敏感的问题。理论上,有一些计算已知结构表面活性剂HLB值的方法[2]。 有必要指出的是,钠盐或钾盐型分散剂的HLB值可能超过30以上。而合适的HLB值应该在20以下。遗憾的是,准确测定助剂HLB值还是相当困难的。简单测定助剂HLB的方法列于表1。将少量助剂与水相混,观察产生的现象,大致评价出HLB的范围[2] 表1 水分散法测定助剂的HLB值 H L B 范围分散性质 5——6 不稳定,或分散不良 7——8 经强烈摇荡后呈乳状分散 9——10 稳定的乳状分散体 11——13 半透明或灰色分散体

相关文档
最新文档