最新光子晶体光纤简介及原理

合集下载

实心光子晶体光纤的传光机理

实心光子晶体光纤的传光机理

实心光子晶体光纤的传光机理
实心光子晶体光纤的传光机理可以分为两类:折射率导光机理和光子能隙导光机理。

折射率导光机理:周期性缺陷的纤心折射率(石英玻璃)和周期性包层折射率(空气)之间有一定的差别,从而使光能够在纤芯中传播。

这种结构的PCF导光机理依然是全内反射,但与常规G.652光纤有所不同,由于包层包含空气,所以这种机理称为改进的全内反射,这是因为空芯PCF中的小孔尺寸比传导光的波长还小的缘故。

光子能隙导光机理:包层为周期性排布的空气孔,其导光机理为二维光子晶体的光子带隙,即当包层空气孔间距和直径满足一定条件时,其频率处于带隙范围内的光波被禁止向包层方向传播,只在缺陷纤芯中沿着缺陷的方向进行传播。

由于光子带隙导光机理为包层光子带隙,因此对于纤芯的折射率没有太大限制,使得空芯导光成为了可能,但是带隙型导光对光纤包层结构的周期性要求非常严格,以确保形成有效的光子带隙,因此对制作工艺水平要求很高。

光子晶体光纤在光通信中的应用

光子晶体光纤在光通信中的应用

光子晶体光纤在光通信中的应用光通信作为一种高速、大容量、低损耗、抗干扰性强的通信方式,日益成为人们关注的焦点。

而光子晶体光纤作为光通信领域中的重要技术之一,其在传输中所展现出的独特性能和优势,为光通信的发展和应用带来了新的可能性和发展机遇。

一、光子晶体光纤的基本原理光子晶体光纤是一种结构具有周期性的光纤,其表面上呈现出高度有序的孔隙排列,在光的传输中能够对光的频谱和传播特性进行有效的控制。

光子晶体光纤的基本结构由介质材料的高折射率材料和低折射率材料所组成,通过对不同材料的选择和排列方式可以实现对光信号的调控和处理。

二、光子晶体光纤在光通信中的应用1. 高速传输:光子晶体光纤具有较高的光互连带宽,能够实现GB 级的高速传输,在光通信中可以满足大容量数据的传输需求。

2. 低损耗传输:光纤中的光信号传输距离过长会引起传输损耗。

而光子晶体光纤由于其特殊的结构,能够有效地减少光信号的损耗,提高信号的传输质量。

3. 宽带传输:光子晶体光纤对不同波长的光信号具有很好的传输特性,能够实现宽带的传输,提高通信系统的传输效率。

4. 抗干扰性强:光子晶体光纤中的光信号传输不受电磁干扰的影响,能够有效地避免通信信号受到外界干扰而导致的传输质量下降。

5. 兼容性强:光子晶体光纤可以与传统的光纤系统兼容,并且通过对光子晶体光纤的设计和优化,能够实现与不同光传输系统的接口和光互连。

三、光子晶体光纤的发展趋势随着光通信技术的不断深入研究和应用,光子晶体光纤作为其中的重要组成部分,也在不断地得到改进和完善。

未来,光子晶体光纤可能呈现以下几个发展趋势:1. 增强传输能力:通过改变光子晶体光纤的结构和材料,提高其传输能力和数据传输速率,以满足日益增长的通信需求。

2. 减小尺寸:通过微纳加工技术,研制出更小尺寸的光子晶体光纤,使其在光通信设备中的应用更加灵活和便捷。

3. 多功能集成:将光子晶体光纤与其他光学器件进行集成,实现光通信系统的多功能化,并且具备更好的自适应和兼容性。

光子晶体:操控光的奇异材料

光子晶体:操控光的奇异材料

光子晶体:操控光的奇异材料光子晶体是一种具有周期性结构的材料,它能够有效地操控光的传播和特性。

光子晶体的研究和应用在光学领域具有重要的意义,不仅为我们深入理解光的行为提供了新的途径,还为光通信、光电子学等领域的发展带来了巨大的潜力。

一、光子晶体的基本原理光子晶体的基本原理是利用材料内部的周期性结构来调控光的传播。

光子晶体的周期性结构可以通过周期性的折射率分布来实现,这种分布可以通过控制材料的组成、形状和尺寸等参数来实现。

当光传播到光子晶体中时,由于周期性结构的存在,光子晶体会对光进行衍射和干涉,从而产生一系列特殊的光学效应。

二、光子晶体的特性光子晶体具有许多独特的特性,使其成为一种重要的光学材料。

首先,光子晶体可以实现光的完全禁带,即在某个频率范围内,光无法在光子晶体中传播。

这种禁带效应可以用来制备光学滤波器、光学隔离器等器件。

其次,光子晶体还可以实现光的反射、透射和散射等效应,这些效应可以用来制备光学镜子、光学波导等器件。

此外,光子晶体还具有色散调控、非线性光学效应等特性,这些特性为光子晶体的应用提供了更多的可能性。

三、光子晶体的制备方法目前,光子晶体的制备方法主要包括自组装法、光刻法和纳米加工法等。

自组装法是一种简单而有效的制备方法,通过控制溶液中颗粒的浓度和pH值等参数,可以使颗粒自发地排列成周期性结构。

光刻法是一种常用的微纳加工技术,通过光刻胶和光刻机等设备,可以将期望的结构图案转移到材料表面上。

纳米加工法是一种利用纳米级别的工具和技术来制备光子晶体的方法,如电子束曝光、离子束曝光等。

四、光子晶体的应用领域光子晶体的研究和应用涉及到多个领域,包括光通信、光电子学、光传感、光催化等。

在光通信领域,光子晶体可以用来制备高效的光纤耦合器、光开关等器件,提高光通信系统的传输效率和容量。

在光电子学领域,光子晶体可以用来制备高效的太阳能电池、光电探测器等器件,提高光电转换效率。

在光传感领域,光子晶体可以用来制备高灵敏度的光传感器、生物传感器等器件,实现对光、电磁波和生物分子等的高精度检测。

光子带隙型光子晶体光纤

光子带隙型光子晶体光纤

光子带隙型光子晶体光纤光子带隙型光子晶体光纤是一种具有特殊结构的光纤,其内部的光子晶体结构可以控制光的传播特性。

光子带隙是指在光子晶体中存在禁带,使得特定频率范围内的光无法传播。

这种特殊的光纤结构在光通信、传感和光子学领域具有广泛的应用前景。

光子带隙型光子晶体光纤的制备过程需要精密的工艺和材料选择。

首先,通过光子晶体材料的选择和设计,确定所需的光子带隙范围。

然后,利用光纤拉制技术将光子晶体材料制备成光纤的结构。

在制备过程中,需要控制光子晶体的周期性结构,以确保光子带隙的形成和传输特性的优化。

光子带隙型光子晶体光纤具有许多独特的优势。

首先,由于光子带隙的存在,光子晶体光纤可以实现低损耗的光传输。

其次,光子带隙型光子晶体光纤可以实现光的波导效应,使得光信号可以在光纤中沿特定方向传播,从而减少光的散射和损耗。

此外,光子带隙型光子晶体光纤还具有高度的温度和环境稳定性,适用于各种复杂的工作环境。

光子带隙型光子晶体光纤在光通信领域有着广泛的应用。

由于其低损耗和波导效应,光子带隙型光子晶体光纤可以实现高速、长距离的光信号传输。

此外,光子带隙型光子晶体光纤还可以用于光纤传感领域,通过对光信号的变化进行监测和分析,实现对温度、压力、湿度等物理量的测量。

光子带隙型光子晶体光纤还可以应用于光子学器件的制备,如光开关、光放大器等。

尽管光子带隙型光子晶体光纤具有许多优势和应用前景,但其制备和应用仍面临一些挑战。

首先,光子晶体材料的制备和加工工艺需要进一步改进和优化,以提高光子带隙型光子晶体光纤的性能和稳定性。

其次,光子带隙型光子晶体光纤的成本较高,限制了其在大规模应用中的推广。

此外,光子带隙型光子晶体光纤的性能受到温度、压力等外界环境的影响,需要进一步研究和改进。

光子带隙型光子晶体光纤是一种具有潜力的光纤结构,其特殊的光子晶体结构可以实现光的控制和传输。

在光通信、传感和光子学领域,光子带隙型光子晶体光纤具有广泛的应用前景。

光子晶体光纤简介及原理

光子晶体光纤简介及原理

光子晶体光纤简介及原理
一、光子晶体光纤简介
光子晶体光纤(Photonic Crystal Fiber,简称PCF),又称为微结构光纤,是一种新型的光纤,其特点是具有周期性的折射率分布。

这种光纤的设计灵感来源于自然界中的光子晶体,即具有周期性折射率变化的介质。

光子晶体光纤在通信、传感、激光等领域有着广泛的应用前景。

二、光子晶体光纤的原理
光子晶体光纤的核心原理是光的全内反射和光子带隙效应。

光的全内反射是指当光线在介质中遇到界面时,如果入射角大于某一临界角,光线会在介质内部发生反射而不透射。

光子带隙效应是指当光在具有周期性折射率变化的介质中传播时,某些特定波长的光会被禁止传播,这种现象类似于电子在固体材料中的能带结构。

光子晶体光纤通过控制折射率分布,使得光纤中的光波被限制在纤芯中传播,从而实现光的传输和控制。

这种光纤的折射率分布可以精确地设计,从而实现对光波的特定控制,例如改变传输模式、提高传输效率、产生特定波长的激光等。

三、光子晶体光纤的特点
1.传输特性:光子晶体光纤具有独特的传输特性,可以改变传输模式、控制
光谱特性等。

由于其周期性的折射率分布,光纤可以对光的传输进行精细化控制,使得光的传输更加稳定和高效。

2.制作工艺:光子晶体光纤的制作工艺比较复杂,需要精确控制材料的组分
和工艺参数。

但是随着技术的不断发展,人们已经可以通过多种方法制备出具有特定折射率分布的光子晶体光纤。

光子晶体光纤 (PCF)

光子晶体光纤 (PCF)

1.1 结构 • 下图是不同维数光子晶体的模型和实例
• 光子晶体里重复结构(或称晶胞)的单元尺度是光波长 (μm)量级。通过巧妙的安排和设计光子晶体可以控制光 子流
第一块光子晶体
• 1991年,Yablonovich 制作了第一块光子晶体。他所采用的方法是在折射率为3.6的材料上用 机械方法钻出许多直径为1mm的孔,并呈周期性分布。这种材料从此被称为“Yablonovich”, 它可以阻止里面的微波从任何方向传播出去。
自然界中的光子晶体结构
1.2 光子带隙基础
• 理解光波在光子晶体中的传播行为的最简单方法,就是把它与半导体内的电 子和空穴的运动作一比较
能量E 导带 禁带 由缺陷或杂质在禁带中引起的能级
在半导体禁带中由缺陷或杂质引起的能级分布图
• 当光子穿过一块含有一些排列成晶格结构的细微空气孔的 透明介电材料时,这种光学结构是带有空气孔的低折射率 区域散布在高折射率区中。
λ
n 2d sin
θ
d
当波长和周期结构的尺寸满足布拉格条件λ~2d 时, 该周期结构将反射入射波。其中d为周期常数。
• 若有一束平面波入射到晶体上,大多数波长 λ 的光波在晶 体中传播时不被散射,而当 λ ~ 2d 时,由于布拉格反射, 光波无法在晶体中传播。 • 即,某个波长范围的光子在这种结构中不能占据一个能量 状态。这些光子在该结构中是被禁止的,不能传播。这就 是光子带隙 PBG。
4. 光子晶体光纤
• 在传统的光纤中,光在中心的氧化硅纤芯里传播 • 通常采取掺杂的办法提高其折射系数,以增加传输效率,但不 同的掺杂物只能对一种频率的光有效 • 英国Bath大学的研究人员用几百个传统氧化硅棒和氧化硅毛细 管一次绑在一起组成六角阵列,在 2000 度高温下烧结后制成 了二维光子晶体光纤。在光纤的中心可以人为地引入空气孔作 为导光通道,也可以用固体硅作为导光介质 —— PCF • 光子晶体光纤在两个方面明显优于传统的光纤

光子晶体光纤的简介及其应用

光子晶体光纤的简介及其应用

光子晶体光纤的简介及其应用【摘要】光子晶体光纤(PCF)具有很多在传统光纤中无法实现的特性,吸引了学术界和产业界的广泛关注,并在近年内取得了重大的进展。

本文阐述了PCF的导光原理、分类及其在光纤通信中的应用。

【关键词】光子晶体;光子晶体光纤;光纤通信0.引言自P.S.J.Russell等于1991年首次提出光子晶体光纤概念后,引起了各国研究机构的浓厚兴趣,揭开了光纤发展的崭新的一页。

光子晶体光纤(photonic crystal fiber,PCF)是基于光子晶体技术发展起来的新一代传输光纤。

它是在普通石英光纤中沿轴向方向周期性排列空气孔,端面呈二维周期性的光子晶体结构,由于光子晶体具有光子带隙频带,如果在光子晶体中引入缺陷,则在禁带中引入缺陷模式,使光能够在缺陷内传播。

因此,与普通单模光纤不同,PCF又称为多孔光纤(holey fiber,HF)或微结构光纤(microstructure fiber,MSF)。

1996年,P.S.J.Russell 和J.C.Knight等首次在实验室成功制备了第一根光子晶体光纤。

1.光子晶体光纤的导光原理相对传统光纤而言,光子晶体光纤具有完全不同的光波传播原理。

它利用光子晶体所具有的光子频率禁带特性,将特定频率的光波强烈地束缚在纤芯内进行传导,光纤弯曲或折叠状态对光波的影响非常小,几乎在所有的传播波长处都能够保持单模运转,且其零色散波长从传统光纤的红外波段移到了可见光波段[1],可将光通信波段从1.3~1.6um扩展到整个可见光波段,这对光纤通信领域而言无疑是一种莫大幸事。

另外,光子晶体光纤具有极强的非线性效应,在低于传统光纤三个量级的脉冲峰值功率下就可产生光谱覆盖紫外到红外的超连续光,这在光频率测量、极短脉冲的产生、抽运探测光谱学等领域的研究中有着极其重要的作用。

此外,可制备光子晶体光纤激光器、干涉仪、带通滤波器等新型器件。

还可通过向微结构空芯光纤中填充介质,实现可变的光谱衰减器、光开关和高精度传感器等,极大地扩展了光通信波段,进行快速的波长变换和光放大,从而解决光通信和光网络问题等。

光子晶体光纤的导光原理

光子晶体光纤的导光原理

光子晶体光纤的导光原理1.引言1.1 概述概述:光子晶体光纤作为一种新型的光纤传输介质,具有独特的结构和出色的光导特性。

它采用光子晶体结构,通过调控光子晶体中的周期性折射率变化,实现对光信号的高效导引和传输。

与传统的光纤相比,光子晶体光纤在光导性能上具有明显的优越性,因此在光通信、光传感等领域有着广泛的应用前景。

本文将从光子晶体光纤的基本原理和导光机制两个方面进行探讨。

首先,我们将介绍光子晶体光纤的基本原理,包括其结构特点、制备方法和光学性质等方面的内容。

其次,我们将重点探讨光子晶体光纤的导光机制,包括全内反射、布喇格散射和空气孔径调制等关键技术的原理及其对光信号传输的影响。

通过对光子晶体光纤的导光原理的深入研究,可以更好地理解其优越的光导特性,并为其在光通信、光传感等领域的应用提供理论指导和技术支持。

此外,我们还将展望光子晶体光纤在未来的发展趋势,以及可能遇到的挑战和解决方案。

综上所述,本文旨在全面介绍光子晶体光纤的导光原理,为读者深入了解和应用光子晶体光纤提供参考。

1.2文章结构文章结构部分的内容可以如下所示:1.2 文章结构本文主要围绕光子晶体光纤的导光原理展开讨论。

为了使读者更好地理解这个主题,本文将分为引言、正文和结论三个部分。

引言部分将首先对光子晶体光纤进行概述,介绍其基本特点和应用领域。

然后,本文将给出文章结构的总体概述,为读者提供一个整体的框架。

正文部分将重点讨论光子晶体光纤的基本原理和导光机制。

在2.1节中,将详细介绍光子晶体光纤的基本原理,包括其构造和组成材料。

然后,2.2节将深入讨论光子晶体光纤的导光机制,解释光信号在光纤中的传输过程,并探讨其与传统光纤的区别和优势。

结论部分将对文章进行总结,并展望光子晶体光纤在未来的发展前景。

3.1节将总结本文的要点和主要观点,强调光子晶体光纤在光通信和光传感领域的重要性。

而3.2节将展望光子晶体光纤技术未来的发展方向和可能的应用领域,为读者提供一个展望未来的思考。

光子晶体光纤制备原理

光子晶体光纤制备原理

光子晶体光纤制备原理
光子晶体光纤的制备原理基于光子晶体的概念。

光子晶体是一种具有周期性折射率变化的介质,能够控制光的传播。

在光子晶体光纤中,包层由规则排列的空气孔构成,这些空气孔的排列方式决定了光的导光特性。

光纤的核心则由破坏包层结构周期性的缺陷构成,这个缺陷可以是固体硅,也可以是空气孔。

对于核心为空气孔的情况,光的导光机制主要是布拉格衍射。

当一定波长的光通过作为包层的二维光子晶体时,光被陷获在作为核心的空气孔中,并通过布拉格衍射实现光的传输。

这种光子晶体光纤的导光机制使光纤设计更灵活,因为光子带隙条件只依赖于包层的性质,纤芯折射率可以自由选择,从而将光波限制在空纤芯中。

对于核心为固体硅的情况,包层不存在光子带隙,其有效折射率是硅和空气的体平均,小于核心硅的折射率。

因此,这种光纤的导光机制是全内反射。

只要满足全反射的条件,光完全可以局限在“纤芯”范围内传播。

与全内反射光纤相比,光子带隙导向给予了额外的自由度。

光子晶体光纤的制备过程涉及复杂的微纳加工技术。

首先,制备出一簇细小的毛细管,并使其周期性排列。

然后,通过特定的技术将这些毛细管组装起
来,形成光子晶体光纤的结构。

这种光纤具有优良的传输特性,因此在全球范围内受到了广泛的关注和应用。

光子晶体光纤

光子晶体光纤

谢谢观看
光子晶体光纤有很多奇特的性质。例如,可以在很宽的带宽范围内只支持一个模式传输;包层区气孔的排列 方式能够极大地影响模式性质;排列不对称的气孔也可以产生很大的双折射效应,这为我们设计高性能的偏振器 件提供了可能。
概念提出
概念提出
光子晶体的概念最早出现在1987年,当时有人提出,半导体的电子带隙有着与光学类似的周期性介质结构。 其中最有发展前途的领域是光子晶体在光纤技术中的应用。它涉及的主要议题是高折射率光纤的周期性微结构 (它们通常由以二氧化硅为背景材料的空气孔组成)。这种被谈论着的光纤通常称之为光子晶体光纤(PCFs), 这种新型光波导可方便地分为两个截然不同的群体。第一种光纤具有高折射率芯层(一般是固体硅),并被二维 光子晶体包层所包围的结构。这些光纤有类似于常规光纤的性质,其工作原理是由内部全反射(TIR)形成波导; 相比于传统的折射率传导,光子晶体包层的有效折射率允许芯层有更高的折射率。因此,重要的是要注意到,这 些我们所谓的内部全反射光子晶体光纤(TIR-PCFs),实际上完全不依赖于光子带隙( PBG )效应。与TIRPCFs截然不同的另一种光纤,其光子晶体包层显示的是光子带隙效应,它利用这种效应把光束控制在芯层内。这 些光纤(PBG-PCFs)表现出可观的性能,其中最重要的是能力控制和引导光束在具有比包层折射率低的芯层内传 播。相比而言,内部全反射光子晶体光纤(TIR-PCFs)首先是被制造出来的,而真正的光子带隙传导光纤(PBGPCFs)只是在近期才得到实验证明。
光子晶体光纤的典型拉制过程:首先是完成预制棒的设计和制作塔中,利用普通光纤的拉制方法在更精密的温度和速度控制下拉制成符合尺寸要求的光子晶体光纤。 在拉制过程中,通过调整预制棒内部惰性气体压强和拉制的速度来保持光纤中空气孔的大小比例,从而获得一系列 不同结构的光子晶体光纤。一些研究小组还报道一些特殊的预制棒制作方法,这些方法可以用来拉制特殊材料或特 殊结构的光子晶体光纤。例如,由于软玻璃材料并不像硅一样易形成管状,普通的堆管制作预制棒的方法不适用, 利用直接挤压形成预制棒的新技术则能制作这类材料的光子晶体光纤预制棒。通过堆叠、冲压和钻孔的方法可以 很好地制作聚合物材料的光子晶体光纤预制棒。通过一种独特的卷雪茄技术将聚合物与玻璃合成布拉格结构的光 子晶体光纤。而P.Falkenstein等则是在构成预制棒的玻璃棒中插入可被酸腐蚀的玻璃材料,将它们按设计要求排 列好并融化成型后,利用酸腐蚀掉不需要的部分形成空气孔,这种方法形成的预制棒能拉制出结构更完美、更符合 设计要求的光子晶体光纤。

光子晶体光纤的原理、结构、制作及潜在应用

光子晶体光纤的原理、结构、制作及潜在应用

要 ! 传统光纤中的光能损耗和色散是阻碍其进 一 步 向 大 容 量 和 远 距 离 通 信 方 向 发 展 的 主 要 原 因 . 因此制造
具有低色散和低损耗的光子晶体光纤成为光纤技术努力的方向 0在介绍光子晶体光纤的制作 导光原理和特点的 基础上 . 研究了普通光纤不具备 . 而光子晶体光纤 所 具 有 的 无 休 止 的 单 模 特 性 奇异的色散特性可控的非线性和 易于实现的多芯传输等特点 0 研究结果表明 . 光子晶体光纤在光纤传感器光子晶体天线超宽色散补偿光学集 成电路等多方面具有广泛的应用前景 0 关键词 ! 光子晶体光纤 1 光纤 1 色散 1 非线性效应 中图分类号 ! ( 4 5 , 2 3$ 文献标识码 ! 6
$ # # ( . $ * ’ * ) 文章编号 ! " # # $ %$ # & $ ’ $ # # ( ) # * %# # + , %# +
应用光学
k v 6U U ‘ N Q ^wU X N O ]
u+ , u
光子晶体光纤的原理 结构 制作及潜在应用
李启成
黑龙江科技学院 数力系 . 黑龙江 哈尔滨 ’ 摘 " ( # # $ / )
制作这种光子晶体在工艺 控制气孔的排列 " 因此 ! 上有较大难度 " 目前所报道的传统的 A 低耗的光子 晶体光纤都以全内反射作为导光机制 "
图 < 隧道被破坏的光子带隙波导 图 % 传统光波导 ) % * & ’ ( + , ’ . ’ / 0 , 1 2 , 3 4 ( 5 ’ 4 ) < B & ’ ( , 0 -( , C2 , 3 4 ( 5 ’ 42 ’ . D4 E . + / F 4 -. 5 0 0 4 1

光子晶体光纤简介及原理

光子晶体光纤简介及原理

光子晶体光纤简介及原理中文摘要: 光子晶体光纤又被称为微结构光纤,近年来引起广泛关注,它的横截面上有较复杂的折射率分布,通常含有不同排列形式的气孔,这些气孔的尺度与光波波长大致在同一量级且贯穿器件的整个长度,光波可以被限制在光纤芯区传播。

光子晶体光纤有很多奇特的性质。

例如,可以在很宽的带宽范围内只支持一个模式传输;包层区气孔的排列方式能够极大地影响模式性质;排列不对称的气孔也可以产生很大的双折射效应,这为我们设计高性能的偏振器件提供了可能。

中文关键字:光子晶体光纤 PCF导光机理 PCF的特性英文摘要: In 1991, the emerging field of photonic crystals led to the development of photonic-crystal fiber which guides light by means of diffraction from a periodic structure, rather than total internal reflection. The first photonic crystal fibers became commercially available in 2000.[8] Photonic crystal fibers can be designed to carry higher power than conventional fiber, and their wavelength dependent properties can be manipulated to improve their performance in certain applications.英文关键字: photonic-crystal fiber光子晶体(PC)是一种介电常数随空间周期性变化的新型光学微结构材料,其概念是1987年分别由S. Jo n和E. Yablonovitch提出来的,就是将不同介电常数的介质材料在一维、二维或者三维空间组成具有光波长量级的折射率周期性变化的结构材料。

光子晶体光纤的原理及应用ppt

光子晶体光纤的原理及应用ppt

谢谢!
周期结构
晶格常数 服从方程
原子
Å 量级 薛定谔方程
微结构
波长量级 Maxwell方程
波函数
分布
标量波
费米子
矢量波
玻色子
光子晶体光纤
发展历史
1987年提出光子能带的概念 1992年提出光子晶体光纤(Photonic Crystal Fiber, PCF)的概念 1996年研制出第一根PCF 2000年第一家PCF公司成立 近年来光子晶体研究中比较热门的一个方向
光子晶体光纤-结构
solid core holey cladding forms
effective
low-index material
表征PCF结构特点和性能的3个特征参数:纤芯直径,包层 空气孔直径及空气孔间距。 由于PCF的空气孔排列和大小 有很大的控制余地,可以根据需要设计其光传输特性。
光子晶体光纤-分类
光子晶体光纤的原理及应用
提纲


基本原理
特性及应用 商业化
前景展望
光子晶体

光子晶体是在光学尺度上具有周期性介电结构 的人工设计和制造的晶体,周期结构形成光子 带隙(Photonic Bandgap,PBG ),实现控制 光子运动的目的,被成为光信息时代的“半导 体”。
光子晶体
晶体 光子晶体
特性及应用

高双折射
只需要破坏PCF剖面圆对称性,就 可以形成很强的双折射。
与传统保偏光纤(PMF)相比:
高双折射 单模工作范围大 温度稳定性好 ……
应用:
PMD补偿 单偏振单模光纤 孔中填充液晶等材料实现可方向移动,够在波长低于 1.3μm获得反常色散,同时保持单模。

《光子晶体光纤》课件

《光子晶体光纤》课件
• Jin, W., Ho, H. L., & Jin, A. (2014). Recent advances in photonic crystal fibers for fiber lasers. Journal of Lightwave Technology, 32(1), 6-14.
• Xu, F., Wei, L., Chen, N., Farahi, F., & Xiao, Y. (2018). Advances in passive and active photonic crystal fibers. Science Bulletin, 63(10), 621-636.
2 光子晶体光纤的发展趋势
光子晶体光纤的发展趋势包括提高光纤性能、拓展应用领域和实现大规模制备。
3 光子晶体光纤的意义和价值
光子晶体光纤作为一种新型的光纤传输介质,具有重要的科学研究和实际应用价值。
参考文献
• Wu, W., & Xiao, Y. (2014). Photon crystal fibers: Fundamentals and applications. Wiley Online Library.
光子晶体光纤的制备
1
光子晶体光纤的制备过程
2
制备光子晶体光纤的过程包括原料准备、 Nhomakorabea预制光纤棒材、拉丝成型和表面处理等。
3
光子晶体光纤的制备方法
光子晶体光纤的制备方法多种多样,包 括传统拉制法、气相沉积法和化学气相 沉积法等。
光子晶体光纤的制备条件及其优 化
制备光子晶体光纤需要控制多种条件, 如温度、压力和光纤棒材的组分等,以 获得理想的光传输性能。
《光子晶体光纤》PPT课 件

光子晶体光纤的工作原理

光子晶体光纤的工作原理

光子晶体光纤的工作原理
嘿!今天咱们来聊聊光子晶体光纤的工作原理呀!这可是个超级有趣又神奇的话题呢!
哎呀呀,说起光子晶体光纤,它的工作原理可不简单哟!首先呢,光子晶体光纤是一种具有特殊结构的光纤。

它和咱们常见的传统光纤不太一样呢!
那它到底是咋工作的呢?哇!原来光子晶体光纤的内部有着周期性排列的微小结构,就像是精心设计的微观迷宫一样!这种特殊的结构能够对光产生神奇的控制作用呢!
当光进入光子晶体光纤的时候,嘿!这些微小结构就开始发挥作用啦!它们可以限制光的传播路径,让光按照特定的方式传输呀!这难道不神奇吗?
而且呀,光子晶体光纤还能够实现很多独特的光学特性呢!比如说,它可以实现高非线性效应,这意味着什么呢?这意味着在一些特定的应用中,它能够大大提高光信号的处理能力和传输效率哇!
再比如,它还能实现超宽带的传输,哎呀呀,这可太厉害啦!这就为高速大容量的通信提供了强有力的支持呢!
还有还有,光子晶体光纤对于波长的选择也有着独特的能力哟!它可以让特定波长的光通过,而阻挡其他波长的光,哇!这在光学滤波和传感领域可是有着重要的应用价值呀!
总之呢,光子晶体光纤的工作原理真的是太精妙啦!它为我们的光学领域带来了无数的可能性和惊喜呀!未来,随着技术的不断进步,
相信光子晶体光纤会在更多的领域发挥出更加惊人的作用呢!。

光子晶体光纤简介及原理

光子晶体光纤简介及原理

光子晶体光纤简介及原理中文摘要: 光子晶体光纤又被称为微结构光纤,近年来引起广泛关注,它的横截面上有较复杂的折射率分布,通常含有不同排列形式的气孔,这些气孔的尺度与光波波长大致在同一量级且贯穿器件的整个长度,光波可以被限制在光纤芯区传播。

光子晶体光纤有很多奇特的性质。

例如,可以在很宽的带宽范围内只支持一个模式传输;包层区气孔的排列方式能够极大地影响模式性质;排列不对称的气孔也可以产生很大的双折射效应,这为我们设计高性能的偏振器件提供了可能。

中文关键字:光子晶体光纤 PCF导光机理 PCF的特性英文摘要: In 1991, the emerging field of photonic crystals led to the development of photonic-crystal fiber which guides light by means of diffraction from a periodic structure, rather than total internal reflection. The first photonic crystal fibers became commercially available in 2000.[8] Photonic crystal fibers can be designed to carry higher power than conventional fiber, and their wavelength dependent properties can be manipulated to improve their performance in certain applications.英文关键字: photonic-crystal fiber光子晶体(PC)是一种介电常数随空间周期性变化的新型光学微结构材料,其概念是1987年分别由S. Jo n和E. Yablonovitch提出来的,就是将不同介电常数的介质材料在一维、二维或者三维空间组成具有光波长量级的折射率周期性变化的结构材料。

光子晶体光纤的原理、应用和研究进展

光子晶体光纤的原理、应用和研究进展

光子晶体光纤的原理、应用和研究进展一、本文概述光子晶体光纤,作为一种具有独特光学性质的新型光纤,近年来在光通信、光电子、生物医学等领域引起了广泛关注。

本文旨在全面介绍光子晶体光纤的原理、应用以及研究进展,以期为读者提供深入的理解和前沿的科研动态。

我们将概述光子晶体光纤的基本结构和光学特性,阐述其与传统光纤的区别和优势。

我们将详细介绍光子晶体光纤在光通信、光电子器件、生物医学成像等领域的应用实例,展示其在这些领域的独特作用和价值。

我们将总结当前光子晶体光纤研究的热点问题和发展趋势,以期为相关领域的研究者提供有价值的参考。

二、光子晶体光纤的基本原理光子晶体光纤,也被称为微结构光纤或空芯光纤,其基本原理主要基于光子带隙效应和光子局域化。

这种光纤的核心结构由周期性排列的空气孔组成,形成了一种类似于晶体的结构,因此得名光子晶体。

光子带隙效应是指,在特定频率范围内,光波在光子晶体中传播时,由于受到晶体结构的影响,某些频率的光波被禁止传播,形成所谓的“光子带隙”。

这种效应使得光子晶体光纤具有独特的传输特性,例如低损耗、高带宽等。

光子局域化则是指,当光波在光子晶体中传播时,受到晶体结构的影响,光波的能量被局限在某一特定区域内,形成所谓的“光子局域态”。

这种效应使得光子晶体光纤能够实现光波的高效传输和控制。

在光子晶体光纤中,光波主要在空气孔中传播,而非传统的光纤中的玻璃介质。

这种特殊的传输方式使得光子晶体光纤具有许多独特的性质,例如低损耗、高带宽、抗弯曲、耐高温等。

由于光子晶体光纤的结构灵活性,可以通过改变空气孔的大小、形状和排列方式等,实现对光波传输特性的精确调控,进一步拓展其应用范围。

光子晶体光纤的基本原理是基于光子带隙效应和光子局域化,通过特殊的结构设计实现光波的高效传输和控制。

这种光纤具有许多独特的性质和应用前景,是光通信领域的重要研究方向之一。

三、光子晶体光纤的应用领域光子晶体光纤作为一种独特的光传输媒介,其应用领域广泛而深远。

空心光子晶体光纤的导光原理

空心光子晶体光纤的导光原理

空心光子晶体光纤的导光原理
空心光子晶体光纤,又被称为光子带隙光纤,其导光原理是依赖于光子晶体的带隙效应。

这种光纤的包层由无数规则排列的空气孔构成,形成了一种具有严格周期性结构的光子晶体。

当纤芯被引入并破坏了包层的周期性结构时,就形成了一个缺陷态或局域态,产生了一个特定的频率范围。

这一频率范围内的光波在光子晶体中受到强烈的约束,无法自由传播。

然而,只有特定频率的光波能够在这个缺陷区域中传播,不受外部环境的干扰。

其他频率的光波则被禁止进入缺陷区域,因此无法在光纤中传播。

正是这种严格的带隙效应,使得光波被牢牢限制在空心光纤的纤芯中传播,从而形成了光子晶体光纤独特的导光机制。

这一原理的实现,不仅依赖于光子晶体的独特结构和周期性排列,还需要精确控制纤芯的位置和形状,以产生适当的光子带隙效应。

正是这种高度精确和复杂的设计,使得空心光子晶体光纤能够实现高效、低损耗的光传输,为现代光学通信和传感技术提供了强大的支持。

总结来说,空心光子晶体光纤的导光原理是基于严格的光子带隙效应,通过精确设计和控制纤芯与包层的结构关系,实现了对特定频率光波的有效约束和传输。

这一技术的出现,不仅在理论上丰富了我们对光波导现象的理解,还在实践上推动了光学通信和传感技术的进步。

1。

大芯径空心光子晶体光纤

大芯径空心光子晶体光纤

大芯径空心光子晶体光纤一、什么是大芯径空心光子晶体光纤?大家都知道,光纤这东西可真是改变了咱们的世界。

你瞧,手机、互联网,甚至咱们现在聊的这些话题,都是依赖光纤的传输。

可是呢,光纤虽然小巧,传输速度那是杠杠的,但它还是有一些限制,特别是在大距离、高速数据传输的场合。

大芯径空心光子晶体光纤就像是给这条路上装了个超级加速器,让信息传输更快、更远,而且稳定性也更强。

简单来说,它就是在传统光纤的基础上,给“核心”部分做了个大升级。

光纤里面有一个“芯”,就是让光通过的地方。

传统光纤这个“芯”非常细,比头发丝还细,光通过它就像在狭窄的巷子里穿行,速度自然受限。

而大芯径空心光子晶体光纤的“芯”变得宽敞了不少,甚至有些型号中间是空心的。

你敢信?原来它的传输原理和普通光纤完全不一样,这样就可以让光信号在其中自由行驶,减少了很多的能量损失,传输效率也大大提高。

二、为什么说它厉害?既然说了大芯径空心光子晶体光纤这么“牛”,那它到底厉害在哪呢?咱得说这东西传输的速度比普通光纤要快得多。

你想象一下,如果你在一条宽广的大路上开车,跟在一条窄路上开车,哪条路开得快?毫无疑问,宽路肯定更快。

大芯径光纤的设计就是在这个“大”字上下了功夫,宽广的通道让光在里面穿行更顺畅。

速度快了,那数据传输就更稳定,信息到达的时间也更短。

比如说你视频通话、玩在线游戏,延迟大大减少,你的操作几乎零延时!不仅如此,它的传输距离也变长了。

传统光纤有一个问题,就是传输一段距离后,信号就会衰减,得加个中继器。

大芯径光纤就不一样,信号衰减得少,几乎能保持一个超长的传输距离。

空心结构的设计真的很特别,很多人第一次听到“空心光纤”都觉得不可思议。

它不像普通光纤一样把光引导在玻璃芯里,而是通过光子晶体的结构,让光“走”在空心的区域里。

你不觉得这很神奇吗?光居然能在一个“空”的地方流动,而且效率还不低!这个设计让它能减少光在介质中的损耗,能量更集中,速度更快。

这种空心设计还减少了光在传输中的散射和吸收,实际上,它比传统的固芯光纤更能保持信号的强度。

光子晶体光纤

光子晶体光纤
光子晶体光纤
学习汇报
主要内容:

光子晶体简介 两种不同导光机制的光子晶体光纤介绍 光子晶体光纤的制备
光子晶体 (photonic crystal)

光子晶体是在光波长量级(微米、亚微米)上折射 率呈现周期性变化的介质材料,它使某些频率范围 内的光子态密度大大降低,甚至完全形成光子禁带。 光子晶体自20世纪80年代提出来,相关理论和技 术得到了迅速发展,其中光子晶体光纤在通讯、传 感技术、光谱分析及医学上的应用都深具潜力。
◆ 蜂窝状PBG光纤:蜂窝结构的包层相对于 三角形结构来说,可以以更小尺寸的空气孔 获得光子带隙。其特点是,能量场只集中在 硅材料区域,并且非线性耦合系数相当大。
◆ 空心PBG光纤:这种结构决定了光波更容 易注入光纤,导入光与纤芯材料相互作用受 到抑制。传递功率大幅提高且无色散效应。
◆ 高折射率棒PBG光纤:空心孔的位置由高 折射率材料代替。光线中心的硅缺陷现在形 成了低折射率的纤芯,通过光子禁带效应捕 获导摸,将光波限制在其中。大大降低耦合 损耗。
第一步是设计并制作出光子晶体光纤的截面结构:首先 选用直径为30mm的石英棒为原材料,然后沿石英棒轴线 方向钻一个直径为16mm 的孔。接着将石英棒磨成一个 正六棱柱,然后将这个正六棱柱放在光纤拉丝塔上拉制 成直径为0.8mm 的六角形细棒,拉丝温度在2000℃左右。 第二步是形成光子晶体结构:将六角形细棒按三角形或蜂 窝形堆积起来形成所要求的晶体结构,然后放在光纤拉丝 塔上拉制成空气孔孔距为50μm 的细丝。接着再把这些细 丝切断并再次堆积成三角形或蜂窝形结构,其中心用一根 直径完全相同的实芯细丝替代,这样在光纤中心引入缺陷。 第三步是复制堆积拉丝过程
二维光子晶 体的两种常 用结构
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光子晶体光纤简介及原理光子晶体光纤简介及原理中文摘要: 光子晶体光纤又被称为微结构光纤,近年来引起广泛关注,它的横截面上有较复杂的折射率分布,通常含有不同排列形式的气孔,这些气孔的尺度与光波波长大致在同一量级且贯穿器件的整个长度,光波可以被限制在光纤芯区传播。

光子晶体光纤有很多奇特的性质。

例如,可以在很宽的带宽范围内只支持一个模式传输;包层区气孔的排列方式能够极大地影响模式性质;排列不对称的气孔也可以产生很大的双折射效应,这为我们设计高性能的偏振器件提供了可能。

中文关键字:光子晶体光纤 PCF导光机理 PCF的特性英文摘要: In 1991, the emerging field of photonic crystals led to the development of photonic-crystal fiber which guides light by means of diffraction from a periodic structure, rather than total internal reflection. The first photonic crystal fibers became commercially available in 2000.[8] Photonic crystal fibers can be designed to carry higher power than conventional fiber, and their wavelength dependent properties can be manipulated to improve their performance in certain applications.英文关键字: photonic-crystal fiber光子晶体(PC)是一种介电常数随空间周期性变化的新型光学微结构材料,其概念是1987年分别由S. Jo n和E. Yablonovitch提出来的,就是将不同介电常数的介质材料在一维、二维或者三维空间组成具有光波长量级的折射率周期性变化的结构材料。

光子晶体的发现,可以说是光和电磁波传播与控制技术方面的一次革命。

与电子晶体不同,光子晶体是折射率周期性变化产生光子能带和能隙,频率(波长、能量)处在禁带范围内的光子禁止在光子晶体中传播。

当在光子晶体中引入缺陷使其周期性结构遭到破坏时,光子能隙就形成了具有一定频率宽度的缺陷区。

我们知道,现代信息技术爆炸之发端是人类能以极为精巧复杂的方法控制半导体中电子流的能力,光子晶仅供学习与交流,如有侵权请联系网站删除谢谢30体则可以让人们同样地控制光子,甚至控制得更为灵活多样。

可以预见,光子晶体将在光通信、光学、光电子学和信息科学等方面引发革命性变革,极有可能在21世界扮演更为重要的角色。

1999年12月17日,国际权威杂志《Science》将光子晶体方面的研究列为当今十大科学进展之一。

1991年,Russell等人根据光子晶体传光原理首次提出了光子晶体光纤(PCF)的概念。

1996年,英国南安普顿大学的J.C.Knight 等人研制出世界上第一根PCF,之后在光纤通信光子晶体光纤又被称为微结构光纤,近年来引起广泛关注,它的横截面上有较复杂的折射率分布,通常含有不同排列形式的气孔,这些气孔的尺度与光波波长大致在同一量级且贯穿器件的整个长度,光波可以被限制在光纤芯区传播。

光子晶体光纤有很多奇特的性质。

例如,可以在很宽的带宽范围内只支持一个模式传输;包层区气孔的排列方式能够极大地影响模式性质;排列不对称的气孔也可以产生很大的双折射效应,这为我们设计高性能的偏振器件提供了可能和光学研究领域中,PCF引起了全世界的普遍兴趣。

光子晶体光纤又被称为微结构光纤,近年来引起广泛关注,它的横截面上有较复杂的折射率分布,通常含有不同排列形式的气孔,这些气孔的尺度与光波波长大致在同一量级且贯穿器件的整个长度,光波可以被限制在光纤芯区传播。

光子晶体光纤有很多奇特的性质。

例如,可以在很宽的带宽范围内只支持一个模式传输;包层区气孔的排列方式能够极大地影响模式性质;排列不对称的气孔也可以产生很大的双折射效应,这为我们设计高性能的偏振器件提供了可能。

仅供学习与交流,如有侵权请联系网站删除谢谢30就结构而言,PCF可以分为实心光纤和空心光纤。

实心光纤是将石英玻璃毛细管以周期性规律排列在石英玻璃棒周围的光纤。

空心光纤是将石英玻璃毛细管以周期性规律排列在石英玻璃管周围的光纤。

PCF导光机理可以分为两类:折射率导光机理和光子能隙导光机理。

折射率导光机理:周期性缺陷的纤心折射率(石英玻璃)和周期性包层折射率(空气)之间有一定的差别,从而使光能够在纤芯中传播,这种结构的PCF导光机理依然是全内反射,但与常规G.652光纤有所不同,由于包层包含空气,所以这种机理称为改进的全内反射,这是因为空芯PCF中的小孔尺寸比传导光的波长还小的缘故。

光子能隙导光机理:在理论上,求解电磁波(光波) 在光子晶体中的本征方程即可导出实芯和空芯PCF 的传导条件,其结果就是光子能隙导光理论。

如图1 所示,中心为空芯,虽然空芯的折射率比包层石英玻璃低,但仍能保证光不折射出去,这是因为包层中的小孔点阵构成光子晶体。

当小孔间的距离和小孔直径满足一定条件时,其光子能隙范围内就能阻止相应光传播,光被限制在中心空芯之内传输。

最近有研究表明,这种HF 中可传输99 %以上的光能,而空间光衰减极低,因此光纤衰减可能只有标准光纤的1/ 2~1/ 4 。

但并不是所有PCF 都是光子能隙导光。

空芯PCF的光子能隙传光机理的具体解释是:在空芯PCF中形成周期性的缺陷是空气,传光机理是利用包层对一定波长的光形成光子能隙,光波只能在空气芯形成的缺陷中存在和传播。

虽然在空芯PCF中不能发生全内反射,但包层中的小孔点阵结构就像一面镜子,这样光就在许许多多的小孔的空气和石英玻璃界面多次发生反射。

仅供学习与交流,如有侵权请联系网站删除谢谢30PCF的特性PCF 有如下特点:结构设计很灵活,具有各种各样的小孔结构;芯和包层的折射率差可以很大;芯可以制成各种各样;“包层折射率”是强烈依波长而变的函数,包层性能可以反映在波长尺度上。

正因为有以上特点, PCF 有着以下许多奇异特性:(1)无截止单模( Endlessly Single Mode)传输普通单模光纤随着纤芯尺寸的增加会变成多模光纤。

而对于PCF ,只要其空气孔径与孔间距之比小于0. 2 ,无论什么波长都能单模传输,似乎不存在截止波长。

这就是无截止单模传输特性。

这种光纤可在从蓝光到2μm 的光波下单模传输。

更为奇特的是这种特性与光纤的绝对尺寸无关,因此通过改变空气孔间距可调节模场面积。

在1 550 nm可达1~800 μm2 ,实际上已制成了680 μm2 的大模场PCF ,大约是常规光纤的10 倍。

小模场有利于非线性产生,大模场可防止发生非线性。

这对于提高或降低光学非线性有极重要的意义。

这种光纤具有很多潜在应用,如激光器和放大器(利用高非线性光纤) ,低非线性通信用光纤,高光功率传输。

(2)不同寻常的色度色散真空中材料色散为零,空气中的材料色散也非常小。

这使得空气芯PCF 的色散非常特殊。

由于光纤设计很灵活,只要改变孔径与孔间距之比,即可达到很大的波导色散,还可使光纤总色度色散达到所希望的分布状态。

如零色散波长可移到短波长,仅供学习与交流,如有侵权请联系网站删除谢谢30从而导致在1 300 nm 实现光弧子传输;具有优良性质的色散平坦光纤(数百nm 带宽范围接近零色散) ;各种非线性器件以及色散补偿光纤(可达2 000 ps/ nm·km) 都应运而生。

(3)极好的非线性效应双折射效应G.652光纤中出现的非线性效应是由于光纤的单位面积上传输的光强过大造成严重损伤系统传输质量的一个现象。

然而,在光子能隙导光PCF中,我们可以通过增加PCF纤芯空气孔直径(即PCF的有效面积)来降低单位有效面积上的光强,从而达到大大减少非线性效应的目的。

光子能隙导光的这个特性为制造大的有效面积的PCF奠定了技术基础。

(4)优良的双折射效应对于保偏光纤而言,双折射效应越强,波长越短,所保持的传输光偏振态越好。

在PCF中,只需要破坏PCF剖面圆对称性,使其构成二维结构就可以形成很强的双折射。

通过减少空气孔数目或者改变空气孔直径的方式,可以制造出比常用的熊猫牌保偏光纤高几个数量级的高双折射率PCF保偏光纤。

PCF的新应用(1) 超连续产生利用飞秒脉冲在PCF中产生超连续谱已经广泛应用于光学相干层析、计量学等领域,但大部分实验采用工作在800nm波长的Ti:sapphire激光器作为泵浦源,因为这种激光器能产生能量达几个nJ的超短飞秒脉冲,只有个别实验利用1560nm波长附近的基于掺铒光纤激光器的飞秒脉冲。

采用掺铒光纤激光器作为泵浦光源不但可以将飞秒超连续技术应用于1560nm附近的通信窗口,而且它比Ti:sapphire激光系统更小巧、更稳定。

在OFC’2004上,H.Hundertmar等报道了一种全光纤二极管泵浦的铒光纤激光-放大系统,并利用PCF进行了超连续实验。

其实验装置如仅供学习与交流,如有侵权请联系网站删除谢谢30图2所示:激光器环路由铒光纤(正色散)和两段负色散光纤SMF1528、Flexcor1060构成,整个环长3.4m,对应基频59.1MHz,利用非线性偏振旋转效应实验被动锁模。

当980nm泵浦的输出功率为150mW时,在1560nm波长可得到输出功率14mW、脉宽65fs的锁模脉冲。

放大系统由铒光纤、SMF1528和Flexcor1060构成,这些光纤的长度经过优化,以使放大器的二阶色散最小,从而使激光脉冲的线性啁啾最小。

该激光-放大系统产生的脉冲入射到一段长30cm、芯径2.6mm、零色散波长1.3mm的PCF中,通过强非线性作用产生750~1750nm的超连续镨。

与以往的基于PCF的超连续产生系统相比,该系统的最大特色在于它是一个全光且利用最小的脉冲能量(200PJ)在1550nm附近得到了最好的展宽效果。

另外,S.C. Buchter等采用二极管泵浦的Q开关激光器作为泵浦光源,零色散波长~1550nm的PCF作为非线性介质,获得了700nm带宽、平坦的纳米红外超连续镨。

(2) 脉冲压缩超短光脉冲是未来超高速光通信系统所必不可少的,为此通常采用孤子效应压缩方案来获取超短脉冲,压缩用的非线性介质一般是色散位移光纤(DSF)。

若想仅供学习与交流,如有侵权请联系网站删除谢谢30得到重复率10GHz的脉宽~2ps左右的短脉冲,需要的常规色散位移光纤的长度通常都在数公里以上,即使采用高非线性色散位移光纤(HNL-DSF),也需要60~500米。

相关文档
最新文档