实验一 Matlab基础知识及simulink仿真环境
MATLABSimulink模型建立与仿真指南
MATLABSimulink模型建立与仿真指南第一章:MATLAB与Simulink简介MATLAB是一种高级的数值计算和科学分析的编程语言,由MathWorks开发。
它提供了强大的数学函数库和绘图工具,使得用户可以进行复杂的数值计算和数据可视化。
Simulink是MATLAB的扩展,是一种用于建立和仿真动态系统的图形化环境。
在MATLAB中,用户可以通过命令行或脚本文件进行计算。
而在Simulink中,用户可以利用图形化界面来搭建系统模型,并进行仿真。
Simulink提供了丰富的预置模块库,用户只需将这些模块连接起来,即可构建复杂的系统模型。
第二章:Simulink模型的基本组成Simulink模型由多个部分组成,包括输入信号、输出信号和系统组件。
输入信号可以是手动输入的常数,也可以是来自其他模型的信号。
输出信号是用户对系统模型感兴趣的结果。
系统组件即模型中的各个模块,这些模块可以完成各种功能,如乘法、滤波、逻辑运算等。
第三章:模型建立与仿真流程1. 确定系统模型的目标和需求:在建立模型之前,需要明确系统模型的目标和需求。
这些可能包括系统的输入输出关系、稳定性要求、性能要求等。
2. 模型建立:根据系统的目标和需求,选择合适的系统组件,并将其连接起来,构建系统模型。
可根据需要进行参数设置,以适应不同的场景。
3. 仿真设置:在进行仿真之前,需要设置仿真参数。
这些包括仿真时间、仿真步长等。
仿真时间指定了仿真的时间范围,仿真步长指定了仿真的时间间隔。
4. 仿真运行:设置好仿真参数后,可以运行仿真。
Simulink将逐步模拟系统的行为,并输出仿真结果。
第四章:Simulink模型调试与优化在进行仿真时,可能会发现模型存在问题,如输出不符合预期、系统不稳定等。
这时需要对模型进行调试和优化。
1. 系统调试:可以通过数据观察、信号域分析等方法,定位系统问题。
更换输入信号、输出信号,或调整模型参数,可以帮助发现问题。
MATLAB-SIMULINK讲解完整版
第3章 SIMULINK应用基础
(1) 文件管理类:包括 4 个按键,分别是按键 、按键 和按键 。
(2) 对象管理类:包括 3 个按键,分别是按键 和按键 。
、按键 、按键
(3) 命令管理类:包括 2 个按键,分别是按键 和按键 。
(4) 仿真控制类:包括 6 个按键、1 个文本框、1 个列表
框,分别是按键 、按键 如图3-6所示,在模型中加入注释文字,使模型更具可 读性。
图3-6 添加注释文字示例 (a) 未加注释文字;(b) 加入注释文字
第3章 SIMULINK应用基础
3.2.3 子系统的建立与封装 1. 子系统的建立 一般而言,电力系统仿真模型都比较复杂,规模很大,
包含了数量可观的各种模块。如果这些模块都直接显示在 SIMULINK仿真平台窗口中,将显得拥挤、杂乱,不利于用 户建模和分析。可以把实现同一种功能或几种功能的多个模 块组合成一个子系统,从而简化模型,其效果如同其它高级 语言中的子程序和函数功能。
、列 表框
、按键 、按键 和按键 。 (5) 窗口切换类:包括 6 个按键,分别是按键 、按键 、按键 、按键 和按键 。
、按键
工具栏中各个工具图标及其功能说明见附录 B。
第3章 SIMULINK应用基础
3.2 SIMULINK的基本操作
3.2.1 模块及信号线的基本操作 1. 模块的基本操作 模块是系统模型中最基本的元素,不同模块代表了不同
增强模型的可读性
签内容,在标签编辑框外的窗口中单击鼠标退出
第3章 SIMULINK应用基础
3.2.2 系统模型的基本操作 除了熟悉模块和信号线的基本操作方法,用户还需熟悉
SIMULINK系统模型本身的基本操作,包括模型文件的创建、 打开、保存以及模型的注释等。
matlab simulink-实验1-simulink入门说明书
Experiment 1Introduction to Simulink1.1 ObjectiveThe objective of Experiment #1 is to familiarize the students with simulation of power electronic circuits in Matlab/Simulink environment. Please follow the instructions in the laboratory manual.1.2 Simulink Basics TutorialSimulink is a graphical extension to MATLAB for the modeling and simulation of systems. In Simulink, systems are drawn on screen as block diagrams. Many elements of block diagrams are available (such as transfer functions, summing junctions, etc.), as well as virtual input devices (such as function generators) and output devices (such as oscilloscopes). Simulink is integrated with MATLAB and data can be easily transferred between the programs. In this tutorial, we will introduce the basics of using Simulink to model and simulate a system.1.2.1 Starting SimulinkSimulink is started from the MATLAB command prompt by entering the following command: >>simulinkAlternatively, you can click on the "Simulink Library Browser" button at the top of the M ATLAB command window as shown below:The Simulink Library Browser window should now appear on the screen. Most of the blocks needed for modeling basic systems can be found in the subfolders of the main "Simulink" folder (opened by clicking on the "+" in front of "Simulink"). Once the "Simulink" folder has been opened, the Library Browser window should look like:1.2.2 Basic ElementsThere are two major classes of elements in Simulink: blocks and lines. Blocks are used to generate, modify, combine, output, and display signals. Lines are used to transfer signals from one block to another. BlocksThe subfolders underneath the "Simulink" folder indicate the general classes of blocks available for us to use:•Continuous: Linear, continuous-time system elements (integrators, transfer functions, state-space models, etc.)•Discrete: Linear, discrete-time system elements (integrators, transfer functions, state-space models, etc.)•Functions & Tables: User-defined functions and tables for interpolating function values•Math: Mathematical operators (sum, gain, dot product, etc.)•Nonlinear: Nonlinear operators (coulomb/viscous friction, switches, relays, etc.)•Signals & Systems: Blocks for controlling/monitoring signal(s) and for creating subsystems•Sinks: Used to output or display signals (displays, scopes, graphs, etc.)•Sources: Used to generate various signals (step, ramp, sinusoidal, etc.)Blocks have zero to several input terminals and zero to several output terminals. Unused input terminals are indicated by a small open triangle. Unused output terminals are indicated by a small triangular point. The block shown below has an unused input terminal on the left and an unused output terminal on the right.LinesLines transmit signals in the direction indicated by the arrow. Lines must always transmit signals from the output terminal of one block to the input terminal of another block. One exception to this is that a line can tap off of another line. This sends the original signal to each of two (or more) destination blocks, as shown below:Lines can never inject a signal into another line; lines must be combined through the use of a block such as a summing junction.A signal can be either a scalar signal or a vector signal. For Single-Input, Single-Output systems, scalar signals are generally used. For Multi-Input, Multi-Output systems, vector signals are often used, consisting of two or more scalar signals. The lines used to transmit scalar and vector signals are identical. The type of signal carried by a line is determined by the blocks on either end of the line.1.2.3 Building a SystemTo demonstrate how a system is represented using Simulink, we will build the block diagram for a simple model consisting of a sinusoidal input multiplied by a constant gain, which is shown below:This model will consist of three blocks: Sine Wave, Gain, and Scope. The Sine Wave is a Source Block from which a sinusoidal input signal originates. This signal is transferred through a line in the direction indicated by the arrow to the Gain Math Block. The Gain block modifies its input signal (multiplies it by a constant value) and outputs a new signal through a line to the Scope block. The Scope is a Sink Block used to display a signal (much like an oscilloscope).We begin building our system by bringing up a new model window in which to create the block diagram. This is done by clicking on the "New Model" button in the toolbar of the Simulink Library Browser (looks like a blank page).Building the system model is then accomplished through a series of steps:1.The necessary blocks are gathered from the Library Browser and placed in the model window.2.The parameters of the blocks are then modified to correspond with the system we are modeling.3.Finally, the blocks are connected with lines to complete the model.Each of these steps will be explained in detail using our example system. Once a system is built, simulations are run to analyze its behavior.Gathering BlocksEach of the blocks we will use in our example model will be taken from the Simulink Library Browser. To place the Sine Wave block into the model window, follow these steps:1.Click on the "+" in front of "Sources" (this is a subfolder beneath the "Simulink" folder) todisplay the various source blocks available for us to use.2.Scroll down until you see the "Sine Wave" block. Clicking on this will display a shortexplanation of what that block does in the space below the folder list:3. To insert a Sine Wave block into your model window, click on it in the Library Browser and drag the block into your workspace.The same method can be used to place the Gain and Scope blocks in the model window. The "Gain" block can be found in the "Math" subfolder and the "Scope" block is located in the "Sink" subfolder. Arrange the three blocks in the workspace (done by selecting and dragging an individual block to a new location) so that they look similar to the following:Modifying the BlocksSimulink allows us to modify the blocks in our model so that they accurately reflect the characteristics of the system we are analyzing. For example, we can modify the Sine Wave block by double-clicking on it. Doing so will cause the following window to appear:This window allows us to adjust the amplitude, frequency, and phase shift of the sinusoidal input. The "Sample time" value indicates the time interval between successive readings of the signal. Setting this value to 0 indicates the signal is sampled continuously.Let us assume that our system's sinusoidal input has:•Amplitude = 2•Frequency = pi•Phase = pi/2Enter these values into the appropriate fields (leave the "Sample time" set to 0) and click "OK" to accept them and exit the window. Note that the frequency and phase for our system contain 'pi' (3.1415...). These values can be entered into Simulink just as they have been shown.Next, we modify the Gain block by double-clicking on it in the model window. The following window will then appear:Note that Simulink gives a brief explanation of the block's function in the top portion of this window. In the case of the Gain block, the signal input to the block (u) is multiplied by a constant (k) to create the block's output signal (y). Changing the "Gain" parameter in this window changes the value of k.For our system, set k = 5. Enter this value in the "Gain" field, and click "OK" to close the window.The Scope block simply plots its input signal as a function of time, and thus there are no system parameters that we can change for it. We will look at the Scope block in more detail after we have run our simulation.Connecting the BlocksFor a block diagram to accurately reflect the system we are modeling, the Simulink blocks must be properly connected. In our example system, the signal output by the Sine Wave block is transmitted to the Gain block. The Gain block amplifies this signal and outputs its new value to the Scope block, which graphs the signal as a function of time. Thus, we need to draw lines from the output of the Sine Wave block to the input of the Gain block, and from the output of the Gain block to the input of the Scope block.Lines are drawn by dragging the mouse from where a signal starts (output terminal of a block) to where it ends (input terminal of another block). When drawing lines, it is important to make sure that the signal reaches each of its intended terminals. Simulink will turn the mouse pointer into a crosshair when it is close enough to an output terminal to begin drawing a line, and the pointer will change into a double crosshair when it is close enough to snap to an input terminal. A signal is properly connected if its arrowhead is filled in. If the arrowhead is open, it means the signal is not connected to both blocks. To fix an open signal, you can treat the open arrowhead as an output terminal and continue drawing the line to an input terminal in the same manner as explained before.Properly Connected SignalWhen drawing lines, you do not need to worry about the path you follow. The lines will route themselves automatically. Once blocks are connected, they can be repositioned for a neater appearance. This is done by clicking on and dragging each block to its desired location (signals will stay properly connected and will re-route themselves).After drawing in the lines and repositioning the blocks, the example system model should look like:In some models, it will be necessary to branch a signal so that it is transmitted to two or more different input terminals. This is done by first placing the mouse cursor at the location where the signal is to branch. Then, using either the CTRL key in conjunction with the left mouse button or just the right mouse button, drag the new line to its intended destination. This method was used to construct the branch in the Sine Wave output signal shown below:The routing of lines and the location of branches can be changed by dragging them to their desired new position. To delete an incorrectly drawn line, simply click on it to select it, and hit the DELETE key.1.2.4. Running SimulationsNow that our model has been constructed, we are ready to simulate the system. Before starting simulation, we need to set the simulation parameters. To do this, go to the Simulation menu and click on Configuration Parameters. The Configuration Parameters dialog box opens on your desktopEnter desired stop time (e.g. 100 microseconds), and change the Solver Options from Variable-step to fix-step and the step size to 1e-4. The step size specifies the resolution of simulation. Click Apply and OK to close the Configuration Parameters window.Go to the Simulation menu and click on Start, or just click on the "Start/Pause Simulation" button in the model window toolbar (looks like the "Play" button on a VCR). Because our example is a relatively simple model, its simulation runs almost instantaneously. With more complicated systems, however, you will be able to see the progress of the simulation by observing its running time in the lower box of the model window. Double-click the Scope block to view the output of the Gain block for the simulation as a function of time. Once the Scope window appears, click the "Auto scale" button in its toolbar (looks like a pair of binoculars) to scale the graph to better fit the window. Having done this, you should see the following:。
Matlab系列之Simulink仿真教程
交互式仿真
Simulink支持交互式 仿真,用户可以在仿 真运行过程中进行实 时的分析和调试。
可扩展性
Simulink具有开放式 架构,可以与其他 MATLAB工具箱无缝 集成,从而扩展其功 能。
Simulink的应用领域
指数运算模块
用于实现信号的指数运算。
减法器
用于实现两个信号的减法 运算。
除法器
用于实现两个信号的除法 运算。
对数运算模块
用于实现信号的对数运算。
输出模块
模拟输出模块
用于将模拟信号输出 到外部设备或传感器。
数字输出模块
用于将数字信号输出 到外部设备或传感器。
频谱分析仪
用于分析信号的频谱 特性。
波形显示器
控制工程
Simulink在控制工程领域 中应用广泛,可用于设计 和分析各种控制系统。
信号处理
Simulink中的信号处理模 块可用于实现各种信号处 理算法,如滤波器设计、 频谱分析等。
通信系统
Simulink可以用于设计和 仿真通信系统,如调制解 调、信道编码等。
图像处理
Simulink中的图像处理模 块可用于实现各种图像处 理算法,如图像滤波、边 缘检测等。
用于将时域信号转换为频域信号,如傅里叶变换、 拉普拉斯变换等。
03 时域变换模块
用于将频域信号转换为时域信号,如逆傅里叶变 换、逆拉普拉斯变换等。
04
仿真过程设置
仿真时间的设置
仿真起始时间
设置仿真的起始时间,通 常为0秒。
步长模式
选择固定步长或变步长模 式,以满足不同的仿真需 求。
Matlab simulink 上机实验报告 简单版
201006113 11002 Matlab上机实验报告
◆实验一: Smulink动态仿真集成环境
➢ 1.目的要求
➢熟悉simulink环境, 掌握simulink的仿真方法。
➢ 2.掌握要点
➢熟悉simulink环境, 掌握simulink的仿真方法。
➢ 3.实验内容
➢熟悉simulink环境;
➢熟悉基本的模块库以及功能模块
➢搭建简单的电路进行仿真;
➢对分析参数对结果的影响;
1.建立如图所示的仿真系统.
完成过程:
********* ***** 结果如下:
◆ 2.建立如图所示的仿真系统.
◆将红色区域部分创建并封装装成子系统
完成过程:
没有设置子系统时:
没有设置子系统时的结果如下:
以下开始设置子系统并封装: 修改变量后:
最终如下图所示:
开始封装设置过程: 设置子系统各个参数
设置完成后如下图所示:
双击设置好的封装并分别输入与变量对应的参数如下:
运行结果如下:。
实验一 典型环节的MATLAB仿真汇总
实验一 典型环节的MATLAB 仿真一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK 的使用MATLAB 中SIMULINK 是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK 功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MATLAB 软件,在命令窗口栏“>>”提示符下键入simulink 命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK 仿真环境下。
2.选择File 菜单下New 下的Model 命令,新建一个simulink 仿真环境常规模板。
3.在simulink 仿真环境下,创建所需要的系统三、实验内容按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。
① 比例环节1)(1=s G 和2)(1=s G 实验处理:1)(1=s G SIMULINK 仿真模型波形图为:实验处理:2)(1=s G SIMULINK 仿真模型波形图为:实验结果分析:增加比例函数环节以后,系统的输出型号将输入信号成倍数放大.② 惯性环节11)(1+=s s G 和15.01)(2+=s s G 实验处理:11)(1+=s s GSIMULINK 仿真模型波形图为:实验处理:15.01)(2+=s s GSIMULINK 仿真模型波形图为:实验结果分析:当11)(1+=s s G 时,系统达到稳定需要时间接近5s,当15.01)(2+=s s G 时,行动达到稳定需要时间为2.5s,由此可得,惯性环节可以调节系统达到稳定所需时间,可以通过惯性环节,调节系统达到稳定输出的时间。
③ 积分环节s s G 1)(1=实验处理: SIMULINK 仿真模型实物图为:实验结果分析:由以上波形可以的出,当系统加入积分环节以后,系统的输出量随时间的变化成正比例增加。
MATLAB实验SIMULINK仿真
实验九SIMULINK仿真一、实验目的SIMULINK是一个对动态系统(包括连续系统、离散系统和混合系统)进行建模、仿真和综合分析的集成软件包,是MA TLAB的一个附加组件,其特点是模块化操作、易学易用,而且能够使用MATLAB提供的丰富的仿真资源。
在SIMULINK环境中,用户不仅可以观察现实世界中非线性因素和各种随机因素对系统行为的影响,而且也可以在仿真进程中改变感兴趣的参数,实时地观察系统行为的变化。
因此SIMULINK已然成为目前控制工程界的通用软件,而且在许多其他的领域,如通信、信号处理、DSP、电力、金融、生物系统等,也获得重要应用。
对于信息类专业的学生来说,无论是学习专业课程或者相关课程设计还是在今后的工作中,掌握SIMULINK,就等于是有了一把利器。
本次实验的目的就是通过上机训练,掌握利用SIMULINK对一些工程技术问题(例如数字电路)进行建模、仿真和分析的基本方法。
二、实验预备知识1. SIMULINK快速入门在工程实际中,控制系统的结构往往很复杂,如果不借助专用的系统建模软件,则很难准确地把一个控制系统的复杂模型输入计算机,对其进行进一步的分析与仿真。
1990年,Math Works软件公司为MATLAB提供了新的控制系统模型图输入与仿真工具,并命名为SIMULAB,该工具很快就在控制工程界获得了广泛的认可,使得仿真软件进入了模型化图形组态阶段。
但因其名字与当时比较著名的软件SIMULA类似,所以1992年正式将该软件更名为SIMULINK。
SIMULINK的出现,给控制系统分析与设计带来了福音。
顾名思义,该软件的名称表明了该系统的两个主要功能:Simu(仿真)和Link(连接),即该软件可以利用系统提供的各种功能模块并通过信号线连接各个模块从而创建出所需要的控制系统模型,然后利用SIMULINK提供的功能来对系统进行仿真和分析。
⏹SIMULINK的启动首先启动MATLAB,然后在MA TLAB主界面中单击上面的Simulink按钮或在命令窗口中输入simulink命令。
MATLAB实验报告
MATLAB实验报告姓名:专业:学号:实验一MATLAB环境的熟悉与基本运算一、实验目的:1.熟悉MATLAB开发环境2.掌握矩阵、变量、表达式的各种基本运算二、实验基本知识:1.熟悉MATLAB环境:MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器文件和搜索路径浏览器。
2.掌握MATLAB常用命令3.MATLAB变量与运算符变量命名规则如下:(1)变量名可以由英语字母、数字和下划线组成(2)变量名应以英文字母开头(3)长度不大于31个(4)区分大小写MATLAB中设置了一些特殊的变量与常量,列于下表。
MATLAB运算符,通过下面几个表来说明MATLAB的各种常用运算符表2MATLAB算术运算符表3MATLAB关系运算符表4MATLAB逻辑运算符表5MATLAB特殊运算4.MATLAB的一维、二维数组的寻访表6子数组访问与赋值常用的相关指令格式5.MATLAB的基本运算表7两种运算指令形式和实质内涵的异同表6.MATLAB的常用函数表8标准数组生成函数表9数组操作函数三、实验内容1、学习安装MATLAB软件。
2、学习使用help命令,例如在命令窗口输入helpeye,然后根据帮助说明,学习使用指令eye(其它不会用的指令,依照此方法类推)3、学习使用clc、clear,观察commandwindow、commandhistory和workspace等窗口的变化结果。
4、初步程序的编写练习,新建M-file,保存(自己设定文件名,例如exerc1、exerc2、exerc3……),学习使用MATLAB的基本运算符、数组寻访指令、标准数组生成函数和数组操作函数。
注意:每一次M-file的修改后,都要存盘。
四、实验结果练习A:(1)helprand,然后随机生成一个2×6的数组,观察commandwindow、commandhistory和workspace等窗口的变化结果。
matlab simulink仿真环境
4.2 simulink 基本使用
4.2.3 Simulink模块的处理 1、模块的选定、移动用鼠标操作即可,模块的删除、剪切和拷贝 同常规的做法一样,还可用鼠标右键把待拷贝的模块拖到目标位置 后放开。来完成模块的拷贝。 2、在连接模块时,有时需要将模块转向。在菜单format中选择flip Block命令,模块水平旋转180°(快捷键Ctrl+I),选择rotate block命 令,模块顺时针旋转90°(Ctrl+R)。 3、模块的名称可以更改,名称在模块上的位置可以翻转,模块名 称可以隐藏,模块的前景颜色、背景颜色,以及空白区域的颜色都 可以设定。以上操作在菜单format中都有相应命令。
第四章 simulink仿真环境
4.1 simulink 概述 4.2 simulink 基本使用 4.3 复杂系统的综合仿真 4.4 电力系统模块(PSB)
4.1 simulink 概述
simulink是MATLAB的重要组成部分,它具有相对独立的功能
和使用方法。 simulink的主要功能是实现动态系统建模仿真与分析。 Mathworks从matlab4.0版开始应用simulink,当时把它放在matlab 执行文件中。在matlab4.2及以后的版本中,simulink则以matlab里 的工具包形式单独出现,即需要单独安装。在matlab5.0版中, Simulink已升级为2.0版,在matlab5.3版中, Simulink已升级为3.0 版。目前,simulink比从前的版本有了很大的改进。 Simulink的文件类型为.mdl。 Simulink支持连续与离散系统, 也支持线性与非线性系统。Simulink里包括一些控制工具箱,例如 控制系统工具箱,模糊逻辑工具箱,非线性控制设计模块等等。 用户还可以创建与定制自己的功能模块,而不一定只使用simulink 系统软件提供的标准模块。这样,用户就可以自行扩充软件的使 用范围。
simulinkmatlab仿真环境教程(精)
simulink matlab仿真环境教程Simulink是面向框图的仿真软件。
演示一个Simulink的简单程序【例1.1】创建一个正弦信号的仿真模型。
步骤如下:(1 在MATLAB的命令窗口运行simulink命令,或单击工具栏中的图标,就可以打开Simulink模块库浏览器(Simulink Library Browser 窗口,如图1.1所示。
图7.1 Simulink界面(2 单击工具栏上的图标或选择菜单“File”——“New”——“Model”,新建一个名为“untitled”的空白模型窗口。
(3 在上图的右侧子模块窗口中,单击“Source”子模块库前的“+”(或双击Source,或者直接在左侧模块和工具箱栏单击Simulink下的Source子模块库,便可看到各种输入源模块。
(4 用鼠标单击所需要的输入信号源模块“Sine Wave”(正弦信号,将其拖放到的空白模型窗口“untitled”,则“Sine Wave”模块就被添加到untitled窗口;也可以用鼠标选中“Sine Wave”模块,单击鼠标右键,在快捷菜单中选择“add to 'untitled'”命令,就可以将“Sine Wave”模块添加到untitled窗口,如图1.2所示。
(5 用同样的方法打开接收模块库“Sinks”,选择其中的“Scope”模块(示波器拖放到“untitled”窗口中。
(6 在“untitled”窗口中,用鼠标指向“Sine Wave”右侧的输出端,当光标变为十字符时,按住鼠标拖向“Scope”模块的输入端,松开鼠标按键,就完成了两个模块间的信号线连接,一个简单模型已经建成。
如图1.3所示。
(7 开始仿真,单击“untitled”模型窗口中“开始仿真”图标,或者选择菜单“Simulink”——“Start”,则仿真开始。
双击“Scope”模块出现示波器显示屏,可以看到黄色的正弦波形。
实验一 典型环节的MATLAB仿真
1. 比例环节
和
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配0料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高高与中中带资资负料料荷试试下卷卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并中3试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
自动控制原理实验1-6
实验一MATLAB 仿真基础一、实验目的:(1)熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。
(2)掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。
(3)掌握使用MATLAB 命令化简模型基本连接的方法。
(4)学会使用Simulink 模型结构图化简复杂控制系统模型的方法。
二、实验设备和仪器 1.计算机;2. MATLAB 软件 三、实验原理函数tf ( ) 来建立控制系统的传递函数模型,用函数printsys ( ) 来输出控制系统的函数,用函数命令zpk ( ) 来建立系统的零极点增益模型,其函数调用格式为:sys = zpk ( z, p, k )零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den )两个环节反馈连接后,其等效传递函数可用feedback ( ) 函数求得。
则feedback ()函数调用格式为: sys = feedback (sys1, sys2, sign ) 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign =-1;正反馈时,sign =1;单位反馈时,sys2=1,且不能省略。
四、实验内容:1.已知系统传递函数,建立传递函数模型2.已知系统传递函数,建立零极点增益模型3.将多项式模型转化为零极点模型12s 2s s 3s (s)23++++=G )12()1()76()2(5)(3322++++++=s s s s s s s s G 12s 2s s 3s (s)23++++=G )12()1()76()2(5)(3322++++++=s s s s s s s s G4. 已知系统前向通道的传递函数反馈通道的传递函数求负反馈闭环传递函数5、用系统Simulink 模型结构图化简控制系统模型 已知系统结构图,求系统闭环传递函数 。
Matlab实验报告_2
实验一 Matlab基础知识一、实验目的:1.熟悉启动和退出Matlab的方法。
2.熟悉Matlab命令窗口的组成。
3.掌握建立矩阵的方法。
4.掌握Matlab各种表达式的书写规则以及常用函数的使用。
二、实验内容:1.求[100,999]之间能被21整除的数的个数。
(rem)2.建立一个字符串向量,删除其中的大写字母。
(find)3.输入矩阵,并找出其中大于或等于5的元素。
(find)4.不采用循环的形式求出和式6312ii=∑的数值解。
(sum)三、实验步骤:●求[100,199]之间能被21整除的数的个数。
(rem)1.开始→程序→Matlab2.输入命令:»m=100:999;»p=rem(m,21);»q=sum(p==0)ans=43●建立一个字符串向量,删除其中的大写字母。
(find)1.输入命令:»k=input('’,’s’);Eie48458DHUEI4778»f=find(k>=’A’&k<=’Z’);f=9 10 11 12 13»k(f)=[ ]K=eie484584778●输入矩阵,并找出其中大于或等于5的元素。
(find)1.输入命令:»h=[4 8 10;3 6 9; 5 7 3];»[i,j]=find(h>=5)i=3 j=11 22 23 21 32 3●不采用循环的形式求出和式的数值解。
(sum)1.输入命令:»w=1:63;»q=sum(2.^w)q=1.8447e+019实验二 Matlab 基本程序一、 实验目的:1. 熟悉Matlab 的环境与工作空间。
2. 熟悉M 文件与M 函数的编写与应用。
3. 熟悉Matlab 的控制语句。
4. 掌握if,switch,for 等语句的使用。
二、 实验内容:1. 根据y=1+1/3+1/5+……+1/(2n-1),编程求:y<5时最大n 值以及对应的y 值。
matlab实验报告
Matlab实验报告
院系:物理与电子学院
专业:电子信息科学与技术
姓名:
学号:
2013年12月18日
实验题目:Matlab中系统建模以及Simulink仿真模型。
实验环境:计算机Matlab软件。
实验目的:通过分析问题完成系统建模,然后通过matlab软件的Simulink完成对模型的处理,并绘制图像,得到
结果。
Simulink简介:Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。
在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。
Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。
同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。
实验内容:1:利用simulink仿真来实现摄氏温度到华氏温度的转换,公式为f=9/5 *t+32。
2:设系统微分方程为:y`=x+y y(0)=0,试建立系统模型并仿真;
参数设置:设置开始时间Start Time=0;初始值
Initial Condition=0.
实验总结:通过这次Simulink 实验与设计,我们组对Simulink 以及Matlab 都有了更深的了解。
虽然实验内容比较基础,但从中我们能看出Simulink 和Matlab 在数学,物理和工程建模上的巨大作用。
并且,这次实验提高了我们组对Matlab 的学习兴趣和动手能力,这对我们今后的学习和工作都有着巨大的帮助。
MATLABSimulink与控制系统仿真实验报告
MATLAB/Simulink 与控制系统仿真实验报告姓名:喻彬彬学号:K031541725实验1、MATLAB/Simulink 仿真基础及控制系统模型的建立一、实验目的1、掌握MATLAB/Simulink 仿真的基本知识;2、熟练应用MATLAB 软件建立控制系统模型。
二、实验设备电脑一台;MATLAB 仿真软件一个三、实验内容1、熟悉MATLAB/Smulink 仿真软件。
2、一个单位负反馈二阶系统,其开环传递函数为210()3G s s s =+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
3、某控制系统的传递函数为()()()1()Y s G s X s G s =+,其中250()23s G s s s+=+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
4、一闭环系统结构如图所示,其中系统前向通道的传递函数为320.520()0.11220s G s s s s s+=+++g ,而且前向通道有一个[-0.2,0.5]的限幅环节,图中用N 表示,反馈通道的增益为1.5,系统为负反馈,阶跃输入经1.5倍的增益作用到系统。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
四、实验报告要求实验报告撰写应包括实验名称、实验内容、实验要求、实验步骤、实验结果及分析和实验体会。
五、实验思考题总结仿真模型构建及调试过程中的心得体会。
题1、(1)利用Simulink的Library窗口中的【File】→【New】,打开一个新的模型窗口。
(2)分别从信号源库(Sourse)、输出方式库(Sink)、数学运算库(Math)、连续系统库(Continuous)中,用鼠标把阶跃信号发生器(Step)、示波器(Scope)、传递函数(Transfern Fcn)和相加器(Sum)4个标准功能模块选中,并将其拖至模型窗口。
Matlab实验报告
实验一:MATLAB语言平台与SIMULINK工具箱一、实验目的:1.学习了解MATLAB语言环境;2.练习MATLAB命令;4.掌握SIMULINK工具箱的应用。
二、实验要求:1.实验内容(1)学习了解MATLAB语言环境;(2)练习MATLAB命令的基本操作;(3)掌握SIMULINK仿真环境的使用方法;(4) 掌握线性系统仿真常用基本模块的用法2.要求按照实验文档的要求与步骤完成实验,撰写实验报告。
三、实验基本知识:1.熟悉MATLAB环境:MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器、文件和搜索路径浏览器。
2.掌握MATLAB常用命令3.了解SIMULINK模块库中各子模块基本功能四、实验内容:1.学习使用help命令,例如在命令窗口输入help eye,然后根据帮助说明,学习使用指令eye(其它不会用的指令,依照此方法类推)help eyeEYE Identity matrix.EYE(N) is the N-by-N identity matrix.EYE(M,N) or EYE([M,N]) is an M-by-N matrix with 1's onthe diagonal and zeros elsewhere.EYE(SIZE(A)) is the same size as A.EYE with no arguments is the scalar 1.EYE(M,N,CLASSNAME) or EYE([M,N],CLASSNAME) is an M-by-N matrix with 1'sof class CLASSNAME on the diagonal and zeros elsewhere.Example:x = eye(2,3,'int8');See also speye, ones, zeros, rand, randn.Reference page in Help browserdoc eyeA=eye(3)A=1 0 00 1 00 0 12.任意创建3个变量,分别为数值、矩阵、字符串,保存到mydat.mat文件,再把my_data.mat文件中的变量读取到MatLab工作空间内;查找已创建变量的信息,删除变量;学习使用clc、clear,观察command window、command history和workspace等窗口的变化结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 Matlab 基础知识及simulink 仿真环境
一:实验目的
1、 熟悉matlab 及simulink 运行环境
2、 掌握变量、矩阵、表达式的基本运算
3、 掌握.m 文件的及函数文件的用法
4、 掌握最基本的绘图指令
二:实验的基本知识
1、 熟悉matlab 及simulink 环境:
Matlab 桌面和命令窗口、命令的历史窗口、工作空间浏览器等
2、 掌握matlab 常用命令
clc 清除命令窗口内容 clear 清除工作空间内容
help 帮助指令 sysm 指令等
三:实验内容
1、 绘图命令使用。
绘制[0,4]p 区间上的110sin ,25cos x t x t ==曲线,并要求:
(1) 1x 曲线的线型为点划线、颜色为红色、数据点标记为加号;2x 曲线为虚线、颜色为蓝色、数据点标记为星号。
(2) 标示坐标轴的显示范围、添加栅格线
(3) 标注坐标轴名称、标题和相应的文本。
close all %关闭打开了的所有图行窗口
clc %清屏命令
clear % 清除工作空间中的所有变量
t=0:pi/20:4*pi;
hold on %允许在同一坐标系中绘制不同的图形
axis ([0 4*pi -10 10])
plot(t,10*sin(t),’r+:’)
plot(t,5*cos(t),’b*:’)
xlabel(‘时间t ’);
ylabel(‘幅值x ’);
title(‘简单绘图实例’)
legend(‘x1=10sint ’,’x2=5cost ’)
gtext(‘x1’)
gtext(‘x2’)
grid on
2、 m 函数及s-function
(1)编写一个函数文件,实现对输入数值求平方的功能。
function y=fun1(x)
y=x.^2;
(2)S-function
function [sys,x0,str,ts]=JG4_Model (t,x,u,flag)
switch flag
case 0,
[sys,x0,str,ts]=mdlInitializeSizes;
case 1,
sys=mdlDerivatives(t,x,u);
case 3,
sys=fuavmodleout(t,x,u);
case {2,9}
sys=[];
otherwise
error(['Unhandled flag = ',num2str(flag)]);
end
function [sys,x0,str,ts]=mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates =;
sizes.NumDiscStates = ;
sizes.NumOutputs = ;
sizes.NumInputs = ;
sizes.DirFeedthrough = ;
sizes.NumSampleTimes = 1;
sys = simsizes(sizes);
x0=[];
str=[];
ts=[0 0];
function sys=mdlDerivatives(t,x,u)
sys=[];
function sys=fuavmodleout(t,x,u)
sys=[];
3、 Simulink 仿真
利用matlab 中m 函数和s 函数设计一个连续系统,给的控制系统的传递函数为()1/s+1G s =()。
利用仿真环境集成simulink 中的m 函数和s 函数,绘制此控制系统阶跃响应。
(1) 获取状态空间表达式 ()/()1/s+1()()()Y s U s y t y t u t =®+=&(),选取变
量x y =,则系统的状态空间表示为:
x x u y x =-+ìí=î
&
A: 利用m函数实现此状态方程
B: 利用s函数实现此状态方程
(2)将A和B中建立的m函数和s函数创建成function模块和S-function模块。