最小二乘法matlab程序
matlab最小二乘法确定拟合直线

matlab最小二乘法确定拟合直线最小二乘法是一种常用的数学工具,可以用于确定一组数据点的拟合直线。
在MATLAB中,使用最小二乘法进行拟合直线的步骤包括以下几个:
1. 读入数据
首先需要读入需要拟合的数据。
通常的做法是使用MATLAB中的load 函数来读入数据。
2. 绘制散点图
在进行数据拟合前,需要先绘制散点图来观察数据的分布情况。
使用MATLAB中的plot函数可以绘制出散点图。
3. 构造拟合直线
使用最小二乘法可以得到一条拟合直线的方程,这条直线可以被表示为y = mx + b,其中m表示斜率,b表示截距。
使用MATLAB中的polyfit函数可以进行多项式拟合,根据拟合的结果可以确定斜率和截距。
4. 绘制拟合直线
在得到拟合直线的方程后,可以使用MATLAB中的plot函数来绘制拟合直线。
5. 显示拟合结果
最后,需要显示出拟合结果,包括拟合直线的方程和误差等信息。
可以使用MATLAB中的disp函数来显示出这些信息。
以上是在MATLAB中使用最小二乘法确定拟合直线的基本步骤。
使用这些步骤可以轻松地进行一次数据拟合,并得出准确的拟合结果。
需要注意的是,在进行拟合时应当注意选择合适的拟合函数和拟合参数,以确保得到的拟合结果具有较高的精度和稳定性。
另外,在数据处理时也应当注意去除掉异常值,以避免对拟合结果产生干扰。
最小二乘法matlab程序

最小二乘法(Least Squares Method,LSM)是一种数值计算方法,用于拟合曲线,求解未知参数的值。
它的基本思想是,通过求解最小二乘误差的最优解,来拟合曲线,从而求得未知参数的值。
本文将介绍最小二乘法在Matlab中的实现原理及程序编写。
一、最小二乘法的原理最小二乘法是一种数值计算方法,它的基本思想是,通过求解最小二乘误差的最优解,来拟合曲线,从而求得未知参数的值。
最小二乘法的基本原理是:给定一组数据点,用直线拟合这组数据点,使得拟合直线与这组数据点的误差的平方和最小。
具体地说,假设有一组数据点,其中每个数据点都可表示为(x_i, y_i),i=1,2,3,...,n,其中x_i和y_i分别表示第i个数据点的横纵坐标。
拟合这组数据点的直线通常用一元线性函数表示,即y=ax+b,其中a和b是未知参数。
最小二乘法的思想是:求出使误差的平方和最小的a和b,即求出最优解。
二、Matlab程序编写1. 准备工作首先,我们需要准备一组数据点,每个数据点都可表示为(x_i, y_i),i=1,2,3,...,n,其中x_i和y_i分别表示第i个数据点的横纵坐标。
例如,我们可以准备一组数据点:x=[1,2,3,4,5];y=[2,4,6,8,10];2. 程序编写接下来,我们就可以开始编写Matlab程序了。
首先,我们需要定义一个一元线性函数,用于拟合这组数据点。
函数的形式为:y=ax+b,其中a和b是未知参数。
%定义函数f=@(a,b,x)a*x+b;然后,我们需要定义一个误差函数,用于计算拟合直线与这组数据点的误差的平方和。
%定义误差函数error=@(a,b)sum((y-f(a,b,x)).^2);最后,我们就可以使用Matlab提供的fminsearch函数,求解最小二乘误差的最优解,即求出最优a和b的值。
%求解最优解[a,b]=fminsearch(error,[1,1]);经过上面的程序编写,我们就可以求得未知参数a和b的最优值。
matlab function编程最小二乘法

matlab function编程最小二乘法在MATLAB中,使用最小二乘法拟合数据通常涉及到使用函数进行编程。
以下是一个简单的MATLAB函数,用于实现最小二乘法拟合直线的例子:function [coefficients, fittedData] = leastSquaresFit(x, y, degree)% x: 输入数据的 x 值% y: 输入数据的 y 值% degree: 拟合多项式的次数% 创建 Vandermonde 矩阵A = zeros(length(x), degree + 1);for i = 1:degree + 1A(:, i) = x.^(degree + 1 - i);end% 使用最小二乘法计算系数coefficients = (A' * A)\(A' * y);% 生成拟合曲线的数据fittedData = polyval(coefficients, x);% 绘制原始数据和拟合曲线figure;plot(x, y, 'o', x, fittedData, '-');legend('原始数据', '拟合曲线');xlabel('X轴');ylabel('Y轴');title('最小二乘法拟合');end你可以通过调用这个函数并提供你的数据和拟合多项式的次数来进行最小二乘法拟合。
例如:x = [1, 2, 3, 4, 5];y = [2.1, 2.8, 3.4, 3.7, 4.2];degree = 1;[coefficients, fittedData] = leastSquaresFit(x, y, degree);disp('拟合系数:');disp(coefficients);这是一个简单的线性拟合的例子。
你可以根据需要修改该函数,以适应高次多项式的情况。
matlab最小二乘法拟合

matlab最小二乘法拟合matlab最小二乘法拟合是一种常用的拟合方法,它属于非线性最小二乘拟合,其可以用来拟合任意数据。
matlab最小二乘法拟合主要包括以下几个步骤:一、准备数据1、准备数据阶段:包括收集数据,整理数据,观察数据;2、设计拟合模型:根据观察到的特性确定拟合模型方程;3、计算函数参数:根据拟合模型对原始数据进行曲线拟合,计算出模型参数;二、参数估计1、最小二乘法拟合:将所有点拟合到曲线上,使每个点到曲线上的距离之和最小;2、非线性最小二乘拟合:根据多元非线性模型参数的变化范围,构造最小二乘拟合的曲线,应用非线性拟合和最小二乘法拟合找出最佳拟合曲线;3、外推预测:根据拟合后的参数预测特定值。
三、评价拟合结果1、残差平方和:根据拟合模型和所得数据,计算拟合结果和拟合误差;2、自由度:自由度 = 总数据点数- 拟合模型参数的个数;3、复杂度检验:考虑拟合模型的复杂度对拟合效果的影响;4、对数校正残差:考虑拟合结果的稳定性,比较数据的分布与真实数据的分布;5、误差统计检验:通过统计分析评估拟合结果的可靠性。
四、模型预测1、均方根误差(RMSE):评估预测模型拟合准确性,值越小,模型越有效;2、均方误差(MSE):反映预测值与真实值之间的平均差异;3、绝对均差(MAE):反映预测值与真实值之间的绝对均值差异;4、平均绝对平方偏差(MAHAPE):反映模型拟合精度平均差距,值越接近0,模型越精确;5、杰拉德系数(R):反映预测值与真实值之间的线性联系,值越接近1,模型越有效。
以上是matlab最小二乘法拟合的原理和应用,它不仅可以拟合任意数据,而且具有较强的适用性和准确性。
此外,matlab最小二乘法拟合还可以用来评估拟合结果的准确性,方便对数据进行分析处理。
最小二乘法matlab程序

最小二乘法matlab程序最小二乘法是一种统计模型,它可以被用来拟合一元函数数据,或者拟合非线性曲线。
它的基本思想是找到一组参数,使得拟合的曲线与实际数据的差距最小。
本文将介绍如何使用Matlab实现一个最小二乘法的程序,并与现有的一些现成的最小二乘法的matlab程序进行比较,找出其优缺点。
首先,要使用最小二乘法拟合曲线,需要准备一组输入数据,一般可以将其表示为两个向量,分别是自变量x和因变量y。
这些数据可以是由测量和实验得到的,也可以是由人工输入的,但无论如何都要确保它们的准确性。
接下来,就可以使用Matlab输入数据进行处理,用最小二乘法计算出最拟合的曲线及其参数。
具体步骤主要分为三步:第一步是计算输入数据的均值和方差,包括自变量x和因变量y的均值和方差;第二步是计算自变量x和因变量y的关系,即最小二乘拟合曲线的系数;第三步是验证拟合的曲线的准确性,如果不满意,可以重新调整参数,以获得较好的拟合效果。
此外,Matlab除了提供自带的最小二乘法函数外,还支持第三方开发者开发现成的matlab程序,用于解决最小二乘法的问题。
这些程序中有一些是开源的,另一些则是出售的。
其中开源的有LEAST,CURVEFIT,CURVEFITTOOL等,而出售的有MATLAB Curve Fitting Toolbox,Optimization Toolbox和Statistics Toolbox等。
它们的突出特点是速度快,代码简洁,容易上手,适用于多种拟合类型。
然而,各种matlab程序也有自身的缺点,最明显的就是当输入数据非常庞大时,它们的计算能力就无法跟上,速度就会变慢。
此外,使用出售的matlab程序可能相对昂贵,而且有时需要安装某些复杂的库文件,这也是一种麻烦。
因此,使用最小二乘法拟合曲线时,可以参考现有的matlab程序,也可以自己编写matlab代码,同时要考虑到程序的可靠性、效率和可行性。
本文介绍的matlab程序的最大优势是它不需要依赖第三方的软件,而且能够满足大多数用户的需求,使得最小二乘法可以在短时间内被成功运用。
最小二乘法matlab程序

文件说明1、使用说明1)加载P .m 文件至matlab2)命令行使用P 可以得到线性拟合参数,最终定价,最大利润和线性拟合对比图,蓝色为按照价格升序后的每个销量点连接的直线,绿色为拟合后的直线。
0.40.50.60.70.80.91 1.1010002000300040005000600070002、代码说明采用先线性拟合价格和销量直线方程,再代入利润函数,进行微分求极大值,即为最终定价,最后代回利润函数得到最大利润。
function P()%函数使用>>P%0.59,0.80,0.95,0.45,0.79,0.99,0.90,0.65,0.79,0.69,0.79,%0.49,1.09,0.95,0.79,0.65,0.45,0.60,0.89,0.79,0.99,0.85%3980,2200,1850,6100,2100,1700,2000,4200,2440,3300,2300,%6000,1190,1960,2760,4330,6960,4160,1990,2860,1920,2160%将价格和销量分别对应列入2行22列矩阵TEMP=[0.59,0.80,0.95,0.45,0.79,0.99,0.90,0.65,0.79,0.69,0.79,0.49,1.09,0.95,0.79,0. 65,0.45,0.60,0.89,0.79,0.99,0.85;3980,2200,1850,6100,2100,1700,2000,4200,2440,3 300,2300,6000,1190,1960,2760,4330,6960,4160,1990,2860,1920,2160];%将TEMP矩阵按照第一行的数进行从小到大的排列TEMP_T=sortrows(TEMP');TEMP=TEMP_T';Price=TEMP(1,:); %取第一行的数为价格Sales=TEMP(2,:); %取第二行的数为销量Cost=0.23; %成本L=polyfit(Price,Sales,1); %得到一阶最小二乘的2个拟合参数Sales_P=L(1)*Price+L(2); %得到拟合出的相应销量点disp('L(1)=');disp(L(1));disp('L(2)=');disp(L(2));plot(Price,Sales,Price,Sales_P); %做出对比图大概看下是否基本符合syms x; %定义变量xf(x)=L(1).*x+L(2); %写出拟合函数z(x)=f(x).*(x-Cost); %写利润函数明显利润函数为二次上凸抛物线dz(x)=diff(z(x)); %对利润函数求导Pricing=solve(dz(x),x); %极大值点即为最终定价Profit=subs(z(x),'x',Pricing); %计算最大利润Pricing=double(Pricing); %转换为双精度型Profit=double(Profit);disp('Pricing=');disp(Pricing);disp('Profit=');disp(Profit);end。
matlab最小二乘法拟合直线

matlab最小二乘法拟合直线【导言】直线拟合是数据分析和数学建模中常用的方法之一,而最小二乘法则是在直线拟合中最常用的方法之一。
在本文中,将介绍使用Matlab进行最小二乘法拟合直线的步骤和原理,并就此主题进行深入的探讨。
【正文】一、最小二乘法简介最小二乘法是一种数学优化方法,它通过最小化误差的平方和来寻找函数与观测数据之间的最佳拟合。
在直线拟合中,最小二乘法的目标是找到一条直线,使得所有观测数据点到直线的距离之和最小。
1. 确定拟合的模型在直线拟合中,我们的模型可以表示为:Y = a*X + b,其中a和b为待求参数,X为自变量,Y为因变量。
2. 计算误差对于每一个观测数据点(x_i, y_i),计算其到直线的垂直距离d_i,即误差。
误差可以表示为:d_i = y_i - (a*x_i + b)。
3. 求解最小二乘法问题最小二乘法的目标是最小化所有观测数据点到直线的距离之和,即最小化误差的平方和:min Σ(d_i^2) = min Σ(y_i - (a*x_i + b))^2。
通过求解该最小化问题,可以得到最佳拟合的直线斜率a和截距b的值。
二、Matlab实现最小二乘法拟合直线的步骤下面将介绍使用Matlab进行最小二乘法拟合直线的基本步骤。
1. 导入数据需要将实验数据导入Matlab。
可以使用matlab自带的readtable函数从文件中读取数据,也可以使用xlsread函数直接从Excel文件中读取数据。
2. 数据预处理在进行最小二乘法拟合直线之前,先对数据进行预处理。
一般情况下,可以对数据进行去除异常值、归一化等操作,以确保数据的准确性和可靠性。
3. 拟合直线使用Matlab的polyfit函数可以实现直线拟合。
polyfit函数可以拟合输入数据的曲线或平面,并返回拟合参数。
在拟合直线时,需要指定拟合的阶数,对于直线拟合,阶数为1。
4. 绘制拟合直线使用Matlab的plot函数可以将拟合的直线绘制出来,以便于观察拟合效果。
matlab 最小二乘拟合直线并输出直线方程

在Matlab中,最小二乘法是一种常见的数学拟合技术,可以用来拟合直线,曲线甚至更复杂的函数。
通过最小二乘法,可以找到最适合数据点的直线方程,从而能够更好地分析和预测数据之间的关系。
在本文中,我将详细介绍如何在Matlab中使用最小二乘法来拟合直线,并输出直线方程。
我们需要准备一组数据点。
假设我们有一组横坐标和纵坐标的数据点,分别用变量x和y表示。
接下来,我们可以使用Matlab中的polyfit函数来进行最小二乘拟合。
该函数的语法如下:```matlabp = polyfit(x, y, 1);```其中,x和y分别代表数据点的横坐标和纵坐标,而1代表要拟合的直线的次数,即一次函数。
执行该语句后,变量p将会存储拟合出的直线的系数,即直线方程y = ax + b中的a和b。
在接下来的内容中,我将详细讨论如何通过最小二乘法拟合直线,并输出直线方程。
具体而言,我们将从如何准备数据、使用polyfit函数进行拟合、得到直线方程以及如何应用和解释直线拟合结果等方面进行全面分析。
一、数据准备在使用最小二乘法拟合直线之前,首先要准备一组数据点。
这些数据点应该是具有一定规律性的,从而能够通过直线拟合来揭示数据之间的关系。
在这一部分,我将详细介绍如何准备数据,并重点关注数据的合理性和可靠性。
1.1 数据收集要拟合直线,首先需要收集一组数据点。
这些数据点可以来源于实验观测、实际测量或者模拟计算等方式。
在收集数据时,需要保证数据的准确性和完整性。
还需要考虑数据的分布范围和密度,以便更好地反映数据之间的关系。
1.2 数据预处理在拟合直线之前,通常需要对数据进行一定的预处理。
这可能包括去除异常值、处理缺失数据,甚至进行数据变换等操作。
在这一步中,我将介绍如何进行数据预处理,并强调预处理对最终拟合结果的影响。
二、最小二乘拟合当数据准备工作完成后,就可以使用polyfit函数进行最小二乘拟合了。
在这一部分,我将详细介绍polyfit函数的使用方法,并解释其背后的数学原理。
matlab加权最小二乘法拟合编程

一、概述最小二乘法(Least Squares Method)是一种常用的数学优化方法,通过最小化残差的平方和来拟合实际数据与理论模型之间的关系。
在实际应用中,我们常常需要对数据进行加权处理,以提高拟合效果和准确度。
而Matlab作为一种强大的数学建模和仿真软件,提供了丰富的函数和工具来实现加权最小二乘法的拟合编程。
二、加权最小二乘法原理1. 最小二乘法原理最小二乘法是一种常用的拟合方法,通过最小化实际观测值和理论值之间的误差来寻找最佳拟合曲线或曲面。
其数学表达为:minimize ||Ax - b||^2其中A为设计矩阵,x为拟合参数,b为观测值向量。
最小二乘法可以看作是一种优化问题,通过求解参数x的最优值来实现最佳拟合。
2. 加权最小二乘法原理在实际情况下,我们往往会遇到观测值有不同的权重或方差的情况,此时可以使用加权最小二乘法来提高拟合效果。
加权最小二乘法的数学表达为:minimize ||W^(1/2)(Ax - b)||^2其中W为权重矩阵,将不同观测值的权重考虑在内,通过加权的方式来优化拟合效果。
三、Matlab实现加权最小二乘法1. 数据准备在进行加权最小二乘法的拟合编程前,首先需要准备实际观测数据和设计矩阵A。
还需要考虑观测值的权重矩阵W,根据实际情况来确定不同观测值的权重。
2. 加权最小二乘法函数Matlab提供了丰富的函数和工具来实现加权最小二乘法的拟合。
其中,可以使用lsqcurvefit或lsqnonlin等函数来进行加权最小二乘法的拟合计算。
通过传入设计矩阵A、观测值向量b和权重矩阵W,以及拟合参数的初始值,来实现加权最小二乘法的拟合计算。
3. 拟合结果评估完成加权最小二乘法的拟合计算后,我们需要对拟合结果进行评估。
主要包括残差分析、拟合效果的可视化等方面。
通过分析残差的分布和拟合曲线与实际观测值的符合程度,来评估拟合效果的优劣。
四、实例分析1. 示例一:线性模型拟合假设我们有一组线性关系的实际观测数据,且各观测值具有不同的权重。
最小二乘法曲线拟合的Matlab程序

最⼩⼆乘法曲线拟合的Matlab程序⽅便⼤家使⽤的最⼩⼆乘法曲线拟合的Matlab程序⾮常⽅便⽤户使⽤,直接按提⽰操作即可;这⾥我演⽰⼀个例⼦:(红⾊部分为⽤户输⼊部分,其余为程序运⾏的结果,结果图为Untitled.fig,Untitled2.fig) 请以向量的形式输⼊x,y.x=[1,2,3,4]y=[3,4,5,6]通过下⾯的交互式图形,你可以事先估计⼀下你要拟合的多项式的阶数,⽅便下⾯的计算.polytool()是交互式函数,在图形上⽅[Degree]框中输⼊阶数,右击左下⾓的[Export]输出图形回车打开polytool交互式界⾯回车继续进⾏拟合输⼊多项式拟合的阶数m = 4Warning: Polynomial is not unique; degree >= number of data points. > In polyfit at 72In zxecf at 64输出多项式的各项系数a = 0.0200000000000001a = -0.2000000000000008a = 0.7000000000000022a = 0.0000000000000000a = 2.4799999999999973输出多项式的有关信息 SR: [4x5 double]df: 0normr: 2.3915e-015Warning: Zero degrees of freedom implies infinite error bounds.> In polyval at 104In polyconf at 92In zxecf at 69观测数据拟合数据x y yh1.0000 3.0000 3.00002.0000 4.0000 4.00003 5 54.0000 6.0000 6.0000剩余平⽅和 Q = 0.000000相关指数 RR = 1.000000请输⼊你所需要拟合的数据点,若没有请按回车键结束程序.输⼊插值点x0 = 3输出插值点拟合函数值 y0 = 5.0000>>结果:untitled.figuntitled2.fig⼀些matlab优化算法代码的分享代码的⽬录如下:欢迎讨论1.约束优化问题:minRosen(Rosen梯度法求解约束多维函数的极值)(算法还有bug) minPF(外点罚函数法解线性等式约束) minGeneralPF(外点罚函数法解⼀般等式约束)minNF(内点罚函数法)minMixFun(混合罚函数法)minJSMixFun(混合罚函数加速法)minFactor(乘⼦法)minconPS(坐标轮换法)(算法还有bug)minconSimpSearch(复合形法)2.⾮线性最⼩⼆乘优化问题minMGN(修正G-N法)3.线性规划:CmpSimpleMthd(完整单纯形法)4.整数规划(含0-1规划)DividePlane(割平⾯法)ZeroOneprog(枚举法)5.⼆次规划QuadLagR(拉格朗⽇法)ActivedeSet(起作⽤集法)6.辅助函数(在⼀些函数中会调⽤)minNT(⽜顿法求多元函数的极值)minMNT(修正的⽜顿法求多元函数极值)minHJ(黄⾦分割法求⼀维函数的极值)7.⾼级优化算法1)粒⼦群优化算法(求解⽆约束优化问题)1>PSO(基本粒⼦群算法)2>YSPSO(待压缩因⼦的粒⼦群算法)3>LinWPSO(线性递减权重粒⼦群优化算法)4>SAPSO(⾃适应权重粒⼦群优化算法)5>RandWSPO(随机权重粒⼦群优化算法)6>LnCPSO(同步变化的学习因⼦)7>AsyLnCPSO(异步变化的学习因⼦)(算法还有bug)8>SecPSO(⽤⼆阶粒⼦群优化算法求解⽆约束优化问题)9>SecVibratPSO(⽤⼆阶振荡粒⼦群优化算法求解五约束优化问题)10>CLSPSO(⽤混沌群粒⼦优化算法求解⽆约束优化问题)11>SelPSO(基于选择的粒⼦群优化算法)12>BreedPSO(基于交叉遗传的粒⼦群优化算法)13>SimuAPSO(基于模拟退⽕的粒⼦群优化算法)2)遗传算法1>myGA(基本遗传算法解决⼀维约束规划问题)2>SBOGA(顺序选择遗传算法求解⼀维⽆约束优化问题)3>NormFitGA(动态线性标定适应值的遗传算法求解⼀维⽆约束优化问题)4>GMGA(⼤变异遗传算法求解⼀维⽆约束优化问题)5>AdapGA(⾃适应遗传算法求解⼀维⽆约束优化问题)6>DblGEGA(双切点遗传算法求解⼀维⽆约束优化问题)7>MMAdapGA(多变异位⾃适应遗传算法求解⼀维⽆约束优化问题)⾃⼰编写的马尔科夫链程序A 代表⼀组数据序列⼀维数组本程序的操作对象也是如此t=length(A); % 计算序列“A”的总状态数B=unique(A); % 序列“A”的独⽴状态数顺序,“E”E=sort(B,'ascend');a=0;b=0;c=0;d=0;Localization=find(A==E(j)); % 序列“A”中找到其独⽴状态“E”的位置for i=1:1:length(Localization)if Localization(i)+1>tbreak; % 范围限定elseif A(Localization(i)+1)== E(1)a=a+1;elseif A(Localization(i)+1)== E(2)b=b+1;elseif A(Localization(i)+1)== E(3)c=c+1;% 依此类推,取决于独⽴状态“E”的个数elsed=d+1;endendT(j,1:tt)=[a,b,c,d]; % “T”为占位矩阵endTT=T;for u=2:1:ttTT(u,:)= T(u,:)- T(u-1,:);endTT; % ⾄此,得到转移频数矩阵Y=sum(TT,2);for uu=1:1:ttTR(uu,:)= TT(uu,:)./Y(uu,1);endTR % 最终得到马尔科夫转移频率/概率矩阵% 观测序列马尔科夫性质的检验:N=numel(TT);uuu=1;Col=sum(TT,2); % 对列求和Row=sum(TT,1); % 对⾏求和Total=sum(Row); % 频数总和for i=1:1:ttxx(uuu,1)=sum((TT(i,j)-(Row(i)*Col(j))./Total).^2./( (Row(i)*Col(j)). /Total)); uuu=uuu+1; % 计算统计量x2endendxx=sum(xx)。
用matlab中最小二乘法编程求解

3.2966e+009
ans =
5.7227e+017
ans =
1.1808e+026
ans =
2.6408e+034
ans =
6.1821e+042
=
2.0801e+007
ans =
3.0495e+015
ans =
5.9067e+023
>> [a,b,c]=solve('3.2966e+009*a+5.7227e+017*b+1.1808e+026*c=2.0801e+007','5.7227e+017*a+1.1808e+026*b+2.6408e+034*c=3.0495e+015','1.1808e+026*a+2.6408e+034*b+6.1821e+042*c= 5.9067e+023','a,b,c');
7.9710e+02,2.0290e+03,4.2029e+03,6.0870e+03,8.0435e+03,1.0000e+04,1.2029e+04,1.4203e+04,1.6087e+04];
H=[-7.5164e+01,-7.5531e+01,-7.5548e+01,-7.4174e+01,-7.3844e+01,-7.0035e+01,-6.5878e+01,-6.0678e+01,-4.9209e+01,...
matlab最小二乘法矩阵法

matlab最小二乘法矩阵法
在MATLAB中使用最小二乘法进行矩阵运算,可以按照以下步骤进行:
1. 构建矩阵A和向量b。
根据已知数据点的横坐标x,构建一个n×(m+1)的矩阵A,其中n 是数据点的数量,m是多项式的次数。
矩阵A的每一行表示一个数据点在多项式函数中的各个次方。
例如,第i行的值为[x(i)^0, x(i)^1, x(i)^2, ..., x(i)^m]。
然后,根据已知数据点的纵坐标y,构建一个n×1的向量b,其中每个元素表示一个数据点的纵坐标值。
2. 求解线性方程组。
使用MATLAB中的线性方程组求解函数,可以求解以下线性方程组:A^T * A * x = A^T * b。
其中,A^T表示A的转置,x是一个(m+1)×1的向量,表示多项式函数的系数。
对于方程组的求解,MATLAB提供了多种方法,如直接法、迭代法等。
具体选择哪种方法取决于方程组的规模和特性。
以上是使用MATLAB进行最小二乘法矩阵运算的基本步骤。
在实际应用中,还需要根据具体的数据和问题选择合适的算法和函数,并进行必要的参数设置和结果分析。
matlab递推最小二乘法函数

一、介绍在数学和工程领域中,最小二乘法是一种常见的参数估计方法,用于寻找一组参数使得观测数据和模型预测值之间的误差最小。
而在matlab中,递推最小二乘法函数是指使用递推方式来实现最小二乘法计算的函数。
本文将介绍matlab中如何编写递推最小二乘法函数,并对其原理和应用进行详细讲解。
二、递推最小二乘法的原理递推最小二乘法是一种迭代方法,通过不断更新参数来逼近最优解。
其原理可以简单描述为以下几个步骤:1. 初始化参数:首先需要初始化参数向量,通常可以使用随机数或者某些先验知识来确定初始参数值。
2. 迭代更新:接下来进入迭代更新阶段,根据当前参数值和观测数据,更新参数向量以降低误差。
3. 判断停止条件:迭代更新的过程中需要设立停止条件,当满足某个条件时停止迭代,可以是达到一定的迭代次数或者参数变化小于某个阈值等。
三、matlab编写递推最小二乘法函数在matlab中,编写递推最小二乘法函数可以通过以下步骤实现:1. 编写初始化函数:首先需要编写一个初始化函数来初始化参数向量,该函数可以接受观测数据和模型的输入,并返回初始参数向量。
2. 编写更新函数:接下来需要编写一个更新函数来进行参数的迭代更新,该函数也可以接受观测数据和当前参数向量的输入,并返回更新后的参数向量。
3. 编写停止条件函数:最后需要编写一个停止条件函数来判断迭代是否应该停止,该函数可以接受当前参数向量和更新前的参数向量的输入,并返回是否停止的逻辑值。
四、matlab递推最小二乘法函数的应用递推最小二乘法函数在matlab中的应用非常广泛,特别是在参数估计、信号处理、系统识别等领域。
通过使用递推最小二乘法函数,可以快速准确地估计出模型参数,从而提高算法的精度和效率。
由于递推最小二乘法具有较好的收敛性和稳定性,因此在实际工程中也得到了广泛的应用。
五、总结通过本文的介绍,读者可以了解到matlab中递推最小二乘法函数的编写和应用。
递推最小二乘法作为一种迭代方法,能够快速准确地估计出模型参数,并在各种工程领域中得到了广泛的应用。
最小二乘法MATLAB程序及结果

最小二乘递推算法的MATLAB仿真针对辨识模型,有z(k)-+a1*z(k-1)+a2*z(k-2)=b1*u(k-1)+b2*u(k-2)+v(k)模型结构,对其进行最小二乘递推算法的MATLAB仿真,对比真值与估计值。
更改a1、a2、b1、b2参数,观察结果。
仿真对象:z(k)-1.5*z(k-1)+0.7*z(k-2)=u(k-1)+0.5*u(k-2)+v(k)程序如下:L=15;y1=1;y2=1;y3=1;y4=0; %四个移位寄存器的初始值for i=1:L; %移位循环x1=xor(y3,y4);x2=y1;x3=y2;x4=y3;y(i)=y4; %取出作为输出信号,即M序列if y(i)>0.5,u(i)=-0.03; %输入信号else u(i)=0.03;endy1=x1;y2=x2;y3=x3;y4=x4;endfigure(1);stem(u),grid onz(2)=0;z(1)=0;for k=3:15;z(k)=1.5*z(k-1)-0.7*z(k-2)+u(k-1)+0.5*u(k-2); %输出采样信号endc0=[0.001 0.001 0.001 0.001]'; %直接给出被识别参数的初始值p0=10^6*eye(4,4); %直接给出初始状态P0E=0.000000005;c=[c0,zeros(4,14)];e=zeros(4,15);for k=3:15; %开始求kh1=[-z(k-1),-z(k-2),u(k-1),u(k-2)]';x=h1'*p0*h1+1;x1=inv(x);k1=p0*h1*x1; %开始求k的值d1=z(k)-h1'*c0;c1=c0+k1*d1;e1=c1-c0;e2=e1./c0; %求参数的相对变化e(:,k)=e2;c0=c1;c(:,k)=c1;p1=p0-k1*k1'*[h1'*p0*h1+1]; %求出P(k)的值p0=p1;if e2<=E break;endendc,e %显示被辨识参数及其误差情况a1=c(1,:);a2=c(2,:);b1=c(3,:);b2=c(4,:);ea1=e(1,:);ea2=e(2,:);eb1=e(3,:);eb2=e(4,:);figure(2);i=1:15;plot(i,a1,'r',i,a2,':',i,b1,'g',i,b2,':')title('Parameter Identification with Recursive Least Squares Method')figure(3);i=1:15;plot(i,ea1,'r',i,ea2,'g',i,eb1,'b',i,eb2,'r:')title('Identification Precision')程序运行结果:p0 =1000000 0 0 00 1000000 0 00 0 1000000 00 0 0 1000000c =Columns 1 through 90.0010 0 0.0010 -0.4984 -1.2325 -1.4951 -1.4962 -1.4991 -1.49980.0001 0 0.0001 0.0001 -0.2358 0.6912 0.6941 0.6990 0.69980.0010 0 0.2509 1.2497 1.0665 1.0017 1.0020 1.0002 0.99990.0010 0 -0.2489 0.7500 0.5668 0.5020 0.5016 0.5008 0.5002Columns 10 through 15-1.4999 -1.5000 -1.5000 -1.5000 -1.4999 -1.49990.6999 0.7000 0.7000 0.7000 0.7000 0.70000.9998 0.9999 0.9999 0.9999 0.9999 0.99990.5002 0.5000 0.5000 0.5000 0.5000 0.5000e =1.0e+003 *Columns 1 through 90 0 0 -0.4994 0.0015 0.0002 0.0000 0.0000 0.00000 0 0 0 -2.3592 -0.0039 0.0000 0.0000 0.00000 0 0.2499 0.0040 -0.0001 -0.0001 0.0000 -0.0000 -0.00000 0 -0.2499 -0.0040 -0.0002 -0.0001 -0.0000 -0.0000 -0.0000Columns 10 through 150.0000 0.0000 0.0000 -0.0000 -0.0000 0.00000.0000 0.0000 -0.0000 0.0000 0.0000 0.0000-0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000-0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000程序运行曲线:图1.输入信号图2.a1,a2,b1,b2辨识仿真结果图3. a1,a2,b1,b2各次辨识结果收敛情况分析:由运行结果可看出,输出观测值没有任何噪声成分时,辨识结果最大相对误差达到3位数。
曲线拟合的线性最小二乘法及其MATLAB程序

曲线拟合的线性最⼩⼆乘法及其MATLAB程序3.1 曲线拟合的线性最⼩⼆乘法及其MATLAB 程序例3.1.1 给出⼀组数据点),(i i y x 列⼊表3-1中,试⽤线性最⼩⼆乘法求拟合曲线,并估计其误差,作出拟合曲线.表3-1 例3.1.1的⼀组数据),(y x解(1)在MATLAB ⼯作窗⼝输⼊程序>> x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04];plot(x,y,'r*'),legend('实验数据(xi,yi)')xlabel('x'), ylabel('y'),title('例3.1.1的数据点(xi,yi)的散点图')运⾏后屏幕显⽰数据的散点图(略).(3)编写下列MATLAB 程序计算)(x f 在),(i i y x 处的函数值,即输⼊程序>> syms a1 a2 a3 a4x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];fi=a1.*x.^3+ a2.*x.^2+ a3.*x+ a4运⾏后屏幕显⽰关于a 1,a 2, a 3和a 4的线性⽅程组fi =[ -125/8*a1+25/4*a2-5/2*a3+a4,-4913/1000*a1+289/100*a2-17/10*a3+a4,-1331/1000*a1+121/100*a2-11/10*a3+a4,-64/125*a1+16/25*a2-4/5*a3+a4,a4, 1/1000*a1+1/100*a2+1/10*a3+a4,27/8*a1+9/4*a2+3/2*a3+a4, 19683/1000*a1+729/100*a2+27/10*a3+a4, 5832/125*a1+324/25*a2+18/5*a3+a4]编写构造误差平⽅和的MATLAB 程序>> y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04];fi=[-125/8*a1+25/4*a2-5/2*a3+a4,-4913/1000*a1+289/100*a2-17/10*a3+a4,-1331/1000*a1+121/100*a2-11/10*a3+a4,-64/125*a1+16/25*a2-4/5*a3+a4, a4, 1/1000*a1+1/100*a2+1/10*a3+a4,27/8*a1+9/4*a2+3/2*a3+a4,19683/1000*a1+729/100*a2+27/10*a3+a4,5832/125*a1+324/25*a2+18/5*a3+a4];fy=fi-y; fy2=fy.^2; J=sum(fy.^2)运⾏后屏幕显⽰误差平⽅和如下J=(-125/8*a1+25/4*a2-5/2*a3+a4+1929/10)^2+(-4913/1000*a1+289/100*a2-17/10*a3+a4+171/2)^2+(-1331/1000*a1+121/100*a2-11/10*a3+a4+723/20)^2+(-64/125*a1+16/25*a2-4/5*a3+a4+663/25)^2+(a4+91/10)^2+(1/1000*a1+1/100*a2+1/10*a3+a4+843/100)^2+(27/8*a1+9/4*a2+3/2*a3+a4+328/25)^2+(19683/1000*a1+729/100*a2+27/10*a3+a4-13/2)^2+(5832/125*a1+324/25*a2+18/5*a3+a4-1701/25)^2为求4321,,,a a a a 使J 达到最⼩,只需利⽤极值的必要条件0=??ka J )4,3,2,1(=k ,得到关于4321,,,a a a a 的线性⽅程组,这可以由下⾯的MA TLAB 程序完成,即输⼊程序>> syms a1 a2 a3 a4J=(-125/8*a1+25/4*a2-5/2*a3+a4+1929/10)^2+(-4913/1000*a1+289/100*a2-17/10*a3+a4...+171/2)^2+(-1331/1000*a1+121/100*a2-11/10*a3+a4+723/20)^2+(-64/125*a1+16/25*a2-4/5*a3+a4+663/25)^2+(a 4+91/10)^2+(1/1000*a1+1/100*a2+1/10*a3+a4+843/100)^2+(27/8*a1+9/4*a2+3/2*a3+a4+328/25)^2+(19683/1000*a1+729/100*a2+27/10*a3+a4-13/2)^2+(5832/125*a1+324/25*a2+18/5*a3+a4-1701/25)^2;Ja1=diff(J,a1); Ja2=diff(J,a2); Ja3=diff(J,a3); Ja4=diff(J,a4);Ja11=simple(Ja1), Ja21=simple(Ja2), Ja31=simple(Ja3), Ja41=simple(Ja4),运⾏后屏幕显⽰J 分别对a 1, a 2 ,a 3 ,a 4的偏导数如下Ja11=56918107/10000*a1+32097579/25000*a2+1377283/2500*a3+23667/250*a4-8442429/625Ja21 =32097579/25000*a1+1377283/2500*a2+23667/250*a3+67*a4+767319/625Ja31 =1377283/2500*a1+23667/250*a2+67*a3+18/5*a4-232638/125Ja41 =23667/250*a1+67*a2+18/5*a3+18*a4+14859/25解线性⽅程组Ja 11 =0,Ja 21 =0,Ja 31 =0,Ja 41 =0,输⼊下列程序>>A=[56918107/10000, 32097579/25000, 1377283/2500, 23667/250; 32097579/25000, 1377283/2500, 23667/250, 67; 1377283/2500, 23667/250, 67, 18/5; 23667/250, 67, 18/5, 18];B=[8442429/625, -767319/625, 232638/125, -14859/25];C=B/A, f=poly2sym(C)运⾏后屏幕显⽰拟合函数f 及其系数C 如下C = 5.0911 -14.1905 6.4102 -8.2574f=716503695845759/140737488355328*x^3-7988544102557579/562949953421312*x^2+1804307491277693/281474976710656*x-4648521160813215/562949953421312故所求的拟合曲线为8.25746.410214.19055.0911)(23-+-=x x x x f .(4)编写下⾯的MATLAB 程序估计其误差,并作出拟合曲线和数据的图形.输⼊程序>> xi=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04];n=length(xi);f=5.0911.*xi.^3-14.1905.*xi.^2+6.4102.*xi -8.2574;x=-2.5:0.01: 3.6;F=5.0911.*x.^3-14.1905.*x.^2+6.4102.*x -8.2574;fy=abs(f-y); fy2=fy.^2; Ew=max(fy),E1=sum(fy)/n, E2=sqrt((sum(fy2))/n)plot(xi,y,'r*'), hold on, plot(x,F,'b-'), hold offlegend('数据点(xi,yi)','拟合曲线y=f(x)'),xlabel('x'), ylabel('y'),title('例3.1.1的数据点(xi,yi)和拟合曲线y=f(x)的图形')运⾏后屏幕显⽰数据),(i i y x 与拟合函数f 的最⼤误差E w ,平均误差E 1和均⽅根误差E 2及其数据点),(i i y x 和拟合曲线y =f (x )的图形(略).Ew = E1 = E2 =3.105 4 0.903 4 1.240 93.2 函数)(x r k 的选取及其MATLAB 程序例3.2.1 给出⼀组实验数据点),(i i y x 的横坐标向量为x =(-8.5,-8.7,-7.1,-6.8,-5.10,-4.5,-3.6,-3.4,-2.6,-2.5, -2.1,-1.5, -2.7,-3.6),纵横坐标向量为y =(459.26,52.81,198.27,165.60,59.17,41.66,25.92, 22.37,13.47, 12.87, 11.87,6.69,14.87,24.22),试⽤线性最⼩⼆乘法求拟合曲线,并估计其误差,作出拟合曲线.解(1)在MATLAB ⼯作窗⼝输⼊程序>>x=[-8.5,-8.7,-7.1,-6.8,-5.10,-4.5,-3.6,-3.4,-2.6,-2.5,-2.1,-1.5, -2.7,-3.6];y=[459.26,52.81,198.27,165.60,59.17,41.66,25.92,22.37,13.47, 12.87, 11.87,6.69,14.87,24.22];plot(x,y,'r*'),legend('实验数据(xi,yi)')xlabel('x'), ylabel('y'),title('例3.2.1的数据点(xi,yi)的散点图')运⾏后屏幕显⽰数据的散点图(略).(3)编写下列MATLAB 程序计算)(x f 在),(i i y x 处的函数值,即输⼊程序>> syms a bx=[-8.5,-8.7,-7.1,-6.8,-5.10,-4.5,-3.6,-3.4,-2.6,-2.5,-2.1,-1.5,-2.7,-3.6]; fi=a.*exp(-b.*x)运⾏后屏幕显⽰关于a 和b 的线性⽅程组fi =[ a*exp(17/2*b), a*exp(87/10*b), a*exp(71/10*b),a*exp(34/5*b), a*exp(51/10*b), a*exp(9/2*b), a*exp(18/5*b), a*exp(17/5*b), a*exp(13/5*b), a*exp(5/2*b), a*exp(21/10*b),a*exp(3/2*b), a*exp(27/10*b), a*exp(18/5*b)]编写构造误差平⽅和的MATLAB 程序如下>>y=[459.26,52.81,198.27,165.60,59.17,41.66,25.92,22.37,13.47,12.87, 11.87, 6.69,14.87,24.22];fi =[ a*exp(17/2*b), a*exp(87/10*b), a*exp(71/10*b), a*exp(34/5*b), a*exp(51/10*b), a*exp(9/2*b), a*exp(18/5*b),a*exp(17/5*b), a*exp(13/5*b), a*exp(5/2*b), a*exp(21/10*b), a*exp(3/2*b), a*exp(27/10*b), a*exp(18/5*b)];fy=fi-y;fy2=fy.^2;J=sum(fy.^2)运⾏后屏幕显⽰误差平⽅和如下J =(a*exp(17/2*b)-22963/50)^2+(a*exp(87/10*b)-5281/100)^2+(a*exp(71/10*b)-19827/100)^2+(a*exp(34/5*b)-828/5)^2+(a*exp(51/10*b)-5917/100)^2+(a*exp(9/2*b)-2083/50)^2+(a*exp(18/5*b)-648/25)^2+(a*exp(17/5*b)-2237/100)^2+(a*exp(13/5*b)-1347/100)^2+(a*ex p(5/2*b)-1287/100)^2+(a*exp(21/10*b)-1187/100)^2+(a*exp(3/2*b)-669/100)^2+(a*exp(27/10*b)-1487/100)^2+(a*exp(18/5*b)-1211/50)^2为求b a ,使J 达到最⼩,只需利⽤极值的必要条件,得到关于b a ,的线性⽅程组,这可以由下⾯的MA TLAB 程序完成,即输⼊程序>> syms a bJ=(a*exp(17/2*b)-22963/50)^2+(a*exp(87/10*b)-5281/100)^2+(a*exp(71/10*b)-19827/100)^2+(a*exp(34/5*b)-828/5)^2+(a*exp(51/10*b)-5917/100)^2+(a*exp(9/2*b)-2083/50)^2+(a*exp(18/5*b)-648/25)^2+(a*exp(17/5*b)-2237/100)^2+(a*exp(13/5*b)-1347/100)^2+(a*exp(5/2*b)-1287/100)^2+(a*exp(21/10*b)-1187/100)^2+ (a*exp(3/2*b )-669/100)^2+(a*exp(27/10*b)-1487/100)^2+(a*exp(18/5*b)-1211/50)^2;Ja=diff(J,a); Jb=diff(J,b);Ja1=simple(Ja), Jb1=simple(Jb),运⾏后屏幕显⽰J 分别对b a ,的偏导数如下Ja1 =2*a*exp(3*b)+2*a*exp(17*b)+2*a*exp(87/5*b)+2*exp(68/5*b)*a+2*exp(9*b)*a+2*a*exp(34/5*b)-669/50*exp(3/2*b)-1487/50*exp(27/10*b)-2507/25*exp(18/5*b)-22963/25*exp(17/2*b)-5281/50*exp(87/10*b)-19827/50*exp(71/10*b)-2237/50*exp(17/5*b)-1656/5*exp(34/5*b)-1347/50*exp(13/5*b)-5917/50*exp(51/10*b)-1287/50*exp(5/2*b )-2083/25*exp(9/2*b)-1187/50*exp(21/10*b)+4*a*exp(36/5*b)+2*a*exp(26/5*b)+2*a*exp(71/5*b)+2*a*exp(51/5*b)+2*a*exp(5*b)+2*a*exp (21/5*b)+2*a*exp(27/5*b)Jb1 =1/500*a*(2100*a*exp(21/10*b)^2+8500*a*exp(17/2*b)^2+6800*a*exp(34/5*b)^2-10035*exp(3/2*b)-40149*exp(27/10*b)-180504*exp (18/5*b)-3903710*exp(17/2*b)-459447*exp(87/10*b)-1407717*exp(71/10*b)-76058*exp(17/5*b)-1126080*exp(34/5*b)-35022*exp(13/5*b)-301767*exp(51/10*b)-32175*exp(5/2*b)-187470*exp(9/2*b)-24927*ex p(21/10*b)+7100*a*exp(71/10*b)^2+5100*a*exp(51/10*b)^2+4500*a*exp(9/2*b)^2+7200*a*exp(18/5*b)^2+3400*a*exp(17/5*b)^2+2600*a*exp(13/5*b)^2+2500*a*exp(5/2*b)^2+1500*a*exp(3/2*b)^2+2700*a*exp(27/10*b)^2+8700*a*exp(87/10*b)^2)⽤解⼆元⾮线性⽅程组的⽜顿法的MATLAB 程序求解线性⽅程组J a1 =0,J b1 =0,得a = b=2.811 0 0.581 6故所求的拟合曲线(7.13)为0811.2)(=x f e x 5816.0-.(4)编写下⾯的MATLAB 程序估计其误差,并做出拟合曲线和数据的图形.输⼊程序>> xi=[-8.5 -8.7 -7.1 -6.8 -5.10 -4.5 -3.6 -3.4 -2.6 -2.5-2.1 -1.5 -2.7 -3.6];y=[459.26 52.81 198.27 165.60 59.17 41.66 25.92 22.3713.47 12.87 11.87 6.69 14.87 24.22];n=length(xi); f=2.8110.*exp(-0.5816.*xi); x=-9:0.01: -1;F=2.8110.*exp(-0.5816.*x); fy=abs(f-y); fy2=fy.^2;Ew=max(fy),E1=sum(fy)/n, E2=sqrt((sum(fy2))/n), plot(xi,y,'r*'), hold on plot(x,F,'b-'), hold off,legend('数据点(xi,yi)','拟合曲线y=f(x)')xlabel('x'), ylabel('y'),title('例3.2.1的数据点(xi,yi)和拟合曲线y=f(x)的图形')运⾏后屏幕显⽰数据),(i i y x 与拟合函数f 的最⼤误差E w = 390.141 5,平均误差E 1=36.942 2和均⽅根误差E 2=106.031 7及其数据点),(i i y x 和拟合曲线y =f (x )的图形(略).3.3 多项式拟合及其MATLAB 程序例3.3.1 给出⼀组数据点),(i i y x 列⼊表3–3中,试⽤线性最⼩⼆乘法求拟合曲线,并估计其误差,作出拟合曲线.表3–3 例3.3.1的⼀组数据),(y x解(1)⾸先根据表3–3给出的数据点i i ,⽤下列MATLAB 程序画出散点图.在MATLAB ⼯作窗⼝输⼊程序>> x=[-2.9 -1.9 -1.1 -0.8 0 0.1 1.5 2.7 3.6];y=[53.94 33.68 20.88 16.92 8.79 8.98 4.17 9.1219.88];plot(x,y,'r*'), legend('数据点(xi,yi)')xlabel('x'), ylabel('y'),title('例3.3.1的数据点(xi,yi)的散点图')运⾏后屏幕显⽰数据的散点图(略).(3)⽤作线性最⼩⼆乘拟合的多项式拟合的MATLAB 程序求待定系数k a )3,2,1(=k .输⼊程序>> a=polyfit(x,y,2)运⾏后输出(7.16)式的系数a =2.8302 -7.3721 9.1382故拟合多项式为2138.91372.72830.2)(2+-=x x x f .(4)编写下⾯的MATLAB 程序估计其误差,并做出拟合曲线和数据的图形.输⼊程序>> xi=[-2.9 -1.9 -1.1 -0.8 0 0.1 1.5 2.7 3.6];y=[53.94 33.68 20.88 16.92 8.79 8.98 4.17 9.12 19.88];n=length(xi); f=2.8302.*xi.^2-7.3721.*xi+9.1382x=-2.9:0.001:3.6;F=2.8302.*x.^2-7.3721.*x+8.79;fy=abs(f-y); fy2=fy.^2; Ew=max(fy), E1=sum(fy)/n,E2=sqrt((sum(fy2))/n), plot(xi,y,'r*', x,F,'b-'),legend('数据点(xi,yi)','拟合曲线y=f(x)')xlabel('x'), ylabel('y'),title('例3.3.1 的数据点(xi,yi)和拟合曲线y=f(x)的图形')运⾏后屏幕显⽰数据),(i i y x 与拟合函数f 的最⼤误差E w ,平均误差E1和均⽅根误差E 2及其数据点(x i ,y i )和拟合曲线y =f (x )的图形(略).Ew = E1 = E2 =0.745 7, 0.389 2, 0.436 33.4 拟合曲线的线性变换及其MATLAB 程序例3.4.1 给出⼀组实验数据点),(i i y x 的横坐标向量为x =(7.5 6.8 5.10 4.53.6 3.4 2.6 2.5 2.1 1.5 2.7 3.6),纵横坐标向量为y =(359.26 165.60 59.17 41.66 25.92 22.37 13.47 12.87 11.87 6.69 14.87 24.22),试⽤线性变换和线性最⼩⼆乘法求拟合曲线,并估计其误差,作出拟合曲线.解(1)⾸先根据给出的数据点),(i i y x ,⽤下列MATLAB 程序画出散点图.在MATLAB ⼯作窗⼝输⼊程序>> x=[7.5 6.8 5.10 4.5 3.6 3.4 2.6 2.5 2.1 1.5 2.73.6];y=[359.26 165.60 59.17 41.66 25.92 22.37 13.47 12.87 11.87 6.69 14.87 24.22];plot(x,y,'r*'), legend('数据点(xi,yi)')xlabel('x'), ylabel('y'),title('例3.4.1的数据点(xi,yi)的散点图')运⾏后屏幕显⽰数据的散点图(略).(2)根据数据散点图,取拟合曲线为a y =e bx )0,0(≠>b a ,其中b a ,是待定系数.令b B a A y Y ===,ln ,ln ,则(7.19)化为Bx A Y +=.在MATLAB ⼯作窗⼝输⼊程序>> x=[7.5 6.8 5.10 4.5 3.6 3.4 2.6 2.5 2.1 1.5 2.73.6];y=[359.26 165.60 59.17 41.66 25.92 22.37 13.47 12.87 11.87 6.69 14.87 24.22];Y=log(y); a=polyfit(x,Y,1); B=a(1);A=a(2); b=B,a=exp(A)n=length(x); X=8:-0.01:1; Y=a*exp(b.*X); f=a*exp(b.*x);plot(x,y,'r*',X,Y,'b-'), xlabel('x'),ylabel('y')legend('数据点(xi,yi)','拟合曲线y=f(x)')title('例3.4.1 的数据点(xi,yi)和拟合曲线y=f(x)的图形')fy=abs(f-y); fy2=fy.^2; Ew=max(fy), E1=sum(fy)/n,E2=sqrt((sum(fy2))/n)运⾏后屏幕显⽰a y =e bx 的系数b =0.624 1,a =2.703 9,数据),(i i y x 与拟合函数f的最⼤误差Ew =67.641 9,平均误差E 1=8.677 6和均⽅根误差E 2=20.711 3及其数据点),(i i y x 和拟合曲线9703.2)(=x f e x 1624.0的图形(略).3.5 函数逼近及其MATLAB 程序最佳均⽅逼近的MATLAB 主程序function [yy1,a,WE]=zjjfbj(f,X,Y,xx)m=size(f);n=length(X);m=m(1);b=zeros(m,m); c=zeros(m,1);if n~=length(Y)error('X 和Y 的维数应该相同')endfor j=1:mfor k=1:mb(j,k)=0;for i=1:nb(j,k)=b(j,k)+feval(f(j,:),X(i))*feval(f(k,:),X(i));endendc(j)=0;for i=1:nc(j)=c(j)+feval(f(j,:),X(i))*Y(i);endenda=b\c;WE=0;for i=1:nff=0;for j=1:mff=ff+a(j)*feval(f(j,:),X(i));endWE=WE+(Y(i)-ff)*(Y(i)-ff);endif nargin==3return ;endyy=[];for i=1:ml=[];for j=1:length(xx)l=[l,feval(f(i,:),xx(j))];endyy=[yy l'];endyy=yy*a; yy1=yy'; a=a';WE;例3.5.1 对数据X 和Y , ⽤函数2,,1x y x y y ===进⾏逼近,⽤所得到的逼近函数计算在 6.5=x 处的函数值,并估计误差.其中X =(1 3 4 5 6 7 8 9); Y =(-11 -13 -11 -7 -1 7 17 29).解在MATLAB ⼯作窗⼝输⼊程序>> X=[ 1 3 4 5 6 7 8 9]; Y=[-11 -13 -11 -7 -1 7 17 29];f=['fun0';'fun1';'fun2']; [yy,a,WE]=zjjfbj(f,X,Y,6.5)运⾏后屏幕显⽰如下yy =2.75000000000003a =-7.00000000000010 -4.99999999999995 1.00000000000000WE =7.172323350269439e-027例3.5.2 对数据X 和Y ,⽤函数2,,1x y x y y ===,x y cos =,=y e x,xy sin =进⾏逼近,其中X =(0 0.50 1.00 1.50 2.00 2.50 3.00),Y =(0 0.4794 0.8415 0.9815 0.9126 0.5985 0.1645).解在MATLAB ⼯作窗⼝输⼊程序>> X=[ 0 0.50 1.00 1.50 2.00 2.50 3.00];Y=[0 0.4794 0.8415 0.9815 0.9126 0.5985 0.1645];f=['fun0';'fun1';'fun2';'fun3';'fun4';'fun5'];xx=0:0.2:3;[yy,a,WE]=zjjfbj(f,X,Y, xx), plot(X,Y,'ro',xx,yy,'b-')运⾏后屏幕显⽰如下(图略)yy = Columns 1 through 7-0.0005 0.2037 0.3939 0.5656 0.7141 0.8348 0.9236Columns 8 through 140.9771 0.9926 0.9691 0.9069 0.8080 0.6766 0.5191Columns 15 through 160.3444 0.1642a = 0.3828 0.4070 -0.3901 0.0765 -0.4598 0.5653 WE = 1.5769e-004即,最佳逼近函数为y=0.3828+0.4070*x-0.3901*x^2+0.0765*exp(x) -0.4598*cos(x) +0.5653*sin(x).。
ESPRIT算法(最小二乘法)matlab程序

%基本ESPRIT算法,第二种方法最小二乘法clear all;close all;clc;c=3*10^8;f=3*10^9;%% 求得信号的波长lamda=c/f;%%阵元的间距d=lamda/2;%% (n-1)为子阵列的个数即阵元数n=10;%% 信号的数目signal_number=3;%% 三个信号的角度值thita1=-25;thita2=30;thita3=65;%% 三个信号的中心频率f1=40;f2=20;f3=70;%% 在时域来说,是快拍数(一段时间内对阵列数据采样的个数);在频域来说,是DFT的时间子段的个数。
snapshot=1:2000;%% S是信号空间,有三个信号组成S1=2.72*exp(j*2*pi*f1*snapshot/length(snapshot));S2=4.48*exp(j*2*pi*f2*snapshot/length(snapshot));S3=7.37*exp(j*2*pi*f3*snapshot/length(snapshot));S=[S1;S2;S3];%% 子阵1A1=exp(-j*2*pi*d*[0:n-1]*sin(thita1*pi/180)/lamda).';A2=exp(-j*2*pi*d*[0:n-1]*sin(thita2*pi/180)/lamda).';A3=exp(-j*2*pi*d*[0:n-1]*sin(thita3*pi/180)/lamda).';A=[A1,A2,A3];%% 噪声假设为高斯白噪声,均值为零的N= wgn(10,2000,3);%% 求信噪比的S1,S2,S3信噪比依次是10 20 30s_power1=10*log(2.72^2/2);s_power2=10*log(4.48^2/2);s_power3=10*log(7.37^2/2);snr1=s_power1-3;snr2=s_power2-3;snr3=s_power3-3;%% 整个阵列接收到的数据0-n-1为阵列1;1-n为阵列2的X=A*S+N;%% 协方差矩阵Rxx=X*X'/length(snapshot);%% 对整个数据的协方差矩阵进行特征分解,从而得到特征值向量D和特征向量V[V,D]=eig(Rxx);%[Y,I]=sort(diag(D));Us=V(:,n-signal_number+1:n);%% 两个方阵张成的两个子空间U1=Us(1:n-1,:);U2=Us(2:n,:);%% 利用最小二乘法求得旋转不变关系矩阵,然后进行特征分解[p,q]=eig(inv(U1'*U1)*U1'*U2); %张贤达《矩阵分析与应用》第528页%% 利用上面求得的矩阵来获得角度for i=1:signal_number;alpha(i)=real(asin(-j*(log(q(i,i)))*lamda/(-2*pi*d))*180/pi);end;%% 作图stem(alpha,ones(1,signal_number),'r--');grid;axis([-90 90 0 2]);text(alpha(1)-4,1.1,num2str(alpha(1)));text(alpha(1)-15,1.4,'信号1,信噪比为10'); text(alpha(2)-4,1.1,num2str(alpha(2)));text(alpha(2)-15,1.4,'信号2,信噪比为20'); text(alpha(3)-4,1.1,num2str(alpha(3)));text(alpha(3)-15,1.4,'信号3,信噪比为30'); ylabel('DOA估计的角度值');xlabel('角度');title('ESPRIT算法DOA估计');。
matlab 最小二乘法拟合椭圆

matlab 最小二乘法拟合椭圆在MATLAB中,可以使用最小二乘法对一组数据进行椭圆拟合。
最小二乘法是一种常见的数值拟合方法,通过最小化实际数据点与拟合曲线之间的差异来确定最佳拟合参数。
首先,将椭圆的方程表示为:(x - h)^2 / a^2 + (y - k)^2 / b^2 = 1其中(h, k)是椭圆的中心坐标,a和b是椭圆的半长轴和半短轴长度。
令数据点的坐标为(xi, yi),通过最小化以下误差函数来拟合椭圆:F = sum(((xi - h)^2 / a^2 + (yi - k)^2 / b^2) - 1)^2其中,求和遍历所有数据点。
为了找到最佳的拟合参数h、k、a和b,可以使用MATLAB中的最小二乘法拟合函数如lsqcurvefit。
以下是使用最小二乘法进行椭圆拟合的MATLAB代码示例:```Matlab% 假设有一组包含椭圆上的数据点的二维矩阵data,每行包含一个点的坐标(xi, yi)% 定义误差函数fun = @(params, x) ((x(:, 1) - params(1)).^2 ./ params(3)^2 + (x(:, 2) - params(2)).^2 ./ params(4)^2 - 1).^2;% 初始化参数的初始猜测值params0 = [0, 0, 1, 1];% 使用最小二乘法进行拟合params = lsqcurvefit(fun, params0, data(:, 1), data(:, 2));% 提取拟合的椭圆参数h = params(1); % 中心坐标xk = params(2); % 中心坐标ya = params(3); % 半长轴长度b = params(4); % 半短轴长度% 绘制原始数据点和拟合的椭圆figure;plot(data(:, 1), data(:, 2), 'bo'); % 原始数据点hold on;theta = linspace(0, 2*pi, 100);x = h + a*cos(theta); % x坐标y = k + b*sin(theta); % y坐标plot(x, y, 'r-', 'LineWidth', 2); % 拟合的椭圆axis equal;xlabel('x');ylabel('y');title('椭圆拟合');legend('数据点', '拟合椭圆');```在以上代码中,首先定义了误差函数fun,该函数计算数据点与拟合椭圆之间的差异。
用MatLab画图(最小二乘法做曲线拟合)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 用MatLab画图(最小二乘法做曲线拟合) 用 MatLab 画图(最小二乘法做曲线拟合) 帮朋友利用实验数据画图时,发现 MatLab 的确是画图的好工具,用它画的图比Excel光滑、精确。
利用一组数据要计算出这组数据对应的函数表达式从而得到相应图像,MatLab 的程序如下:x=[1 5 10 20 30 40 60 80] y=[15. 4 33. 9 42. 2 50. 556 62. 7 72 81. 1] plot(x, y, ‘ r*’ ) ; legend(‘ 实验数据(xi, yi) ‘ ) xlabel(‘ x’ ) , ylabel(‘ y’ ) , title(‘ 数据点(xi, yi) 的散点图’ ) syms a1 a2 a3 x=[15 10 20 30 40 60 80]; fi=a1. *x. +a2. *x+a3 y=[15. 4 33.9 42. 2 50. 5 56 62. 7 72 81. 1] fi =[a1+a2+a3,25*a1+5*a2+a2+(400*a1+20*a2+a3-101/2) +(900*a1+30*a2+a3-56) +(1600*a1+40*a2+a3-627/10) +(3600*a1+60*a2+a3-72)+(6400*a1+80*a2+a3-811/10) ; Ja1=diff(J, a1) ;Ja2=diff(J, a2) ; Ja3=diff(J, a3) ; Ja11=simple(Ja1) ,Ja21=simple(Ja2) , Ja31=simple(Ja3) A=[114921252, 1656252, 26052; 1656252, 26052, 492; 26052, 492, 16]; B=[9542429/5, 166129/5, 4138/5]; C=B/A, f=poly2sym(C) xi=[1 5 10 20 3040 60 80] ; y=[15. 4 33. 9 42. 2 50. 5 56 62. 7 72 81. 1]; n=length(xi) ; f=-0. 0086. *xi. +1. 3876. *xi+23. 1078;1 / 6x=1: 1/10: 80; F=-0. 0086. *x. +1. 3876. *x+23. 1078; fy=abs(f-y) ; fy2=fy. ; Ew=max(fy) , E1=sum(fy) /n,E2=sqrt((sum(fy2) ) /n) plot(xi, y, ‘ r*’ ) , hold on, plot(x, F, ‘ b-’ ) , hold off legend(‘ 数据点(xi, yi) ‘ , ‘ 拟合曲线f(x) = -0. 0086x +1. 3876x+23. 1078’ ) , xlabel(‘ x’ ) , ylabel(‘ y’ ) , title(‘ 实验数据点(xi, yi) 及拟合曲线f(x) ‘ ) 下图是程序运行后得到的:Su7Tw8VxaW ybXAcZB d#Cf!Eg%FhGj*Ik(Jl-Kn+M o0Np2Or3Ps4R t6Sv7Tw8VxaWzbXAcZBe#Cf! Eg%Fi Gj*Ik)Jl-Kn+Mo1Np2Or3Qs4Rt6Sv7 Uw8Vx aWzbYAc ZBe#Df!Eg%FiHj*Ik) Jm-Kn +Mo1Nq2Or3Qs 5Rt6Sv7Uw9VxaWzbYAdZBe#D f$Eg%F iHj(I k) Jm-Ln+Mo1Nq2Pr3Qs5Ru6S v7Uw9V yaWzbY AdZCe#Df$Eh%FiHj(Il) Jm-Ln0Mo1Nq2Pr4 Qs5Ru6Tv8Uw9VyaXzbYAdZCe !Df$Eh %GiHj (Il) Km-Ln0Mp1Nq2Pr4Qt5Ru 6Tv8U x9VyaXz cYAdZCe! Dg$Eh%Gi*Hj(Il) Km+Ln0M p1Oq2P r4Qt5Su6Tv8Ux9WyaXzcYBdZ Ce!Dg$Fh%Gi* Hk(Il) Km+Lo0Mp1Oq3Pr4Qt5 Su7Tv8Ux9Wyb XzcYBd#Ce!Dg$FhGi*Hk(Jl ) Km+L o0Np1Oq 3Ps4Rt 5Su7Tw8Ux9WybXAcY Bd#Cf!Dg$FhGj*Hk(Jl-Km+Lo0Np2Oq3Ps4 Rt6Su7Tw8Vx9 WybXAcZBd#Cf!Eg$FhGj*Ik (Jl-Kn +Lo0Np2Or3Ps4Rt6Sv7Tw8VxaWybXA cZBe#Cf!Eg%F hGj*Ik) Jl-K n+Mo0Np2Or3Q s4Rt6Sv 7Uw8V xaWzbXAcZBe# D f! Eg%FiGj* Ik) Jm- Kn+Mo1 Nq2Or3Qs5Rt6Sv7Uw9VxaWzb YAcZBe#Df$Eg %FiHj*Ik)---------------------------------------------------------------最新资料推荐------------------------------------------------------ Jm-Ln+Mo1Nq2Pr 3Qs5Ru 6Sv7Uw 9VyaWzbYAdZBe#Df$Eh%FiH j(Ik) J m-Ln0M o1Nq2Pr4Qs5Ru6Tv7Uw9VyaX zbYAdZC e#Df$ Eh%GiHj(Il) Jm-Ln0Mp1Nq2 Pr4Qt5Ru6Tv8 Uw9VyaXzcYAdZCe!Df$Eh%Gi *Hj(Il) Km+Ln 0Mp1Oq2Pr4Qt5Su6Tv8Ux9Vy aXzcYB dZCe!D g$Eh%Gi*Hk(Il) Km+Lo0Mp1O q3Pr4Qt5Su7Tv8Ux9WyaXzc Y Bd#Ce!Dg$Fh %Gi*Hk( Jl) Km +Lo0Np1Oq3Ps 4 Qt5Su7Tw8Ux 9WybXzcYBd#C f!Dg$FhGi*H k (Jl-Km+Lo0N p2Oq3Ps4Rt5S u7Tw8Vx9WybX AcYBd#Cf! Eg$ FhGj*Ik (Jl- Kn+Lo0Np2Or3 P s4Rt6Su7Tw8 VxaWybXA cZBd #Cf!Eg%FhGj * Ik) Jl-Kn+Mo 0Np2Or3Qs4Rt 6Sv7Tw8VxaWz bXAcZBe#Cf!E g%FiGj*Ik) J m-Kn+Mo1Np2O r 3Qs5Rt6Sv7U w8VxaWzbYAcZ Be#Df! Eg%Fi H j*Ik) Jm-Ln+ Mo1Nq2O r3Qs5 Ru6Sv7Uw9Vxa W zbYAdZBe#Df $Eh%Fi Hj(Ik ) Jm-Ln0Mo1Nq 2Pr3Qs5Ru6Tv 7Uw9Vya WzbYA dZCe#Df$Eh%G iHj(Il) Jm-L n0Mp1Nq2Pr4Q s5Ru6Tv8Uw9V ya XzbYAdZCe! Df$Eh%Gi*Hj( Il) Km-Ln0Mp1 Oq 2Pr4 Qt5Ru6Tv8Ux9Vy aXz cYAdZCe!Dg$E h%G i*Hk(Il) K m+Ln0Mp1O q3P r4Qt5Su6Tv8U x9WyaXzcYBd# Ce!Dg$Fh% Gi* Hk(Jl) Km+Lo0 Mp1Oq3Ps4Qt5 Su7Tv8Ux9Wyb XzcYBd#Cf! Dg $F hGi*Hk(Jl -Km+Lo0N p1Oq 3Ps4Rt5Su7Tw 8U x9WybXAcYB d#Cf!Eg$F hG j*Hk(Jl-Kn+Lo0Np2O q3Ps4Rt 6Su7Tw8Vx9WybXAcZBd#Cf!E g%FhGj*Ik(J l-Kn+Mo0Np2O r3Ps4Rt6Sv7T w8Vxa WzbXAcZ Be#Cf! Eg%Fi Gj*Ik) Jl-Kn+ Mo1Np2Or3Qs4 Rt6Sv7Uw8VxaWzbYAcZBe#Df !Eg%FiHj*Ik )3 / 6Jm-Kn+Mo1Nq2Or3Qs5Rt6Sv 7Uw9Vx aWzbYA dZBe#Df$Eg%FiHj(Ik) Jm-L n+Mo1Nq2Pr3Q s5Ru6Sv7Uw9VyaWzbYAdZCe# Df$Eh %FiHj( Il) Jm-Ln0Mo1Nq2Pr4Qs5Ru6 Tv8Uw9VyaXzb YAdZCe!Df$Eh%GiHj(Il) Km -Ln0Mp 1Nq2Pr 4Qt5Ru6Tv8Ux9VyaXzcYAdZC e!Dg$E h%Gi*H j(Il) Km+Ln0Mp1Oq2Pr4Qt5S u6Tv8U x9WyaX zcYBdZCe! Dg$Fh%Gi*Hk(Il) Km+Lo0Mp1Oq3 Pr4Qt5Su7Tv8Ux9WybXzcYBd #Ce!D g$FhGi *Hk(Jl ) Km+Lo0Np1Oq3Ps4R t5Su7Tw8Ux9T v7Uw9VyaXzbYAdZCe#Df$Eh% GiHj( Il) Jm- Ln0Mp1Nq2Pr4Qs5Ru6Tv8Uw9 VyaXzcY AdZCe !Df$Eh%Gi*Hj(Il) Km-Ln0Mp 1Oq2Pr 4Qt5Ru 6Tv8Ux9VyaXzcYBdZCe! Dg$E h%Gi*Hk(Il) K m+Ln0Mp1Oq3Pr4Qt5Su6Tv8U x9WyaX zcYBd# Ce!Dg$Fh%Gi*Hk(Jl) Km+Lo0 Mp1Oq3P s4Qt5 Su7Tw8Ux9Wyb X zcYBd#Cf!Dg $FhGi*Hk(Jl -Km+Lo0Np1Oq3Ps4Rt5Su7Tw 8Vx9Wy bXAcYB d#Cf! Eg$FhGj*Hk(Jl-Kn+L o0Np2O q3Ps4R t6Su7Tw8VxaWybXAcZBd#Cf! Eg%Fh Gj*Ik( Jl-Kn+Mo0Np2Or3Ps4Rt6Sv7 Tw8Vxa WzbXAc ZBe#Cf!Eg%FiGj*Ik) Jl-Kn +Mo1Np2Or3Qs 5Rt6Sv7Uw8Vx a WzbYAcZBe#D f! Eg%FiHj*Ik) Jm-Kn+Mo1 Nq 2Or3Qs5Ru6 Sv7Uw9Vx aWzb YAdZBe#Df$Eg %F iHj(Ik) Jm -Ln+Mo1N q2Pr 3Qs5Ru6Tv7Uw 9VyaWzbYAdZC e#Df$Eh%FiH j(Il) Jm-Ln0M o1Nq2Pr4Qs5R u6Tv8Uw9VyaX zbYAdZCe! Df$ E h%GiHj(Il) Km-Ln0Mp 1Oq2 Pr4Qt5Ru6Tv8 U x9VyaXzcYAd ZCe!Dg$E h%Gi *Hj(Il) Km+Ln 0Mp1Oq3Pr4Qt 5Su6Tv8Ux9Wy aXzcYBdZCe!D g $Fh%Gi*Hk(I l)---------------------------------------------------------------最新资料推荐------------------------------------------------------ Km+Lo0Mp1O q3Ps4Qt5Su7T v 8Ux9WybXzcY Bd#Ce! D g$Fh Gi*Hk(Jl) Km+ L o0Np1Oq3Ps4 Rt5Su7T w8Ux9 WybXAcYBd#Cf !Dg$FhGj*Hk (Jl-Km+ Lo0Np 2Oq3Ps4Rt6Su 7Tw8Vx9WybXA cZBd#Cf ! Eg$F hGj*Ik(Jl-K n+Mo0Np2Or3P s4Rt6Sv 7Tw8V xaWybXAcZBe# C f!Eg% FhGj*Ik) Jl-K n+Mo 1Np2Or3Qs4Rt 6Sv 7Uw8VxaWz bXAcZBe#D f!E g%FiGj*Ik) J m- Kn+Mo1Nq2O r3Qs5Rt6Sv7U w9VxaWzbYAcZ Be#Df$Eg%Fi Hj*Ik) Jm-Ln+ Mo1Nq2Pr3Qs5 Ru6Sv7Uw9Vya WzbYAdZBe#Df $Eh%FiHj(Il ) Jm -Ln0Mo1Nq 2Pr4Qs5Ru 6Tv 7Uw9VyaXzbYA dZCe#Df$Bd#C f! Eg%FhGj*I k(Jl-Kn+Mo0Np2O r3Qs4Rt 6Sv7Tw8VxaWzbXAcZBe#Cf!E g%FiGj*Ik) J l-Kn+Mo1Np2O r3Qs5Rt6Sv7U w8Vxa WzbYAcZ Be#Df! Eg%Fi Hj*Ik) Jm-Kn+ Mo1Nq2Or3Qs5 Ru6Sv7Uw9VxaWzbYAdZBe#Df $Eg%FiHj(Ik ) Jm-Ln0Mo1Nq2Pr3Qs5Ru6Tv 7Uw9Vy aWzbYA dZCe#Df$Eh%FiHj(Il) Jm-L n0Mp1Nq2Pr4Q s5Ru6Tv8Uw9VyaXzbYAdZCe! Df$Eh %GiHj( Il) Km-Ln0Mp1Oq2Pr4Qt5Ru6 Tv8Ux9VyaXzc YAdZCe!Dg$Eh%Gi*Hj(Il) Km +Ln0Mp 1Oq3Pr 4Qt5Su6Tv8Ux9WyaXzcYBdZC e!Dg$F h%Gi*H k(Jl) Km+Lo0Mp1Oq3Ps4Qt5S u7Ts5R u6Sv7U w9VyaWzbYAdZBe#Df$Eh%Fi Hj(Ik)Jm-Ln0 Mo1Nq2Pr4Qs5Ru6Tv7Uw9Vya XzbYA dZCe#Df $Eh%Gi Hj(Il) Jm-Ln0Mp1N q2Pr4Qt5Ru6T v8Uw9VyaXzcYAdZCe!Df$Eh% Gi*Hj( Il) Km- Ln0Mp1Oq2Pr4Qt5Su6Tv8Ux9 VyaXzcY BdZCe !Dg$Eh%Gi*Hk(Il) Km+Ln0Mp 1Oq3Pr4Qt5Su5 / 67Tv8Ux9WyaXzcYBd#Ce! Dg$F h%Gi*Hk (Jl) K m+Lo0Np1Oq3Ps4Qt5Su7Tw8U x9WybX zcYBd# Cf!Dg$FhGi*Hk(Jl-Km+Lo0 Np2Oq3Ps4Rt5 Su7Tw8Vx9WybXAcYBd#Cf!Eg $FhGj*Hk(Jl -Kn+Lo0Np2Or3Ps4Rt6Su7Tw 8VxaWy bXAcZB d#Cf! Eg%FhG j*Ik(Jl-Kn+M o0Np2O r3Qs4R t6Sr4Qt5Su6Tv8Ux9WyaXzcY BdZCe!Dg$Fh% Gi*Hk(Il) Km+Lo0Mp1Oq3Pr4 Qt5Su7Tv8Ux9 WybXzcYBd#Ce! Dg$FhGi*Hk (Jl) Km +Lo0Np 1Oq3Ps4Rt5Su7Tw8Ux9WybXA cYBd#Cf!Dg$FhGj*Hk(Jl- K m+Lo0Np2Oq3 Ps4Rt6Su7Tw8 Vx9WybXAcZBd # Cf!Eg$FhGj *Ik(Jl- Kn+Lo 0Np2Or3Ps4Rt 6Sv7Tw8VxaWy bXAcZBe#Cf!E g%FhGj*Ik) J l-Kn+Mo0Np2O r3Qs4Rt6Sv7U w8VxaWzbXAcZ B e#Df!Eg%Fi Gj*Ik) J m-Kn+ Mo1Nq2Or3Qs5 R t6Sv7Uw9Vxa WzbYAcZB e#Df $Eg%Ff! Dg$Fh Gi*Hk(Jl-Km +Lo0Np1Oq3Ps 4Rt5Su7Tw8Vx 9W ybXAcYBd#C f!Eg$Fh Gj*H k(Jl-Kn+Lo0N p2Oq3Ps4Rt6S u7Tw8Vxa WybX AcZBd#Cf!Eg% F hGj*Ik(Jl- Kn+Mo0N p2Or3 Ps4Rt6Sv7Tw8 V xaWzbXAcZBe #Cf!Eg% FiGj *Ik) Jl-Kn+Mo 1Np2Or3Qs5Rt 6Sv7Uw8V xaWz bYAcZBe#Df!E g%FiHj*Ik) J m-Kn+Mo1Nq2O r3Qs5Ru6Sv7U w9VxaW zbYAdZBe#Df$Eg %Fi Hj(Ik) Jm-Ln +M o1Nq2Pr3Qs 5Ru6Tv7U w9Vy aWzbYAdZCe#D f$Eh%FiHj(I l) Jm-Ln0Mo1N q2Pr4Qs5Or3P s4Rt6Su7Tw8V xaWybXAcZ Be# Cf! Eg%FhGj* I。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。