损伤识别的方法

损伤识别的方法
损伤识别的方法

Wavelet packet based damage identi?cation of beam structures

Jian-Gang Han a ,Wei-Xin Ren

a,b,*

,Zeng-Shou Sun

a

a

Department of Civil Engineering,Fuzhou University,Fuzhou,Fujian 350002,People ?s Republic of China

b

Department of Civil Engineering,Central South University,Changsha,Hunan 410075,People ?s Republic of China

Received 1August 2004;received in revised form 6April 2005

Available online 8June 2005

Abstract

Most of vibration-based damage detection methods require the modal properties that are obtained from measured sig-nals through the system identi?cation techniques.However,the modal properties such as natural frequencies and mode shapes are not such a good sensitive indication of structural damage.The wavelet packet transform (WPT)is a mathemat-ical tool that has a special advantage over the traditional Fourier transform in analyzing non-stationary signals.It adopts redundant basis functions and hence can provide an arbitrary time-frequency resolution.In this study,a damage detection index called wavelet packet energy rate index (WPERI),is proposed for the damage detection of beam structures.The mea-sured dynamic signals are decomposed into the wavelet packet components and the wavelet energy rate index is computed to indicate the structural damage.The proposed damage identi?cation method is ?rstly illustrated with a simulated simply supported beam and the identi?ed damage is satisfactory with assumed damage.Afterward,the method is applied to the tested steel beams with three damage scenarios in the laboratory.Despite the noise is present for real measurement data,the identi?ed damage pattern is comparable with the tests.Both simulated and experimental studies demonstrated that the WPT-based energy rate index is a good candidate index that is sensitive to structural local damage.ó2005Elsevier Ltd.All rights reserved.

Keywords:Damage detection;Wavelet packet transform;Energy rate index;Beam;Dynamic measurement;Signal process

1.Introduction

During the service of beam structures such as large-scale frames,long-span bridges and high-rise build-ings,local damage of their key positions may continually accumulate,and ?nally results in sudden failure of

0020-7683/$-see front matter ó2005Elsevier Ltd.All rights reserved.doi:10.1016/j.ijsolstr.2005.04.031

*

Corresponding author.Address:Department of Civil Engineering,Fuzhou University,523Gongye Road,Fujian Province,Fuzhou 350002,China.Tel.:+8659187892454;fax:+8659183737442.E-mail address:ren@https://www.360docs.net/doc/c110442831.html, (W.-X.Ren).URL:https://www.360docs.net/doc/c110442831.html, (W.-X.

Ren).International Journal of Solids and Structures 42(2005)

6610–6627

https://www.360docs.net/doc/c110442831.html,/locate/ijsolstr

J.-G.Han et al./International Journal of Solids and Structures42(2005)6610–66276611 structures.One damage identi?cation classi?cation system commonly de?nes four levels of damage assess-ment(Doebling et al.,1998):(1)the presence of damage;(2)the location of the damage;(3)quanti?cation of the severity of the damage;and(4)prediction of the remaining serviceability of the structure.Basically, damage identi?cation techniques can be classi?ed into either local or global methods.Most currently used techniques,such as visual,acoustic,magnetic?eld,eddy current,etc.,are e?ective yet local in nature.They require that the vicinity of the damage is known a priori and the portion of the structure being inspected is readily assessable.The global damage identi?cation methods,on the other hand,quantity the healthiness of a structure by examining changes in its global structural characteristics.It is believed that these two meth-ods should be used in a complementary way to e?ectively and correctly assess the condition of the health of a complicated structure.

One core issue of the global vibration-based damage assessment methods is to seek some damage indices that are sensitive to structural damage(Ren and De Roeck,2002a,b).The damage indices that have been demonstrated with various degrees of success include natural frequencies,mode shapes,mode shape curva-tures,modal?exibility,modal strain energy,etc.Doebling et al.(1998)and Farrar et al.(1999)summarized the comprehensive historic development of damage assessment methodologies based on these indices as well as pointed out their applicability and limitations.Most of vibration-based damage assessment methods re-quire the modal properties that are obtained from the measured signals through the system identi?cation techniques such as the Fourier transform(FT).The structural damage is typically a local phenomenon, which tends to be captured by higher frequency signals.The Fourier analysis transforms the signal from a time-based or space-based domain to a frequency-based one.Unfortunately,the time or space information may be lost during performing such a transform and it is sometimes impossible to determine when or where a particular event took place.To correct this de?ciency,the short-time Fourier transform(STFT)was pro-posed by Gabor(1946).This windowing technique analyzes only a small section of the signal at a time. The STFT maps a signal into a2-D function of time or space and frequency.The transformation has the disadvantage that the information about time or space and frequency can be obtained with a limited preci-sion that is determined by the size of the window.A higher resolution in time or space and frequency domain cannot be achieved simultaneously since once the window size is chosen,it is the same for all frequencies.

The wavelet transform(WT)is precisely a new way to analyze the signals,which overcomes the problems that other signal processing techniques exhibit.Wavelet functions are composed of a family of basis func-tions that are capable of describing a signal in a localized time(or space)and frequency(or scale)domain (Daubechies,1992).The main advantage gained by using wavelets is the ability to perform local analysis of a signal,i.e.,zooming on any interval of time or space.Wavelet analysis is thus capable of revealing some hidden aspects of the data that other signal analysis techniques fail to detect.This property is particularly important for damage detection applications.Many investigators(Wang and McFadden,1996;Kitada, 1998;Gurley and Kareem,1999;Wang and Deng,1999;Hou et al.,2000;Ovanesova and Suarez,2003) presented applications of wavelet transform to detect cracks in frame structures.One possible drawback of the WT is that the frequency resolution is quite poor in the higher frequency region.Hence,it still faces the di?culties when discriminating the signals containing close high frequency components.

The wavelet packet transform(WPT)is an extension of the WT,which provides a complete level-by-level decomposition of signal(Mallat,1989).The wavelet packets are alternative bases formed by the linear com-binations of the usual wavelet functions(Coifman and Wickerhauser,1992).Therefore,the WPT enables the extraction of features from the signals that combine the stationary and non-stationary characteristics withan arbitrary time-frequency resolution.Sun and Chang(2002)developed a WPT-based component energy technique for analyzing structural damage.The component energies were?rstly calculated and then they were used as inputs into the neural network(NN)models for damage assessment.

In this paper,a WPT-based method is proposed for the damage detection of beam structures.Dynamic signals measured from structures are?rst decomposed into the wavelet packet components.The wavelet energy rate index is proposed,which is then used to locate damage.Both simulated and tested beams with

di?erent damage scenarios are used as the case studies to validate the applicability of proposed damage identi?cation procedure.The results demonstrated that the WPT-based energy index is a good candidate index that is sensitive to structural local damage.

2.Theoretical background

Wavelet packets consist of a set of linearly combined usual wavelet functions.The wavelet packets in-herit the properties such as orthonormality and time-frequency localization from their corresponding wave-

let functions.A wavelet packet w i

j;k etTis a function with three indices where integers i,j and k are the

modulation,scale and translation parameters,respectively,

w i

j;k

etT?2j=2w je2j tàkT;i?1;2;3; (1)

The wavelet functions w i can be obtained from the following recursive relationships:

w2jetT?

???

2

p X1

k?à1

hekTw ie2tàkT;e2T

w2jt1etT?

???

2

p X1

k?à1

gekTw ie2tàkT.e3T

The?rst wavelet is so-called a mother wavelet function as follows:

w1etT?wetT.e4TThe discrete?lters h(k)and g(k)are the quadrature mirror?lters associated with the scaling function and the mother wavelet function.There are quite a few mother wavelets reported in the literature.Most of these mother wavelets are developed to satisfy some key properties such as the invertibility and orthogonality. Daubechies(1992)developed a family of mother wavelets based on the solution of a dilation equation. One of these wavelet functions,DB5,is adopted in this study.

The WT consists of one high frequency term from each level and one low-frequency residual from the last level of decomposition.The WPT,on the other hand,contains a complete decomposition at every level and hence can achieve a higher resolution in the high frequency region.The recursive relations between the j thand th e(j+1)thlevel components are

f i j etT?f2ià1

jt1

etTtf2i

jt1

etT;e5T

f2ià1 jt1etT?Hf i

j

etT;e6T

f2i jt1etT?Gf i

j

etT;e7T

where H and G are the?ltering-decimation operators related to the discrete?lters h(k)and g(k)in sucha way

H fág?

X1

k?à1

hekà2tT;e8T

G fág?

X1

k?à1

gekà2tT.e9TAfter j level of decomposition,the original signal f(t)can be expressed as

fetT?

X2j

i?1f i

j

etT.e10T

6612J.-G.Han et al./International Journal of Solids and Structures42(2005)6610–6627

The wavelet packet component signal f i

j etTcan be represented by a linear combination of wavelet packet

functions w i

j;k

etTas follows:

f i j etT?

X1

k?à1

c i

j;k

etTw i

j;k

etT;e11T

where the wavelet packet coe?cients c i

j;k

etTcan be obtained from

c i j;k etT?

Z1

à1

fetTw i

j;k

etTd t;e12T

J.-G.Han et al./International Journal of Solids and Structures42(2005)6610–66276613

providing that the wavelet packet functions are orthogonal

w m j ;k et Tw n

j ;k et T?0

if m ?n .e13T

Each component in the WPT tree can be viewed as the output of a ?lter tuned to a particular basis func-tion,thus the whole tree can be regarded as a ?lter bank.At the top of WPT tree (lower level),the WPT yields a good resolution in the time domain but a poor resolution in the frequency domain.At the bottom of WPT tree (higher level),the WPT results in a good resolution in the frequency domain yet a poor res-olution in the time domain.

To illustrate the WPT,the following example is given:

f et T?sin e2p t Ttsin e4p t Ttsin e10p t Te06t 610s T;

sin e1.998p t Ttsin e4p t Ttsin e10p t Te10

e14T

This harmonic function as shown in Fig.1(a)basically contains three frequencies:1.0,2.0,and 5.0Hz up to 10s.After 10s,1.0Hz frequency is suddenly reduced to 0.999Hz.Fig.1(b)shows the FT results for the ?rst 10s and the last 10s.As expected,the small perturbation of the 1.0Hz frequency is not visible from the spectral density function by the FT.However,this small change in frequency can be detected by the WPT.Fig.2shows the eight wavelet packet component signals after three levels of wavelet packet decomposition.It can be seen that the suddenly shift at 10s is quit visible in most of the wavelet component

signals.

Fig.2.Signal components of third level wavelet packet transform (WPT).

6614J.-G.Han et al./International Journal of Solids and Structures 42(2005)6610–6627

3.Wavelet packet energy rate index

Yen and Lin(2000)investigated the feasibility of applying the WPT to the vibration signals.They de-?ned a wavelet packet node energy index and concluded that the node energy representation could provide a more robust signal feature for classi?cation than using the wavelet packet coe?cients directly.Sun and Chang(2002)proposed a wavelet packet component energy index which was then used as inputs of neural network models for damage assessment.The numerical simulations were performed using a three-span con-tinuous bridge under impact excitation.Various levels of damage assessment including the occurrence, location,and severity of the damage were studied.In this study,the wavelet packet energy index is pro-posed to identify the locations and severity of damage.To do that,the signal energy E f at j level is?rst de?ned as

E f

j ?

Z1

à1

f2etTd t?

X2j

m?1

X2j

n?1

Z1

à1

f m

j

etTf n

j

etTd t.e15T

Substituting Eq.(11)into Eq.(15)and using the orthogonal condition Eq.(13)yields

E f

j ?

X2j

i?1

E f i

j

;e16T

where the wavelet packet component energy E f i

j can be considered to be the energy stored in the component

signal f i

j

etT,

E f i

j ?

Z1

à1

f i

j

etT2d t.e17T

It can be seen that the component signal f i

j etTis a superposition of wavelet functions w i

j;k

etTof the same

scale as j but translated into the time domain(à1

j is

the energy stored in a frequency band determined by the wavelet functions w i

j;k etT.Physically,Eq.(16)illus-

trates that the total signal energy can be decomposed into a summation of wavelet packet component ener-gies that correspond to di?erent frequency bands.

The component energies for the third level WPT before(denoted E a)and after(denoted E b)the fre-quency shift for the harmonic function Eq.(14)are listed in Table1.Duration of4s is used for computing E a within an interval of2–6s and E b within a interval of14–18s,respectively.For comparison,the third level WT component energies and their changes are also calculated.It is demonstrated that both WT com-ponent energies and WPT component energies are not sensitive to the shift at this level of decomposition.

In fact,the signal energy is mainly contributed by the?rst(f1

3)and the second(f2

3

)components.These

two component energies are nearly close to the original signal energy.To further illustrate,the WT com-ponent energies and the?rst20WPT component energies of the?fth level decomposition are listed in Table 2.It can be observed that the component energies for the?rst two WT components are more sensitive to the original signal energy.The WPT component energies are even more sensitive than those of WT.Also it can be seen that those small-value component energies are more sensitive than the characteristics change,e.g.,

the energy change for f4

5and f5

5

are115.8%and99.74%,respectively.Ideally,these sensitive component

energies are good candidate indices that can reveal the signal characteristics.So the wavelet packet energy rate index(WPERI)is proposed to indicate the structural damage.The rate of signal wavelet packet energy DeE f

j

Tat j level is de?ned as

DeE f

j T?

X2j

i?1

eE f i

j

T

b

àeE f i

j

T

a

eE f i

j

T

a

;e18TJ.-G.Han et al./International Journal of Solids and Structures42(2005)6610–66276615

Table2

Component energies for the?fth level wavelet transform(WT)and wavelet packet transform(WPT)(?rst20terms)before(E a)and after(E b)shift in frequency of the harmonic function

E a(2–6s)E b(14–18s)Change(%)

WT f(t) 6.0 6.00870.15

f a 5etT 2.0782 2.1887 5.3153

f d 5etT 1.7523 1.88147.3677

f d 4etT 1.7419 1.74190.00

f d 3etT0.328350.328350.00

f d 2etT0.00143820.00143820.00

f d

1

etT 2.0371eà006 2.0371eà0060.00 WPT f(t) 6.0 6.00870.15

f1 5etT 2.0782 2.1887 5.3153

f2 5etT 1.7523 1.88147.3677

f3 5etT 1.5656 1.2371à20.982

f4 5etT0.21570.46548115.8

f5 5etT0.000141720.0002830799.737

f6 5etT0.000287460.00011594à59.668

f7 5etT0.286120.26205à8.4136

f8 5etT0.0519490.0557577.3296

f9 5etT8.2926eà007 6.5244eà007à21.322

f10 5etT 2.4007eà007 4.4744eà00786.377

f11 5etT0.0010650.00094255à11.494

f12 5etT0.000184290.0002101214.012

f13 5etT 1.4228eà007 1.4148eà007à0.5645

f14 5etT 2.8154eà008 2.7629eà008à1.865

f15 5etT0.000210950.00018344à13.042

f16 5etT 3.6043eà005 4.1441eà00514.977

f17 5etT 1.1175eà0099.657eà010à13.587

f18 5etT 1.7835eà010 6.4183eà010259.87

f19 5etT 1.4005eà006 1.4412eà006 2.9029

f20 5etT 2.8151eà007 2.7678eà007à1.6787

Table1

Component energies for the third level wavelet transform(WT)and wavelet packet transform(WPT)before(E a)and after(E b)shift in frequency of the harmonic function

E a(2–6s)E b(14–18s)Change(%)

WT f(t) 6.0 6.00870.15

f a 3etT 5.6702 5.67900.16

f d 3etT0.32840.32840.00

f d 2etT0.00140.00140.00

f d

1

etT 2.0371eà6 2.0371eà60.00 WPT f(t) 6.0 6.00870.15

f1 3etT 5.6702 5.67900.16

f2 3etT0.32840.32840.00

f3 3etT0.00120.00120.00

f4 3etT0.00020.00020.00

f5 3etT 1.7014eà6 1.7014eà60.00

f6 3etT 3.3422eà7 3.3422eà70.00

f7 3etT 1.224eà9 1.224eà90.00

f8 3etT 2.4046eà10 2.4046eà100.00

6616J.-G.Han et al./International Journal of Solids and Structures42(2005)6610–6627

whereeE f i

j T

a

is the component signal energy E f i

j

at j level without damage,andeE f i

j

T

b

is the component sig-

nal energy E f i

j with some damage.It is postulated that structural damage would a?ect the wavelet packet

component energies and subsequently alter this damage indicator.It is desirable to select the WPERI that is sensitive to the changes in the signal characteristics.

4.Damage identi?cation procedures

A damage identi?cation procedure based on the proposed WPERI is described here.Two assumptions are adopted in this study:(1)the reliable undamaged and damaged structural models are available;(2)the structure is excited by the same impulse load and acts at the same location.Vibration signals measured from the structure by sensors are?rst processed using the WPT.The level of wavelet packet decomposition is determined through a trial and error sensitivity analysis using the undamaged and damaged structural models.Then the wavelet packet energy rates of signals are calculated.

It is proposed to establish threshold values for the damage indicators based on the statistical process control(SPC)method(Ben?ey,1993;Montgomery,1996).For structural health monitoring applications, Sohn et al.(2000)indicated that an X-bar control chart can provide a statistical framework for monitoring future measurements and for identifying abnormality in the new data.The core of the technique is in estab-lishing the lower and upper control limits(LCL and UCL)that can enclose the variation of the extracted damage indicators due to measurement noise witha large probability.Hence,any damage indicator th at falls outside of the enclosure signi?es the change of the structural condition with high probability.Sun and Chang(2004)proposed two damage indicators for the purpose of structural health monitoring,which were then formulated to lump the discriminated information from the extracted wavelet packet signature. The thresholds for damage alarming were established using the statistical properties and the one-side con-?dence limit of the damage indicators from successive measurements.

If n stands for the total number of all sensors distributing in structure,a total of n WPERIs can be ob-tained after performing the wavelet packet decomposition.When the mean values and the standard devi-ations of these WPERIs are expressed as l WPERI and r WPERI,the one-side(1àa)upper con?dence limit for the WPERI can be obtained from(Ang and Tang,1975)

UL a

WPERI ?l WPERItZ a

r WPERI

???n p

;e19T

where Z a is the value of a standard normal distribution with zero mean and unit variance such that the cumulative probability is100(1àa)%.This limit can be considered as a threshold value for alarming of possible abnormality in the damage indicator WPERI.One special advantage of this damage identi?cation is that the setting of the threshold value is based on the statistical properties of the damage indicator mea-sured with sensors.Any indicator that exceeds the threshold would cause damage alarming.So even when the multiple damage occurs,the proposed method can still work well.The location of sensors whose WPERI values exceed the threshold will indicate where possible damage occurs.

5.Simulated beams

To validate the applicability of the proposed wavelet packet based damage identi?cation method,the simulated simply supported beams without damage and with several assumed damage elements are consid-ered.The beam of6m length is discretized with30elements as shown in Fig.3.The mass density and mod-ulus of elasticity of material of beam are2500kg/m3and3.2·104MPa,respectively,while the area and J.-G.Han et al./International Journal of Solids and Structures42(2005)6610–66276617

6618J.-G.Han et al./International Journal of Solids and Structures42(2005)6610–6627

inertia moment of the cross section of simulated beam are0.05m2and1.66·10à4m4,respectively.To emulate a practical impulse load,the force–time history as shown in Fig.4is applied at the distance 0.3m from the left support of the beam.The node displacement responses of the beams under the impulse load are obtained by the?nite element analysis package(ANSYSò,1999)at a sampling frequency of 1000Hz.Those displacement responses are regarded as the measured dynamic signals.

To simulate damage,four damage scenarios withdi?erent levels of severity and location are conceived. The damage severities are implemented by reducing the sti?ness of speci?c elements.The reason to adopt this type of damage is that the damage could be easily emulated and quanti?ed.The undamaged beam is denoted by D0as a reference.The other four di?erent damage scenarios,denoted as D1–D4,are described as follows:(1)D1:sti?ness reduced10%in th e15thand16thelements;(2)D2:sti?ness reduced20%in th e 15thand16thelements;(3)D3:sti?ness reduced10%in th e8th,9th,15thand16thelements;(4)D4:sti?-ness reduced20%in the8th,9th,15th and16th elements.

A typical displacement response and its Fourier spectral density for the undamaged beam D0are shown in Fig.5,respectively.It can be shown that the node displacement responses generated by the impulse load are quite small.The?rst two natural frequencies below200Hz of the undamaged beam are found to be 35.989and143.18Hz by the Fourier spectra.The?rst two natural frequencies for other four damage cases can also be found from their corresponding Fourier spectral density functions.These frequencies are list in Table3.It is demonstrated that the damage results in the reduction of the beam natural frequencies.How-ever,the changes of both frequencies for all damaged cases are less than1.5%compared to those of undam-aged case D0.Such a small change in natural frequencies indicates that the frequency index is not sensitive to the local structural damage.

The displacement responses of all damaged beams at the same node(node10)are shown in Fig.6.It can be observed that damage cannot been seen from the time history responses.As illustrated in the above example of the three-component harmonic function,a su?ciently high level of decomposition is required to obtain the sensitive component energies.For the simulated beams,the decomposition level is set to be4where a total of16component energies are generated.In order to study the e?ect of decomposition

J.-G.Han et al./International Journal of Solids and Structures42(2005)6610–66276619

Table3

First two natural frequencies(Hz)for di?erent damage scenarios

D0D1D2D3D4

First mode35.98935.72635.40635.58335.094 Second mode143.18143.16143.14142.15140.90

level,the decomposition level is also set to be 5where a total of 32component energies are generated.It is found that both results seem very similar,which indicates that 4decomposition level is enough.After decomposing the signals,the wavelet packet energy rate indices D eE f j Tof eachnode are calculated using Eq.(18).

There are 29WPERI D eE f j Tvalues calculated for anyone damaged beam.The statistical analysis is then implemented within those 29WPERI values.The mean value l WPERI and the standard deviation r WPERI can be calculated.Assuming that a =0.02,the one sided 98%con?dence upper limit UL a WPERI for the WPERI can be obtained from Eq.(19).For every damaged beam,the histogram can be drawn when the UL a WPERI value is subtracted from the WPERI values.The damage location can be intuitively shown in histograms.Those histograms of four damaged beams are shown in Fig.7.In Fig.7(a),for instance,it can be seen that the wavelet packet energy rate indices appeared between nodes 14,15and 16,which

6620

J.-G.Han et al./International Journal of Solids and Structures 42(2005)6610–6627

J.-G.Han et al./International Journal of Solids and Structures42(2005)6610–66276621

are exactly the damage locations of bean D1.In Fig.7(c),it can be observed that the wavelet packet energy rate indices appeared between nodes7,8,9,14,15and16,which are identical to the damage location of beam D3.It is demonstrated that the locations of four damaged beams can be correctly identi?ed.

Unfortunately,the damage severity cannot be identi?ed quanti?cationally.However,for the same dam-age locations but di?erent levels of damage compared with Fig.7(a)and(b)or(c)and(d),the amplitude levels in the histograms are higher for the cases of more severe damage,which can represent the damage severity to some extent.

6.Tested beams in laboratory

To make the damage identi?cation practical,the proposed damage identi?cation procedure should be veri?ed not only withth e simulated data,but also withreal measurement data from dynamic tests on the structures where the noise and measurement errors are present.The damage indices in most of

modal-based dynamic identi?cation techniques are sensitive to noise and measurement errors,which is the main di?culty for practical applications.

Four I -section steel beams withspan lengthof 3m,as sh own in Fig.8,are used to illustrate the proposed damage assessment index.Beam0is an undamaged beam used as the reference.Beam1is a one-damage sce-nario damaged at the middle of beam.Beam2is a two-damage scenario where there are two damage loca-tions.Beam3is a three-damage scenario where there are three damage locations.All beams are dismembered 27segments as shown in Fig.8(b).The properties of the beams are as follows:mass density q =7117kg/m 3,elastic modulus E =210GN/m 2,cross section area A =14.33cm 2,and the inertia moment of cross section I x =245cm 4,I y =32.8cm 4.

Dynamic tests and measurements have been carried out on all the beams in the laboratory as shown in Fig.9.The excitation is provided by an impact hammer applied at the center between 1and 2nodes.Twenty-six measurement locations as shown in Fig.8(b)were measured by 3setups.The force-balance accelerometers are used to measure the dynamic responses.The sampling frequency for all signals is 3000Hz.The acceleration responses of all four beams at the same node (node 10)were shown in Fig.10.It is observed that damage cannot been seen from the time history

responses.

Fig.8.Tested beams.(a)Cross section of tested beams.(b)Dimension and damage locations of tested beams.

6622J.-G.Han et al./International Journal of Solids and Structures 42(2005)6610–6627

As illustrated in simulated example,for the tested beams,the decomposition level is chosen to be 5where a total of 32component energies are generated.After decomposing the signals,the WPERIs D eE f j Tof every node are calculated using Eq.(18).These WPERIs D eE f j Tare shown in Fig.11for all damaged beams.Similarly,assuming a =0.02,the one sided 98%con?dence upper limit UL a WPERI for the WPERIs can be calculated from Eq.(19).For every damaged beam,the histogram can be drawn when the UL a WPERI value is subtracted from the WPERI values.The histograms of three damaged beams are shown in Fig.12.The damage location can be seen very clearly in these histograms.In the case of Beam1in Fig.12,for instance,it is clearly shown that (WPERI-UL a WPERI )reaches the extreme in the loca-tion between nodes 13and 14,which is exactly the damage location of Beam1.All results have demon-strated that the locations of three damaged beams can be identi?ed from the real acceleration

measurements.

Fig.9.Beam dynamic measurements in the

laboratory.

Fig.10.Time-history signals recorded by the accelerometers.

J.-G.Han et al./International Journal of Solids and Structures 42(2005)6610–66276623

6624J.-G.Han et al./International Journal of Solids and Structures42(2005)6610–6627

J.-G.Han et al./International Journal of Solids and Structures42(2005)6610–66276625

6626J.-G.Han et al./International Journal of Solids and Structures42(2005)6610–6627

7.Concluding remarks

Wavelet transformation has emerged recently as a powerful mathematical tool for capturing change of structural characteristic induced by damage.Based on the analysis results of the simulated and tested beams,it is demonstrated that the proposed WPT-based energy rate index is a good candidate index that is sensitive to structural local damage.The tested beam veri?cation through the real measurement data is of particular interest since noise or measurement errors are present in the signals and huge data are involved, which makes the proposed damage identi?cation procedure practical.With regard to selecting the decom-position level,the lower decomposition level which can correctly identify the damage location is important since the lower decomposition level will reduce the computation e?orts.

From the viewpoint of implementation,the proposed damage identi?cation procedure requires three steps of computation:(1)wavelet packet decomposition;(2)wavelet packet energy rate calculation;and (3)damage location identi?cation.These calculations are rather straightforward and not time-consuming, hence on-line implementation is possible if the reference information is available.

Although the proposed damage identi?cation methodology has shown great potential in simulated and the laboratory tested beams,an important limitation of current method is that a reliable reference struc-tural model for healthy(undamaged)conditions is required.As a signal based damage detection technique, the algorithm can detect damage when a sensor is placed at a damaged location.Further work is needed to make it applicable to large structural system where such circumstances are not possible.There are still some practical aspects that should be studied so that the wavelet packet based damage identi?cation method can be applied to real structures.

Acknowledgement

The second author greatly acknowledges the?nancial fund supported by Program for New Century Excellent Talents(NCET)in University,Ministry of Education,People?s Republic of China. References

Ang,A.H.S.,Tang,W.H.,1975.Probability Concepts in Engineering Planning and Design,vol.I.John Wiley&Sons,Inc.,New York. ANSYSò,https://www.360docs.net/doc/c110442831.html,er?s manual,revision5.6.Swanson Analysis System,USA.

Ben?ey,J.P.,1993.An Introduction to Reliability and Quality Engineering.Longman Scienti?c&Technical,Longman Group UK Limited,London.

Coifman,R.R.,Wickerhauser,M.V.,1992.Entropy-based algorithms for best basis selection.IEEE Transactions of Information Theory38,713–718.

Daubechies,I.,1992.Ten Lectures on Wavelets.CBMS-NSF Regional Conference Series in Applied Mathematics.Dept.of Mathematics,Univ.of Lowell,MA,Society for Industrial and Applied Mathematics,Philadelphia.

Doebling,S.W.,Farrar,C.R.,Prime,M.B.,1998.A summary review of vibration-based damage identi?cation methods.Shock and Vibration Digest30(2),91–105.

Farrar,C.R.,Doebling,S.W.,Du?ey,T.A.,1999.Vibration-based damage detection.In:SD2000,Struct.Dyn.Forum.

Gabor,D.,1946.Theory of communication.IEEE Journal21,149–157.

Gurley,K.,Kareem,A.,1999.Application of wavelet transform in earthquake,wind and ocean engineering.Engineering Structures 21,149–167.

Hou,Z.,Noori,M.,St.Amand,R.,2000.Wavelet-based approachfor structural damage detection.Journal of Structural Engineering, ASCE12(7),677–683.

Kitada,Y.,1998.Identi?cation of nonlinear structural dynamic systems using wavelets.Journal of Engineering Mechanics,ASCE124

(10),1059–1066.

Mallat,S.,1989.A theory for multiresolution signal decomposition:The wavelet representation.IEEE Transactions on Pattern Analysis and Machine Intelligence11,674–693.

J.-G.Han et al./International Journal of Solids and Structures42(2005)6610–66276627 Montgomery,D.C.,1996.Introduction to Statistical Quality Control,third ed.Wiley,New York.

Ovanesova,A.V.,Suarez,L.E.,2003.Application of wavelet transforms to damage detection in frame structures.Engineering Structures26,39–49.

Ren,W.X.,De Roeck,G..,2002a.Structural damage identi?cation using modal data.I:Simulation veri?cation.Journal of Structural Engineering,ASCE128(1),87–95.

Ren,W.X.,De Roeck,G..,2002b.Structural damage identi?cation using modal data.II:Test veri?cation.Journal of Structural Engineering,ASCE128(1),96–104.

Sohn,H.,Czarnecki,J.A.,Farrar,C.R.,2000.Structural health monitoring using statistical process control.Journal of Structural Engineering,ASCE126(11),1356–1363.

Sun,Z.,Chang,C.C.,2002.Structural damage assessment based on wavelet packet transform.Journal of Structural Engineering, ASCE128(10),1354–1361.

Sun,Z.,Chang,C.C.,2004.Statistical wavelet-based method for structural health monitoring.Journal of Structural Engineering, ASCE130(7),1055–1062.

Wang,Q.,Deng,X.,1999.Damage detection withspatial wavelets.International Journal of Solids and Structures36(23),3443–3468. Wang,W.J.,McFadden,P.D.,1996.Application of wavelets to gearbox vibration signals for fault detection.Journal of Sound and Vibration192(5),927–939.

Yen,G.G.,Lin,K.C.,2000.Wavelet packet feature extraction for vibration monitoring.IEEE Transactions on Industrial Electronics 47(3),650–667.

桥梁的检测方法详细讲解

桥梁检查及检测的目的在于通过对桥梁的技术状况及缺陷和损伤的性质、部位、严重程度及发展趋势,弄清出现缺陷和损伤的主要原因,以便能分析评价既存缺陷和损伤对桥梁质量和使用承载能力的影响,并为桥梁维修和加固设计提供可靠的技术数据和依据。因此,桥梁检查是进行桥梁养护、维修与加固的先导工作,是决定维修与加固方案可行和正确与否的可靠保证。按照检查的范围、深度、方式和检查结果的用途等的不同,桥梁检查归纳为日常检查、定期检查和特殊检查。按照《公路养护技术规范》规定,日常检查和定期检查由公路管理机构和具有一定检查经验并受过专门桥梁检查培训及熟悉桥梁设计、施工等方面知识的检查工程师,按规定周期,对桥梁主体及附属结构的技术状况进行定期跟踪的全面检查,提交检查成果文件,提出养护建议,如有特殊检查需求,则限制交通进行特殊检查。 1桥梁外观检查方法与要点

外观检查包括桥梁总体性与局部构造几何尺寸的量测、结构病害的检查与量测 等,不同桥型在检查方面各有侧重点。一般来说,从总体上可将桥梁分为三部分: (1)上部结构,在梁式桥中主要指主梁; (2)下部结构,一般包括基础与承台、拱圈拱顶裂缝、墩的位移、桩以及桥台等; (3)附属结构一般应着重检查桥面铺装、伸缩缝、栏杆等,其它的还有梁桥 部分检查端部的斜裂缝与跨中部位的裂缝、挠度等检查要点。对于钢筋混凝土桥梁类型,主要是检测钢筋(保护层厚度、锈蚀状况测试)与混凝土(碳化深度、强度等级与耐久性有关的含碱量和氯离子含量);对于材料检测类型,则主要是检查桥梁结构材料的无损或微损检测,这也是当前的重点研究领域;结构资料则主要是掌握桥梁的原施工工艺、结构设计以及桥梁的结构维修养护历史等过程,从而根据相关规范作为标准分析桥梁质量状况。此外,为了提高检查效率, 可采购用于桥面检测的先进高新技术仪器,如激光雷达,就是用来测量整桥;双频带红外线自动温度成像系统,可用来检测桥面;探地雷达成像系统,可用来检测桥面板等。 2荷载试验法

基于动力的结构损伤识别方法

基于动力的结构损伤识别方法研究综述 摘要:结构损伤识别问题是桥梁健康监测的基础和重要组成部分,其对于桥梁结构的安全性和可靠性具有重要的影响,在众多的结构损伤识别方法中,基于动力的结构损伤识别方法凭借其一系列独特的优点成为当前国内外研究和发展的热点。该研究能适合工程实际应用,并且损伤识别结果可靠准确,该方法具有十分重要的现实意义。本文介绍了国内外近年来较为成熟的结构损伤动力特性识别方法。 关键词:损伤识别;健康检测;动力特性 Research on Structural Damage Identification Based on Dynamic Abstract:Structural damage identification is the basis and important part of bridge health monitoring, and it has an important influence on security and reliability of the bridge.Among the numerous methods of structural damage identification,the structural damage identification method based on dynamic with its unique advantage is becoming a hot spot of current research and development at home and abroad.This study can be suitable for engineering application,and the damage identification result is reliable and accurate,the method has very important practical significance.Some mature methods of structural damage identification based on the dynamic characteristics at home and abroad in recent years were introduced in this paper. Key words:Damage identification;Health detection;The dynamic characteristics 0 引言 结构损伤识别不仅仅是单纯意义上的对损伤的诊断和修复,它更积极的意义 在于使人们重新认识结构的特征,并指导设计人员对以后的类似结构进行修改和 重新设计。在工程上,大部分结构损伤的产生都是由于长期外界因素的作用而累 积形成的疲劳失效。损伤的位置可能是受影响最剧烈的位置,可能是自身的材料 缺陷导致,也可能是结构设计中最薄弱的环节,这些因素往往是结构设计中没有 考虑到的。从这个角度上来看,损伤识别的结果可被用于探寻结构中较刚度和强 度薄弱的区域,对结构的后续设计具有重大的指导意义。此外,我国正处于社会 建设的全面发展时期,大批原有的工程结构需要进行损伤评估。对于轻微损伤的 结构,进行及时的补救,使之满足生产生活的需要;对于严重损伤的结构,进行 二次再利用,发挥其仍有的价值。这与现如今提出的绿色、节能、低碳的可持续 发展战略也是相适应的。因此,损伤识别不仅是一门重要的实验科学,同时对现 今社会的发展也具有重大的实际意义。 完整意义上的结构损伤识别包含以下四个任务:(1)判断结构是否存在损伤。 通常需要对结构进行长期的监测,或者事先获得该结构健康状态下的损伤评判指 标;(2)损伤的定位。在确定结构发生损伤后,采用损伤定位指标来确定损伤发 生的具体位置;(3)损伤的程度分析。该问题可以分为相对损伤程度和绝对损伤

浅析桥梁结构损伤检测方法

浅析桥梁结构损伤检测方法 摘要:对桥梁检测方法和技术方面进行了论述,以上塘路高架桥工程健康检测为背景,通过对既有结构状态和检测结果的分析,对未来桥梁检测提出几点建议,为桥梁的优先加固提供了依据。 关键词:桥梁检测;结构状态;优先加固 abstract: the testing methods and technology bridges are discussed in this paper, the above pond road viaduct project health detection as the background, through both structure of state and the analysis of test results, for bridge test future put forward several proposals, the priority for the bridge reinforcement to provide the basis. keywords: bridge detection; structure state; priority reinforcement 中图分类号: k928 文献标识码: a 文章编号: 0 引言 桥梁是联系城市和地区的纽带与喉咙,直接左右着公路的生命,因此,必须确保其工程质量,始终使其处于良好的工作状态。这么众多的桥梁,在主体结构建成后有无隐患?在通车运行前桥梁的状态如何?在运行中的状态如何?有没有运行隐患?如果有,是否严重到影响桥梁使用?应当重点防护或修复的部位在那里?已经使用多年的桥梁还有多少年限,由于种种原因需要立即知道桥梁当前的状态是否还适宜通行使用?能否通过重载车辆、或超过

损伤识别

桥梁结构损伤识别研究综述 摘要:首先阐述了桥梁结构损伤识别在桥梁结构中的重要性,介绍了国内外桥梁结构损伤识别研究现状,在此基础上,又介绍了用于桥梁结构的各种损伤识别方法和存在的问题,最后提出了桥梁结构损伤识别的发展方向。 关键词:损伤识别,桥梁结构,神经网络,曲率模态 引言 桥梁结构在长期使用过程中会发生各种损伤,导致桥梁结构的承载能力的降低,甚至会导致桥梁的倒塌,造成巨大的经济损失和人员伤亡。为了保证桥梁的安全性,需要及时的发现桥梁结构存在的损伤情况。目前,桥梁结构损伤识别已经成为国内外研究的热点。 1 国内外桥梁结构损伤识别研究现状 损伤识别最早用在航天及机械领域并得到了广泛的研究,在健康监测引起普遍关注的同时被应用在桥梁领域。鉴于桥梁所处环境的复杂性及结构特性的随机性,桥梁的损伤识别目前还没有一个统一的标准或准则参考,实际的应用也较少,但还是取得了一些成就。 自70年代以来,随着振动测试和分析技术的发展,国际上广泛开展了应用振动技术对机器设备与工程结构进行损伤识别和监测的研究。近年来,国外学者在利用振动模态分析理论进行结构损伤识别方面开展了大量的研究工作,提出了各种各样的识别方法。早期,主要是以Vandiver和Begg[9]等的研究工作为基础,根据模态频率的变化来探测桥梁结构的损伤。Spyrakos[5]进行了一系列的桥梁模型试验,分别测试了模型梁在不同类型、位置和程度损伤条件下的低频自振特性,发现一定水平的损伤与结构动态特性有确定的相关性,但是仅用频率改变作为结构损伤因子是不充分的。Aktan等则从结构静力柔度阵出发,根据桥梁载重汽车静力测试结果,通过对比观测模态柔度和静力测试柔度,评估了模态柔度作为损伤指针的可靠性。除了这些较为零星的工作以外,美国通过I-40桥梁项目和Alamosa峡谷项目,对桥粱健康诊断中的结构损伤识别方法进行了系统的研究,试验结果表明振型关于结构损伤识别伤较为敏感。Stubbs等[8]也对I-40桥进行了损伤识别的研究,利用振型曲率计算了结构局部应变能,通过应变能的改变来识别桥梁的损伤。这种算法能在未知结构材料特性的条件下,进行结构损伤定位。Farrar和Jauregui仍然以I-40桥为研究对象,认为振型数据对损伤定位和定量的研究更加有用。同时,运用神经网络进行损伤识别的方法也被推广到桥梁工程中。1997年worden用神经网络作为自联想器来对结构进行异常检测,并提出了自联想器的形成、异常指标、模式识别的特征及学习方法。 国内对结构损伤识别问题也开展了大量的研究工作。关于结构损伤识别,袁万城等[10]将其分为模型修正法和指纹分析法两大类。模型修正法主要用试验结构的振动反应记录与原先的模型计算结果进行综合比较,利用直接或间接测知的模态参数、加速度时程记录、频率响应函数等,通过条件优化约束,不断地修正模型中的刚度分布,从而得到结构刚度变化的信息,实现结构的损伤判别与定位。秦权等以香港青马大桥为背景,对桥梁健康监测中的模态识别、损伤识别、传感器优化布置和误差分析等问题进行了研究,为青马大桥健康诊断系统的实现提供了一定的理论依据。 2 桥梁结构损伤识别方法 损伤识别是基于结构振动的损伤识别方法,其基本原理是结构模态参数(固

常见网络问题检测办法

常见网络问题 网络不通、卡顿、连接不稳定,时断时连是常见的网络问题;出现这些问题的原因在哪里,如何查是令人头痛的事!掌握以下5条命令的应用,所有网络问题原因,一目了然。 如何查看本机IP地址、路由器地址? 知道自己电脑的IP地址及路由器的地址是找出网络故障的基础,下面的命令都是在系统命令提示符窗口中完成。我们打开系统运行菜单,或者用快捷键ctrl+R来调出运行窗口,并输入cmd,回车,进入命令提示窗口:

(一)ipconfig 在命令提示窗口中输入查看IP信息命令:ipconfig,并回车,如下图:其中192.168.0.107就是本机的IP地址;网关:192.168.0.1就是路由器的管理地址。 网络不通怎么办? (二)ping命令 ping命令是个非常实用的命令,用于确定本地主机与目的地址、设备是否能连通,可以推断tcp/ip参数是否设置正确。 如本例中网络不通,首先检查本机到路由器是否正常通讯,在命令提示符中输入如下命令: ping 192.168.0.1,当TIL后面出现数字跳动时,说明电脑到路由品之间这一段的网络通讯是没有问题的;如果出现请求超时的提示,则说明网络有问题,一般是IP地址配置、路由器、网线链路的原因导致。

网络延迟大是什么原因? (三)tracert 网络节点追踪 当我们发现上网反应很慢,不知是那个节点的原因,如路由器、外线、DNS错误都是导致网络延迟;如我们上百度很慢,可以在命令

提示窗口中输入:tracert https://www.360docs.net/doc/c110442831.html,,来追踪到达目的网络所经过的路由节点,来查找网络延迟在什么地方。如下图,就可以看到有三个节点发生问题。 (四)netsh winsock reset (重置网络)。 QQ可以上,网页无法浏览原因何在?这个问题一般是网络DNS、 IP/TCP协议端口出现问题,可在命令提示窗口中输入 netsh winsock reset来把网络恢复到初始化,重启电脑即可解决,网站无法打开的问题。

桥梁结构健康监测

桥梁结构健康监测

目录 1. 桥梁结构健康监测的概念 0 2. 桥梁结构健康监测系统 0 2.1. 监测内容 0 2.2. 数据传输 (1) 2.3. 数据分析处理和控制 (2) 2.4. 大型桥梁结构健康监测系统 (2) 2.5. 桥梁结构健康监测的现状与发展方向 (3) 3. 桥梁结构健康监测系统的意义 (4) 3.1. 桥梁结构健康监测系统的主要作用包括: (4) 3.2. 桥梁健康监测意义 (4) 4. 现有桥梁结构监测系统存在的问题 (5) 5. 结语 (6)

桥梁结构健康监测 1.桥梁结构健康监测的概念 交通是社会的经济命脉,桥梁是交通的咽喉,交通不畅会制约社会的经济发展,所以保障桥梁的功能性、耐久性,尤其是安全性至关重要。为保证桥梁安全运行、避免严重事故发生,对桥梁结构进行健康监测应运而生,桥梁结构健康监测是以科学的监测理论与方法为基础,采用各种适宜的检验、检测手段获取数据,为桥梁结构设计方法、计算假定、结构模型分析提供验证;对结构的主要性能指标和特性进行分析,及早预见、发现和处理桥梁结构安全隐患和耐久性缺陷,诊断结构突发和累计损伤发生位置与程度,并对发生后果的可能性进行判断与预测。通过对桥梁结构健康状态的监测与评估,为桥梁在各种气候、交通条件下和桥梁运营状况异常时发出预警信号,为桥梁维护、维修与管理措施提供依据,并通过及时采取措施达到防止桥梁坍塌、局部破坏,保障和延长桥梁的使用寿命的目的。 2.桥梁结构健康监测系统 2.1.监测内容 数据采集与测量的内容主要为:变形(沉降、位移、倾斜)、应力、动力特性、温度、外观检测等。 1)变形监测 采取适宜的测量手段,对桥梁主体结构关键部位的沉降、位移、倾斜量进行监测。常用监测变形的方法有:导线测量法、几何水准测量法、GPS测定三维位移量法、自动极坐标实时差分测量法和自动全站仪三维坐标非接触量测等。 2)应力监测 桥梁运营状态中主体结构的应力变化是由于主体结构的外部条件和内部状态变化引起

桥梁健康监测答案

第1题桥梁健康监测的主要内容为() A、外部环境监测,通行荷载监测,结构关键部位内力监测,结构几何形态监测,结构自 振特性监测,结构损伤情况监测等; B、风载、应力、挠度、几何变位、自振频率; 广| C、外观检查、病害识别、技术状况评定; D、主要材质特性、承载能力评定。 第2题对于连续刚构桥梁外部环境监测的最重要内容为 () A风速、风向; B、温度; C湿度; 广D降雨量; 第3题通行荷载监测重点关注参数为() A、通行车辆尺寸和数量; -B、通行车辆的轴重和轴距,交通流量; yd C、大件运输车辆; D、超限运输车辆。 第4题下列哪项不是桥梁结构关键部位内力主要监测内容() ' A、斜拉桥索力; 厂一B、梁式桥主梁跨中截面应力; C钢管混凝土拱桥的拱脚截面应力; "'I D、梁式桥桥墩内力。

第5题下列哪项不是结构几何形态主要监测内容 () 广A、连续刚构桥的墩底沉降; :厂| B、连续梁桥的主梁挠度; 冷| C系杆拱桥的吊杆伸长量;拱桥 厂D斜拉桥墩(塔)顶偏位。 第6题某桥梁监测结果发现该桥的自振频率有逐渐降低趋势,表明该桥()广A、刚度增大,振动周期变长,技术状况好; 广I B、刚度增大,振动周期变短,技术状况好; ^*| C、刚度降低,振动周期变长,技术状况变差; D、刚度降低,振动周期变短,技术状况变差。 第7题结构损伤监测内容不含() A、损伤部位、范围; B、、损伤类型; C、损伤开展情况; * D、损伤原因。 第8题下列不属于桥梁健康监测使用的环境监测设备的是 () A、风速仪; B、风向仪; C雨量计和蒸发计; 厂 D温度传感器。

桥梁结构损伤识别方法综述

龙源期刊网 https://www.360docs.net/doc/c110442831.html, 桥梁结构损伤识别方法综述 作者:贾明晓连鑫 来源:《科技风》2017年第11期 摘要:我国的地貌丰富,为满足交通需求,大批跨河桥梁和高架桥应运而生,而随之到来的桥梁结构损伤问题也逐渐受到关注。在交通量大且运营压力大的今天,桥梁经常超载运营,再加之各种不可预见的自然灾害,使得桥梁结构疲劳损伤日趋严重。出现这些问题,首先要对桥梁工作状态,损伤程度和安全性进行评估,然后提出相应处理措施。经过多年的理论研究和实践,国内外学者们提出许多关于桥梁结构损伤识别的方法。本文通过对桥梁检测技术的综合叙述,阐明了桥梁检测的主要项目。从而系统梳理桥梁检测技术知识和提高桥梁损伤识别的有效性。 关键词:桥梁检测;损伤识别;识别方法 Abstract:China is rich in landscape, to meet the traffic demand, a large bridge across a river and viaduct arises at the historic moment, and then come the bridge structure damage problem also gradually attention. In today's traffic flow and operation pressure big, Bridges often overload operation, plus all sorts of unpredictable natural disaster, the bridge structure fatigue damage has become increasingly serious. In the face of these problems, first of all to work state of the bridge,the damage degree and safety assessment, and then put forward the corresponding measures. After years of theoretical research and practice, many domestic and foreign scholars put forward a variety of structural damage identification method. Based on the comprehensive description of bridge detection technology, illustrates the main bridge detection project. Furthermore, combing the knowledge of bridge detection technology and improve the effectiveness of bridge damage identification. Keywords:bridge detection;damage identification;identifying methods 桥梁是满足交通的重要组成部分,对社会经济的发展起到关键作用。但桥梁结构在长期超载运营中肯定会出现损伤以及安全隐患[1]。想要保证桥梁的安全运营,就必须不时的对桥梁 进行整体检测,而最有效的方法就是研究结构的损伤识别[2]。桥梁检测能准确地检查诊断出 桥梁内部的各种损伤[3] (如裂纹、磨耗和钢筋锈蚀等),对裂缝及其他损伤的发展趋势进行评估,从而能更好的保护桥梁结构。 一、传统的结构损伤识别方法 近半个世纪以来,许多国内外学者经过大量的研究开发了多种损伤检测方法[4]。主要有 半损检测和无损检测两种。由于需要修复的桥梁一般在役,用于桥梁结构检测的主要是无损伤的识别方法,无损伤的识别方法包括结构局部识别方法和结构整体识别方法。而结构损伤识别方法根据是否反演又分为模型修正法和动力指纹法。此外,自计算机技术发展以来人工神经元

图像识别中仍然存在的问题及解决思路

图像识别中仍然存在的问题及解决思路 一、摄像系统晃动问题,在对焦侧及中部炉盖进行拍摄时,小的晃动问题并不显示很严重,但对机焦炉盖及上升管拍摄时,由于距离比较远,小的晃动就会造成画面的不稳定,影响识别精度。 晃动的原因:有几种情况,一是由于滑行车在风的作用下东西方向的摆动;二是摄像系统安装于滑行车外部支架上,有一定高低方向的颤动;三是由于云台的旋转俯仰均是齿轮驱动,齿轮配合间隙的晃动会造成一定的晃动。 解决方案:虽然现在的识别程序中已经对晃动进行了配准,但有时仍会由于晃动造成误判,因此考虑从硬件及软件两方面着手进行改善,硬件上解决滑行车摆动最理想的方案是采用双轨,但考虑到成本会增加较多,在王工新的设计中将摄像系统由滑行车外部移到中部应该对上下的颤动会有改善。云台齿轮间隙的问题,如要解决只能选用新的更精密的云台,考虑到这部分晃动的幅度较小,而且由于这种间隙没有弹性的回力,故在一定风向下一般不会发生来回的晃动,可不考虑。 软件的方面,现在所用的晃动图像配准方法有两个问题,一是由于运算量较大,现在只对晃动严重的上下方向进行了配准,对横向的晃动未进行配准。二是配准的算法上应该还有一定的提高空间(主要是降低运算量及提高配准精度),新来的小张由于研究生专业就是图像识别,考虑让他在这方面做一些工作(除了配准这部分,从整个识别算法上也可以做一个重新的考虑)。 另一个张总曾提出的软件解决方案是,在拍摄瞬时风速超过一定范围后,识别结果均定为不泄漏。 二、逆光问题,在下午的拍摄中,逆光是影响识别效果最严重的一个因素(对焦侧炉盖的拍摄基本没影响,对中间炉盖有一定影响同,对机侧炉盖及上升管拍摄影响很大),在逆光时拍摄回的画面,即使人工来识别,也已经无法判断泄漏与不泄漏,这种情况下计算机识别已经无能为力。 逆光原因:由于焦炉是南北走向,我们的摄像系统安装于焦炉东侧的焦侧方向,在下午对机侧炉盖及上升管拍摄时,阳光正好照射在摄像机护罩玻璃上,导致摄回的图像均变成灰色。除不能识别外,有时还会由于中部光线强度的变化导致一些误判。

桥梁结构健康监测系统的意义

桥梁结构健康监测系统的意义 桥梁结构健康监测系统的主要作用包括: 1) 设计验证,确保 桥梁安全;2) 及时发现桥梁损伤;3) 为桥梁维护管理提供技术依 据;4) 辅助桥梁日常交通管理 尽管( 截止到2006年) 我们国家现有桥梁已经达到了50万 余座,但是有些地方的桥梁管理者对现有桥梁的管理仍然是被 动式的,也就是当桥梁发生安全事故的时候才对桥梁进行维护 ( 检测和加固) 这种被动式的管理不可避免的会带来桥梁安全 事故的频繁发生 结构检测与健康监测概况工程结构一般会受到两种损伤一突发性损伤和累积性损伤。突发性损伤由突发事件引起,使损伤在短期内达到或超过一定限值;累积损伤则有缓慢积累的性质,达一定程度会引起破坏影响安全和使用。健康检测能够在突发性损伤发生时及时做出判断和警报,以便采取处理措施,防止发生进一步的破坏和引发其它事故。对于累积损伤,能够定期对损伤的状态做出描述,以便根据情况采取相应措施。二、桥梁健康监测意义(一)监控与评估。桥梁健康检测的基本内涵是通过对桥梁结构状态的监控与评估,为工程在特殊气候、交通条件下或运营状况严重异常时发出预警信号,为桥梁维护、维修与管理决策提供依据和指导。为此,监测系统通常对以下几个方面进行监控:①桥梁结构在正常环境与交通条件下运营的物理与力学状态;②桥梁重要非结构构件和附属设施的工作状态;③结构构件耐久性;④工程所处环境条件等等。(二)设计验证。由于大型桥梁的力学和结构特点以及所处的特定环境,在大桥设计阶段安全掌握和预测其力学特性和行为特性是非常困难的。因此,通过桥梁健康检测所获得的实际结构的动静力行为来检验大桥的理论模型和计算假定具有重要意义。不仅对设计理论和设计模型有验证作用,而且有益于新的设计理论的形成。(三)研究与发展。桥梁健康监测带来的将不仅是监测系统和某种特定桥梁设计的反思,它还可能并成为桥梁研究的现场实验室。由于运营中的桥梁结构及其环境所获得信息不仅是理论研究和实验室调查的补充,而且可以提供有关结构行为与环境规律的最真实的信息。三、健康监测系统(一)大型桥梁健康监测系统。大型桥梁健康监测系统一般应包括以下几部分内容: 1、传感系统。由传感器、二次仪表及高可靠性的工控机等部分组成。 2、信号采集与处理系统。实现多种信息源、不同物理信号的采集与预处理,并根据系统功能要求对数据进行分解、变换以获取所需要的参数,以一定的形式存储起来。 3、通信系统。将处理过的数据传输到监控中心。 4、监控中心。利用可实现诊断功能的各种软硬件对接收到的数据进行诊断,包括结构是否受到损伤以及损伤位置、损伤程度等。传感器监测到的实时信号,经过采集与处理曲通信系统传送到监控中心进行分析和判断,从而对结构的健康状况作出评估。若结构出现异常行为,则由监控中心发出预警信号,并对检测出来的损伤进行定性、定位和定量分析同时提供维修建议。(二)信号的分析与处理。桥梁结构的健康状况是由测试的信号来

损伤识别的方法

Wavelet packet based damage identi?cation of beam structures Jian-Gang Han a ,Wei-Xin Ren a,b,* ,Zeng-Shou Sun a a Department of Civil Engineering,Fuzhou University,Fuzhou,Fujian 350002,People ?s Republic of China b Department of Civil Engineering,Central South University,Changsha,Hunan 410075,People ?s Republic of China Received 1August 2004;received in revised form 6April 2005 Available online 8June 2005 Abstract Most of vibration-based damage detection methods require the modal properties that are obtained from measured sig-nals through the system identi?cation techniques.However,the modal properties such as natural frequencies and mode shapes are not such a good sensitive indication of structural damage.The wavelet packet transform (WPT)is a mathemat-ical tool that has a special advantage over the traditional Fourier transform in analyzing non-stationary signals.It adopts redundant basis functions and hence can provide an arbitrary time-frequency resolution.In this study,a damage detection index called wavelet packet energy rate index (WPERI),is proposed for the damage detection of beam structures.The mea-sured dynamic signals are decomposed into the wavelet packet components and the wavelet energy rate index is computed to indicate the structural damage.The proposed damage identi?cation method is ?rstly illustrated with a simulated simply supported beam and the identi?ed damage is satisfactory with assumed damage.Afterward,the method is applied to the tested steel beams with three damage scenarios in the laboratory.Despite the noise is present for real measurement data,the identi?ed damage pattern is comparable with the tests.Both simulated and experimental studies demonstrated that the WPT-based energy rate index is a good candidate index that is sensitive to structural local damage.ó2005Elsevier Ltd.All rights reserved. Keywords:Damage detection;Wavelet packet transform;Energy rate index;Beam;Dynamic measurement;Signal process 1.Introduction During the service of beam structures such as large-scale frames,long-span bridges and high-rise build-ings,local damage of their key positions may continually accumulate,and ?nally results in sudden failure of 0020-7683/$-see front matter ó2005Elsevier Ltd.All rights reserved.doi:10.1016/j.ijsolstr.2005.04.031 * Corresponding author.Address:Department of Civil Engineering,Fuzhou University,523Gongye Road,Fujian Province,Fuzhou 350002,China.Tel.:+8659187892454;fax:+8659183737442.E-mail address:ren@https://www.360docs.net/doc/c110442831.html, (W.-X.Ren).URL:https://www.360docs.net/doc/c110442831.html, (W.-X. Ren).International Journal of Solids and Structures 42(2005) 6610–6627 https://www.360docs.net/doc/c110442831.html,/locate/ijsolstr

方法确认中的6个问题

方法确认中的6个问题 分析的方法确认是实验室重要一环,为了更好的了解方法确认,我们从“方法确认”的定义、目的、时间、方法、内容和工具几个方面进行了介绍。 1 什么是方法确认? ISO17025对方法确认的定义是:通过检验和提供客观证据,证实满足指定最终用途的特定要求。 包含三个重要组成部分: (1)“特定的最终用途”,是从分析所要解决问题中产生的对于分析的要求; (2)“客观证据”常表现为从有计划的实验过程中获得的数据,从中可计算出适当的方法性能参数; (3)“证实”是通过将性能数据与诸如方法适用性方面的要求进行充分的比较来进行的。 2 为什么必须进行方法确认? (1)因为在测量前,应确保它是正确的,确认可提供这种保证。确认可提供在质量控制中作为对照基础的数据。在生产环境中,生产者有责任对于产品质量给予合理关注。有时,方法确认是法规的要求。 (2)在测量方法性能参数时,通过数据的累积反映整体运行中方法的哪部分是稳定的,哪部分可能有问题。因此,可设计出合适的质量控制程序并实施。还可利用方法确认数据提供的信息评估不同实验室用不同方法所得样品分析结果的可比性。 3 何时进行方法确认? (1)方法研发过程。 (2)使用任一方法进行样品分析前。 (3)工作环境发生变化或长期停用后的再确认。 4 怎样进行方法确认? (1)确定分析要求:调查客户要解决的问题,考察进行分析的原因,找出客户通过分析工作希望达到的目的,判断方法的哪些性能参数与工作有关,哪些目标值是必需的。 (2)设计一组实验。 (3)进行实验。 (4)使用数据评估适用性。 (5)做出确认说明,是对方法适用性的正面肯定。 (6)还可在方法研究的范围内进行更为广泛的确认,用以说明方法对各种基体类型、被分析物、浓度水平、精密度和准确度等的适用性。 5 方法的性能参数有哪些? (1)同一性确认(选择性/特异性)。 (2)正确度(偏差、回收率),对计算被分析物或特性的绝对值是重要的。 (3)精密度(重复性、复现性),在水平比研究中很重要。 (4)工作范围,大多数情况下都很重要。

步态识别方法的分类及各类方法的比较

步态识别方法的分类及各类方法的比较 程汝珍1,2 1河海大学计算机及信息工程学院,江苏南京(210098) 2水文水资源与水利工程科学国家重点实验室,江苏南京(210098) E-mail:chengruzhen@https://www.360docs.net/doc/c110442831.html, 摘要:步态识别是生物特征识别技术中的一个新兴领域,它旨在根据个体的行走方式识别身份。步态识别主要是针对含有人的运动图像序列进行分析处理,所涉及到的几项关键技术包括:视频处理、图像处理、模式识别。步态识别分析可以划分为特征抽取、特征处理和识别分类三个阶段。在最近的文献中已经有许多研究尝试,提出了许多步态识别的具体方法。但国内外尚无将步态识别技术分类,本文提出了步态识别的六类分类法,且初步比较了每类方法的适用范围和优缺点,使读者较为全面了解步态识别技术现状。 关键词:步态识别;分类;适用范围;优缺点;比较 中图分类号:TP391.4 1.引言 步态识别是生物特征识别技术中的一个新兴领域,它旨在根据个体的行走方式识别身份[1]。根据早期的医学研究[2]人的步态有24个不同的分量,在考虑所有的步态运动分量的情况下步态是唯一的。精神物理学[3]中的研究结果显示即使通过受损的步态信息人们也能够识别出身份,这表明在步态信号中存在身份信息。 步态识别主要是针对含有人的运动图像序列进行分析处理,所涉及到的几项关键技术包括:视频处理、图像处理、模式识别[4]。步态识别分析可以划分为特征抽取、特征处理和识别分类三个阶段[5]。 步态识别部分 图1 步态自动识别系统框图 Fig1 the framework of gait automatic recognition system 步态识别系统的一般框架如图所示[6]。监控摄像机首先捕捉监控领域来人的行走视频,然后送入计算机进行检测和跟踪,提取人的步态特征,最后结合已经存储的步态模式进行身份识别。若发现该人是罪犯或嫌疑人,系统将自动发出警告。

桥梁结构检测与鉴定

桥梁结构检测与鉴定 学号: 姓名: 专业: 2014年12月19日

桥梁结构检测与鉴定 一、桥梁结果检测与鉴定概述 1.1 我国公路桥梁现状 截至2008年底,我国共有公路桥梁59 万座,其中混凝土结构桥梁占90%以上,已成为世界在用桥梁的大国。但随时间的增长,桥梁耐久性、安全性降低,我国公路路网有3万余座危桥急需加固改造,桥梁维修加固与养护管理面临诸多的世界性难题,是国内外桥梁界研究的热点。而在我国公路桥梁中大部分主要分布在技术标准低、通行能力差的县乡公路上,设计荷载标准大多为汽—13、拖—60 或汽—15、挂—80,其中还有相当一部分桥梁的荷载标准仅为汽—10, 履带—50,甚至低于汽车—10 级。桥梁长期在自然环境(大气腐蚀、温度、湿度变化) 和使用环境(荷载作用与频率的增加、材料与结构的疲劳)的作用下,总会逐渐产生损坏现象,这是一个不可逆转的过程。我国早期建造的桥梁大量使用钢筋混凝土结构,这些桥梁现已运营20~40 年,大多混凝土桥梁将步入老化期,这些桥梁处于一种带病、超负荷工作状态。桥梁承载能力低、通行能力差是我国公路路网通行能力低的一个重要影响因素。如何对桥梁实际状态做出评估,确切评定其承载能力,以便采用科学合理的经济适用方法进行加固、加宽等的技术改造,改善其适应度,提高公路路网通行能力,这是我国公路管养部门今后相当长的一段时期内所面临的一大紧迫任务。 1.2 保证桥梁运营安全的对策开展桥梁检测、评定与维修加固,是保证桥梁安全服役,保证路网畅通的重要举措。多年来国内很多专家学者在这一技术领域开展了比较系统的研究,主要技术内容围绕:1、桥梁状况与使用功能评价;2、耐久性状况与承载能力评定;3、维修加固;4、试验检测技术及其关键设备 二、桥梁检测工作程序及项目目前桥梁养护管理制度下,我国桥梁检查的分类按照检查的范围、深度、方式和检查结果的用途等的不同,大致可归纳为下列三类:1、经常检查(巡视检查、日常检查);2、定期检查;3、特殊检查。

桥梁损伤识别

桥梁结构的损伤检测与识别技术研究综述 摘要:随着桥梁建设的持续发展,桥梁结构的形式和功能也日趋复杂,桥梁的修补和加固也越来越受到关注。桥梁建成通车后,由于受气候、环境因素以及人为因素的影响,结构材料会被腐蚀和逐渐老化,长期的静、动力荷载作用,使其强度和刚度随着时间的增加而降低。这不仅会更会使桥梁的使用寿命缩短,更严重的会影响交通行车安全,危机人的生命。桥梁结构的检测、监测作为结构安全养护、正常使用的保证措施之一受到关注,如何对桥梁结构进行质量检测和安全监测也已成为国内外学术界、工程界研究的热点。本文主要研究桥梁结构损伤识别方法的发展和应用情况。 关键词:桥梁结构损伤识别 引言:桥梁结构作为现代交通系统的重要基础设施,其安全运营关系着国家财产和人民生命的安全,以及社会稳定。国内外桥梁垮塌事件屡屡发生,如,1999年重庆彩虹桥垮塌、2004年辽宁盘锦大桥垮塌、2006年广东深汕高速公路桥梁垮塌、2007年中国广东佛山九江大桥垮塌、2008年云南曲靖独木水库孙家马场大桥垮塌、2009年黑龙江省哈伊公路铁力路段西大桥垮塌等事件,严重威胁着国家财产和人民生命的安全、严重影响了经济社会的发展和稳定。 因此,为保证桥梁结构安全与健康的运营,确保人民生命、国家财产的安全,对桥梁结构损伤识别提出了越来越高的要求,结构损伤识别方法和技术的研究已成为业界的研究重点和热点 一、结构损伤识别理论 目前结构的损伤识别常用的方法有如下几类,1)静态识别法:基于静态测试数据,施加的主要是静力荷载;2)动态识别法:基于振型、振型曲率、结构固有频率、结构柔度、频响函数等动力特性变化的识别方法;3)智能识别法:利用神经网络、遗传算法、小波变换属于智智能识别法。 桥梁结构损伤识别的主要任务就是通过实际测量数据,对结构是否有损伤、损伤种类、损伤位置、损伤程度等做出准确、合理的判断。桥梁结构的损伤识别方法大致可分为局部法和整体法两大类。 桥梁结构损伤识别局部检测法具有目标针对性强,检测结果具体、准确等优点;同时也存在需要预先知道损伤部位,且受检测部位的测试条件限制较大,无法对大型结构进行全面检测等不足。 桥梁结构整体损伤识别主要是通过对桥梁结构特征点数据(位移、应变、内力、频率和振型等)的检测,并结合结构自身的力学特点,来对整个桥梁结构的损伤状况进行评估的一种方法,整体法可分为静态识别法和动态识别法。整体法中因动态识别方法具有现场工作量小,实验时间短,经济代价低,也可以实现实时、在线监测等优点,以动态识别方法为主。

化学平衡图象问题的识别分析方法

化学平衡图象问题的识别分析方法 化学平衡图象问题的识别无外乎是看坐标、找变量、想方程、识图象四个方面,即准确理解横、纵坐标的含义,根据图象中的点(起点、终点、转折点)、线(所在位置的上下、左右、升降、弯曲)特征,结合题目中给定的化学方程式和数据,应用概念、规律实行推理判断.以横坐标的不同含义把图象分为两大类:①时间(t )类,②压强(p )或温度(T )类.这两类的特征分别如下. (一)、时间(t )类 1.图象中总有一个转折点,这个点所对应的时间为达到平衡所需时间,时间的长短可确定化学反应速率的大小,结合浓度、温度、压强对化学反应速率的影响规律,可确定浓度的大小,温度的高低和压强的大小. 2.图象中总有一段或几段平行于横轴的直线,直线上的点表示可逆反应处于平衡状态. 3.这几段直线的相对位置可确定化学平衡移动的方向.固定其它条件不变,若因温度升降引起的平衡移动,就可确定可逆反应中是△H >0还是△H <0;若因压强增减引起的平衡移动,就可确定气态物质在可逆反应中,反应物的系数和与生成物的系数和之间的相对大小. (二)、压强(p )或温度(T )类 1.图象均为曲线. 2.曲线上的点表示可逆反应在相对应压强或温度下处于平衡状态;而不在曲线上的点表示可逆反应在相对应压强或温度下未达到平衡状态,但能自发实行至平衡状态. 3.曲线的相对位置、变化趋势决定了化学平衡移动的方向.固定其它条件不变,若温度变化引起的平衡移动,即可确定可逆反应中是△H >0还是△H <0;若因压强改变引起的平衡移动,即可确定气态物质在可逆反应中反应物的系数和与生成物的系数和之间的相对大小 例1.已知某可逆反应mA(g)+nB(g)pC(g)在密闭容器中实行,右图表示在不同反应时间t 时,温度T 和压强P 与反应物B 在混合气体中的体积分数B%的关系曲线,由曲线分析,下列判断准确的是 ( ) A .T 1<T 2 P 1>P 2 m +n >P ΔH<0 B .T 1>T 2 P 1<P 2 m +n >P ΔH>0 C .T 1<T 2 P 1>P 2 m +n <P ΔH<0 D .T 1>T 2 P 1<P 2 m +n <P ΔH>0 [解析] 本题考查根据温度、压强变化对化学平衡移动的影响来判断化学方程式的特点。分析图象,能够分两个层次考虑:(如图将三条曲线分别标为①、②、③)。从①、②曲线可知,当压强相同(为P 2)时,②先达平衡,说明T 1>T 2 ;又因为T 2低,B%大,即降低温度,平衡逆向移动,说明逆向放热,正向吸热。从②、③曲线可知,当温度相同(为T 1)时,②先达平衡,说明P 2>P 1 ;又因为P 2大,B%大,即增大压强,平衡逆向移动,说明逆方向为气体体积减小的方向,m +n <P 。 综合以上分析结果:T 1>T 2, P 1<P 2,m +n <P ,正反应为吸热反应。 [答案] D 例2.反应 2X (气)+ Y (气)2Z (气)+热量,在不同温度(T 1和T 2)及压强(p 1和p 2)下,产物Z 的物质的量(n 2)与反应时间(t )的关系如右图所示。下述判准确的是 ( ) A 、T 1>T 2,p 1<p 2 B 、T 1<T 2,P 1>p 2 C 、T 1>T 2,P 1>p 2 D 、T 1<T 2,p 1<p 2 [解析] 首先分析反应:这是一个气体的总物质的量减小 (体积减小)、放热的可逆反应,低温、高压对反应有利, 达平衡时产物Z 的物质的量n 2大,平衡点高,即图示曲 线T 2、p 1。再对比图示曲线T 2、p 2,温度相同,压强不同, 平衡时n 2不同(p l 时的n 2>P 2时的n 2),由此分析p 1> p 2,再从反应速率验证,T 2、P 1的曲线达平衡前斜率大(曲 线陡)先到达平衡,也说明压强是 p 1>p 2(增大反应压强能够增大反应速率)。然后比较曲线T 2、p 2与T 1、p 2,此时压强相同,温度不同,温度低的达平衡时n 2大,平衡点高(曲T 2P 2 T 1P 2 T 1P 1 ①②③ B% t 0

相关文档
最新文档