八年级数学上册第1课时 整数指数幂
15.2.3整数指数幂(第1课时)教学PPT
x2 3
3、2(m+n)-2 (m n)2 6、(3 x ) 2 1
9x 2
3二、、利新用课讲负解整数指数幂把下列各式化
成不含分母的式子:
(1) x 2 1 y3
x 2y 3
(2)
y xa 4
yx 1a 4
2m (3) ( a b ) 5
2m(a b)5
二、新课讲解
a3 a5
即a3a5a35
1
, 3 3-1=
1 27
,(1 -3)-3=
16
1
x,
1 x3
1, 16
(-43-)212= 41 -2=2,
3 4
, 2
(169-4) -2=ba
1
,a
b
二、新课讲解
2、把下列各式转化为只含有正整数指数幂的形式
1、a-3
1 a3
4、
1 3
x
2
1 3x 2
2、x3y-2
x3 y2
2
5、 1 3 x 2
(4) amam2 (a0, m 是 正 整 数 )
观察第四条性质 amanamn 思考是否
必须要求 m﹥n,当m=n 或 m﹤n 时会如何?
}→ (1)
25 27
25 27
1 22
2 -2
= 25-7 = 2 -2
1 22
}→ (2)a4
a7
=
a4 a7
1 a3
a 3
1 a3
a47 a3
}→ (3)
八年级数学人教版·上册
第十五章 分式
15.2.3整数指数幂(第1课时)
授课人:XXXX
一、新课引 入
上节课我们学习了分式的混合运 算,了解了混合运算的顺序.这节 课学习新的运算.
人教版八年级上册数学《整数指数幂》分式PPT教学课件
7.计算:
(1)(-2) +(-2)×3
2
0
1-2
-4
;
解:原式=4+(-2)×1-16=-14
2
1-1
×|-4|+6
;
0
(2)2+(-3) -2 019
解:原式=2+9-1×4+6=13
能力提升
-
-
-
-
-
(3)a 3b2·(a2b 2) 4÷(a 2b 1)2;
12
b
解法1
a3
a3
1
a a 5 2 3 2 .
a
a a
a
解法2
再假设正整数指数幂的运算性质am÷an=am-n(a≠0,m,n
3
5
是正整数,m>n中的m>n这个条件去掉,那么a3÷a5=a3-5=a-2.
1
2
a
.
于是得到:
a2
合作探究
1
-2
由以上计算得出:52= 5
1
-2
,a2= a
类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝
对值较小的数,即将它们表示成a×10- n的形式,其中n是正整数,
1≤∣a∣<10.
算一算:
0.01
10-2= ___________;
0.00000001
10-8= ___________.
0.0001
10-4= ___________;
解:原式=a-3b2·a-8b8÷a-4b-2=a-11b10·a4b2= a7
a-2 a-2 a-2
(4) 3 3÷ 3 2· 3 -4.
b b b
人教版八年级数学上册整数指数幂(1)
探索整数指数幂的性质
根据整数指数幂的运算性质,当m,n为整数时,
am an am n ,ama-n am(-n)=am-n ,因此, am an amn ,即同底数幂的除法 am an 可以转化 为同底数幂的乘法 ama-n .特别地,
a a b a b1,所以,( a )n (a b1)n.
b bn
(6) 当a≠0时,a0=1。(0指数幂的性质)
问题1: am 中指数m 可以是负整数吗?如 果可以,那么负整数指数幂am 表示什么?
am÷an=am-n (a≠0 m、n为正整数且m>n)
a5÷a3=a2 a3÷a5=?
a3÷a5=a3-5=a-2
a3÷a5=
a3 a5
a2 a3 • a2
(3)
2 x y 1 2 3
2
3
(4) 22 2 1 3 1 2013 0
5 2
例、已知:x2-3x+1=0,求
(1) x
1 x
(2)
x2
1
x2
(3)
x4
3x2 x2
1
(4)
x4
x2 3x2
1
练习:已知a2+3a+1=0,求下列各式的值. (1)a+a-1 (2)a2+a-2 (3)a4+a-4
6、(3x)2
7、3x 2
例3、利用负整指数幂把下列各式 化成不含分母的式子
1、x 2 y3
2、(a2mb)5
3、 y xa4
问题2 引入负整数指数和0指数后,am an am n
(m,n 是正整数)这条性质能否推广到m,n 是任意整
数的情形?
正整数指数幂的运算性质是否适合负指数呢?
人教版数学八年级上册15.整数指数幂课件
2
3
1
x y ( x y)
解:原式
3
3
3
=x y x y
2
x 1 y 0
1
x
(4)
3
2 3 2
2
(2ab c ) (a b)
解:原式 (2
2
a 2b 4c 6 ) (a 6b3 )
2
7 6
2 a b c
4 6
ac
4b 7
3
4
尝试应用
1.(益阳·中考)下列计算正确的是(
n
n n
(4)a a a
m
n
n
m n
(a 0)
a n
a
(5)( ) n (b 0)
b
b
mn
【达标测试】
例1 计算:
1
(1)
2
(a b )
3 6
a b
b
6
a
3
3
(2) a b · a b
2
2
2
2
8
8
2
6
6
a b· a b
a b
.
2
baຫໍສະໝຸດ 88.
3
(3)
15.2.3整数指数幂
(第1课时)
回顾与思考
当a≠0时,a0=1.(0指数幂)
正整数指数幂有以下运算性质:
(1) a
m
a a
n
m n
a
a
ab
a b
(2)
m n
n
(3)
mn
n
(m、n是正整数)
n
a a a
整数指数幂八年级数学优质PPT
a (5)(b )n
an bn
( b≠0 ,n是正整数)
(6)当a≠0时,a0=1。(0指数幂的运算)
分
析
am÷an=am-n (a≠0 m、n为正整数且m>n)
a5÷a3=a2
a3÷a5=?
a3÷a5=a3-5=a-2
a3÷a5=a
a
3 5
=
a
3
a3 •a
2
1 a2
a2
1 a2
n是正整数时, a-n属于分式。并且
新人教版八(下)第16章分式课件
16.2.3整数指数幂〔一)
复
习
正整数指数幂有哪些运算性质?
(1〕am·an=am+n (a≠0 m、n为正整数)
(2)(am)n=amn (a≠0 m、n为正整数)
(3)(ab)n=anbn (a,b≠0 m、n为正整数)
(4〕am÷an=am-n (a≠0 m、n为正整数且m>n)
(( 3(225=))9,2(a个m)位)n=数a字m(n式((-9a;≠b30≠)0))2=____,(-3)0=___,(-3)-2=_____;
(1) x2y-3(x-1y)3;
探索规律:31=3,个位数字是3;
(2)(am)n=amn (a≠0)
(3〕b2=_____, 34=81,个位数字是1;
2.知 b 2 (a b 1 )2 ,0
求a51÷a8的值;
3.计算:xn+2·xn-2÷(x2)3n-3;
4.知:10m=5,10n=4,求102m-3n. (4〕am÷an=am-n (a≠0 m、n为正整数且m>n)
探索规律:31=3,个位数字是3;
(1) (a-1b2)3;
整数指数幂(第1课时)人教版数学八年级上册PPT课件
提高练习题
稍复杂的乘法与 除法
针对稍复杂的同底数幂乘 除法 练习解决多步骤的乘除问 题 提升解题逻辑和运算能力
多步骤乘方运算
学习多步骤乘方运算的技 巧 练习相关的多步骤乘方题 目 加深对乘方运算规则的理 解
实际问题应用
将整数指数幂应用于实际 问题 分析并解决生活中的数学 问题 培养解决问题的能力
思考与挑战
错误纠正方法
说明纠正错误的方法和步骤 指导学生如何自我纠正和复习 鼓励学生从错误中学习和进步
谢谢大家
整数指数幂(第1课时)人 教版数学八年级上册PPT课 件
主讲人:xxx 时间:20XX.XX
CONTENTS
目录
整数指数幂概念导 01 入
整数指数幂的计算 02 方法
03
整数指数幂的练习 与巩固
整数指数幂概念导入
整数指数幂的定义
幂的概念
幂是乘方的结果 它表示一个数自乘若干次的结果 例如(2^3 = 8),8就是2的三次幂
指数在科学领域表示增长率、衰减率等 例如细菌的繁殖可以用指数来表示 指数函数在物理、化学和生物等科学领域广泛应用
整数指数幂与其他数学概念的联系
整数指数幂与对数函数互为逆运算 指数函数是函数学习中的重要部分 掌握整数指数幂有助于学习更高级的数学概念
整数指数幂的计算方法
同底数幂的乘法
基本概念
同底数幂的乘法是指当底数相同时,指数 相加的规则
整数指数幂的应用
简化数学表达式
利用指数法则合并同类项 例如将(a^2 \cdot a^3)简化为(a^5) 简化表达式有助于解决更复杂的问题
解决实际问题
在科学和工程计算中,指数用于表示非常大或非常小的数 例如(10^{- 6})用于表示微小的量 利用指数可以精确地表示和计算这些量
八年级数学上册第1课时 整数指数幂
作品编号:1598753694221587112546 学 校: 录记理旬市杨家镇路计小学* 教 师: 周喻王* 班 级: 荣耀壹班*15.2.3整数指数幂 第1课时 整数指数幂一、新课导入1.导入课题:同学们还记得正整数指数幂的运算性质吗?由a m ÷a n =a m -n ,当m<n 时,底数a 的指数(m-n)是负整数,那么它表示什么呢?2.学习目标:(1)知道负整数指数幂的意义及表示法.(2)能运用分式的有关知识推导整数指数幂的意义. 3.学习重、难点:重点:整数指数幂的意义的推广.难点:用负整数指数幂的意义进行有关计算和变式. 二、自学1.自学指导:(1)自学内容:教材第142页到第143页“思考”之前的内容. (2)自学时间:5分钟.(3)自学方法:认真阅读课本,回顾正整数指数幂的意义,思考a m 中当m<0时,a m 表示什么?(4)自学参考提纲: ①a -2=21a 是如何得来的?一方面a 3÷a 5=a 3-5=a -2,另一方面,a3÷a5=35a a =323a a a •=21a.∴a -2=21a ②当n 是正整数时,a -n =1n a(n≥1), 即a -n (a≠0)是a n的倒数. ③试说说当m 分别是正整数、0、负整数时,am 各表示什么意义?当m 是正整数时,a m 表示m 个a 相乘.当m 是0时,a 0表示一个数的n 次方除以这个数的n 次方,所以特别规定,任何除0以外的实数的0次方都是1.当m 是负整数时,am 表示|m|个1a相乘.2.自学:请同学们结合自学指导进行自学.3.助学: (1)师助生:①明了学情:了解学生的自学情况,收集学生自学中存在的问题. ②差异指导:对学困生进行学习方法和认知方法的指导. (2)生助生:结合实例讨论如何得出a -n=1an (a≠0) 4.强化:(1)当n 为正整数时,a -n =1n a(a≠0),即a -n(a≠0)是a n 的倒数. (2)a m 的意义(m 为正整数、0、负整数). (3)口答:4-1= 14(14)-1=4 (-14)2=116-2-2=-14(13)-3=27 (-13)3=-127(3-2)0=11.自学指导:(1)自学内容:教材第143页“思考”到第144页例9上面的内容.(2)自学时间:5分钟.(3)自学方法:尝试教材上的方法,用负整数幂或0指数幂,验证正整数幂的性质.(4)自学参考提纲:①教材第143页几个具体实例说明了什么?a m·a n=a m+n②换其他整数指数验证①中的规律.a7·a-7=a7-7=a0=1,a-8·a-2=a-8-2=a-10③试用教材第143页的方法,计算a-5÷a-3、(ab)-4、(12)-3,验证并归纳相应的运算性质.④综合①②③实例说明了什么?a m·a n=a m+n,这条性质对于m,n是任意整数的情形仍然适用.⑤试用你找到的规律填空(结果写成分式的形式):⑥由以上的试验运算说明:正整数指数幂的运算性质可以推广到整数指数幂的运算.2.自学:请同学们结合自学提纲进行自学.3.助学:(1)师助生:①明了学情:了解学生的自学情况,看是否真正理解正整数指数幂的运算性质可推广到整数指数幂.②差异指导:对部分学生进行学习方法和认知方法的引导.(2)生助生:学生之间相互交流帮助.4.强化:(1)交流同学们的验证结果,归纳a m·a n;a m÷a n;(a m)n;(ab)n中m、n 的适用范围.(2)练习:1.自学指导:(1)自学内容:教材第144页例9及以下内容(2)自学时间:10分钟.(3)自学方法:阅读例9之前,回顾一下整数指数幂的运算性质.(4)自学参考提纲:①研究例9思考如何进行整数指数幂的运算,计算结果一般应化成怎样的形式?运用整数指数幂的运算性质进行运算,结果一般化为最简分式或整式形式.②引入负整数指数幂后,指数的范围就扩大到了全体整数,那么整数指数幂的性质有哪些?上述式子中,m,n均为任意整数.2.自学:同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生的自学情况,收集学生自学中存在的问题.②差异指导:对例题中运算过程不熟知的学生进行引导,引导运算性质的识记和运用.(2)生助生:学生之间相互交流帮助.4.强化:(1)整数指数幂的运算性质(式子表示)(2)计算:(3)整数指数幂的运算步骤及要求.三、评价1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和学后体验.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及不足进行归纳点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):整数指数幂是在学生学习了分式的基本性质及乘除法之后的教学,教材中利用同底数幂相除的性质给出负整数指数及零指数的意义.在教学中,教师可在复习幂的有关运算性质后提出问题:“幂的这些运算性质中指数都要求是正整数,如果是负数又表示什么意义呢?”通过提问让学生寻找规律,猜想出零指数幂和负整数指数幂的意义,这不但可以调动学生学习的积极性,还可以达到预期效果.一、基础巩固(每题10分,共70分)1.填空:2.若m,n 为正整数,则下列各式错误的是(D )3.下列计算正确的是(C)4.计算:5.若(x-3)-2有意义,则x≠3;若(1xx )-1有意义,则x≠0且x≠-1.7.下列等式一定正确的是(D)二、综合应用(每题10分,共20分)三、拓展延伸(10分)10.若a+a-1=3,试求a2+a-2的值.解:∵a+a-1=3,∴(a+a-1)2=9,∴a2+a-2+2=9,∴a2+a-2=7.。
人教版八年级上册 整数指数幂 课件
(4)积的乘方:(ab)n=_______(n是正整数);
(5)分式的乘方: )n=______(n是正整数);
(6)0指数幂:a0=______(a≠0).
2.用科学记数法表示下列各数:
(1)98 900=________;(2)-135 200=________;
知识点二:科学记数法还原
例2 纳米(nm)是非常小的长度单位,1 nm=10–9 m,把1 nm的物体放
到乒乓球上,就如同把乒乓球放到地球上,1 mm3的空间可以放多少个1
nm3的物体?(物体之间间隙忽略不计)
解:1mm=10-3m,1nm=10-9m.
(10-3)3÷ (10-9)3=10-9÷10-27=1018,
一个不为0的数字前面的0的法表示正确的是( C )
A.0.008=8×10-2
B.0.0056=56×10-2
C.0.0036=3.6×10-3
D.15000=1.5×103
2、用科学记数法把0.000 009 405表示成 9.405×10n,那么
n=
-6
.
例题解析
15.2.3 整数指数幂
教学目标
1.理解负整数指数幂的意义,正确熟练
地运用负整数指数幂公式进行计算.
2.掌握整数指数幂的运算性质,能在实
际生活中简单运用.
3.会用科学记数法表示小于1的正数.
教学重难点
重点
科学记数法与负整数指数幂的运算.
难点
运用负整数指数幂的运算性质进行计算.
重难点解读
1.负整数指数幂在计算时,若底数为正数
−
= .
归纳总结
人教版数学八年级上册 15.2.3整数指数幂 第1课时 负整数指数幂 课件
为了使上述运算适用范围更广,同时也可 以更简便地表示分式,数学中规定:
负整数指数幂:一般地,当n是正整数时, a -n
1 (a≠0). an
这就是说a-n(a≠0)是an 的倒数.
新知探究
知识点 负整数指数幂
am·an=am+n这条性质对于m,n是任意整数的情形仍然使用.
你可以用负整数指数幂或0指数幂对于其他正整数指数 幂的运算性质进行验证,看看这些性质在整数指数幂范 围内是否还使用.
解:(2)原式
1 (a2
-
1 b2
)
(1 a
1) b
1 (a2
-
1 b2
)
(1 a
-
1) b
(1 1 )(1 - 1 ) (1 1 )(1 - 1 )
a bab (1 1)
a
ba (1 - 1)
b
ab
ab
1-111 ab a b
2. a
,则a、b、c的大小关系是( A )
A.a<b<c
B.b<a<c
C.a<c<b
D.c<a<b
课堂训练
3.(2021•定兴县一模)计算
A.2-7
B.27
C.-48
的结果为( A ) D.-4-8
4.(2021•绥化)定义一种新的运算:如果a≠0.则有a▲b=a﹣2+ab+
|﹣b|,那么(﹣ )▲2的值是( B )
当指数为负数和0时,一定要保证底数不是零.
新知探究
2.计算:
(1)a2b-2·(a-2b)3;
(2)(3x2y-2)2÷(x-2y)3;
(3)(3×10-5)3÷(3×10-6)2.
整数指数幂说课稿
整数指数幂说课稿(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如报告总结、合同协议、申报材料、规章制度、计划方案、条据书信、应急预案、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts for everyone, such as report summaries, contract agreements, application materials, rules and regulations, planning schemes, doctrine letters, emergency plans, experiences, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!整数指数幂说课稿整数指数幂说课稿(通用10篇)作为一名为他人授业解惑的教育工作者,常常需要准备说课稿,借助说课稿可以让教学工作更科学化。
湘教版八年级数学上册课件-整数指数幂的运算法则
是aa正mn 整a数m-n,(且a≠m0>,nm),;n都
a
n
)b.
an(b≠0,n是正整数
bn
思考:之前我们已经学习了零指数幂和负指数幂的 运算,那么 am·an=am+n(m,n都是正整数)这条 性质能否扩大到m,n都是任意整数的情形?
讲授新课
一 整数指数幂的运算
计算:(1)a3·a-5; (2)a-3·a-5;(3)a0·a-5.
解:(10×8×3)×(3×106)÷(2×105) =(720×106)÷(2×105) =360×10=3.6×103(毫升).
当堂练习
1. 设a≠0,b≠0,计算下列各式:
(1)a a3 ___a_4___;
(2)a3 a1 2 ___a_____;
(3)(a)2
优质 课件
八年级数学上(XJ) 教学课件
第1章 分 式
1.3 整数指数幂
1.3.3 整数指数幂的运算法则
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.理解整数指数幂的运算法则;(重点) 2.会用整数指数幂的运算法则进行计算. (重点、难点)
导入新课
回顾与思考
问题 正整数指数幂的运算法则有哪些?
am·an=am+n(m,n都是正整数) ; (am)n=amn(m,n都是正整数); (ab)n=anbn(n是正整数).
解:1
原式=
a3 a5
1 a2
a2
a35 ,即a3
a 5
a35;
2
原式=
1 a3
1 a5
1 a8
a 8
人教版八年级数学上册《整数指数幂(1)》名师课件
=a-6=a3×(-2),即(a3)-2 =_a_3_×_(_-__2)__;
(2) 看看计算结果有什么规律?
(am)n=__a__m_n_____ (m,n是整数)
探究二
活动3
(1)根据乘方和负指数幂的意义填空.
(ab)-3=
1 ab
3
=
1 a3b3
=a13
1 b3
=a-3b-
3,即(ab)-3
原式=104a 102b (102a )2 (10b )2 ( 1)2 62 9
4
4
(1)理解负整数指数幂的性质. (2)正确理解指数由正整数扩充到整数时,以前学习的幂的
运算性质仍然成立. (3)运用幂的性质进行整数指数幂的运算.
(1)整数指数幂的运算. (2)利用幂的性质求代数式的值.
1
100 10
= 11 100
【思路点拨】根据负指数幂的性质可得:
(- 3)2 = 1 ;(10)2 = 1 ; 101= 1
5 (- 3)2
102
10
5
探究三
活动1 基础性例题
例2.计算: -4 -( 6-)0 +(1)-1+(-1)-5
4
解:原式=4-1+4-1=6
【思路点拨】根据负指数幂的性质可得:
(2) 看看计算结果有什么规律?
am·an= am+n(m,n是整数) ; am÷an=am-n (m,n是整数)
探究二
活动2
(1)根据乘方和负指数幂的意义填空.
(a-2)3=(
1 a2
1
)3=a2 3
=a-6=a-2×3,即(a-2)3
=_a_-__2_×_3_;
(a3)-2=
人教版数学八年级上册15.2.3整数指数幂(第1课时)优秀教学案例
5.作业小结:布置具有针对性的作业,巩固学生所学知识,要求学生对自己的学习过程进行反思,提高自我认知能力。同时,及时批改和反馈作业,帮助学生巩固知识,提高学生的学习效果。
本节课案例亮点突出,教学策略得当,注重学生主体地位,充分调动学生的学习积极性,提高学生的数学素养。在教学过程中,教师以生活情境导入,激发学生学习兴趣;通过问题导向、小组合作等方式,培养学生的思考能力、合作能力和解决问题能力;最后进行总结归纳,布置针对性作业,帮助学生巩固知识,提高学习效果。整个教学过程流畅自然,充分体现了教师的教育智慧和教学艺术。
(二)问题导向
1.设计具有挑战性的数学问题,引导学生独立思考、主动探究;
2.引导学生提出问题,激发学生的思考和讨论。
在教学过程中,我将精心设计具有启发性的问题,引导学生主动探究整数指数幂的运算性质。同时,鼓励学生提出问(三)小组合作
1.组织学生进行小组讨论,培养学生的合作交流能力;
三、教学策略
(一)情景创设
1.生活情境:结合生活实际,创设与整数指数幂相关的情境,如计算手机号码中的数字排列组合等,让学生在情境中感受整数指数幂的应用;
2.数学情境:通过展示幂运算的实例,引导学生发现整数指数幂的规律,激发学生的探究欲望。
在教学过程中,我将注重情境的创设,让学生在真实的情境中感受数学与生活的紧密联系,激发学生的学习兴趣。通过生活情境和数学情境的结合,引发学生的思考,促进学生对整数指数幂的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作品编号:8567941235890031445888659 学 校: 量印超jgj 市收高眉镇页设小学* 教 师: 谢德刚* 班 级: 字文叁班*
15.2.3整数指数幂 第1课时 整数指数幂
一、新课导入
1.导入课题:
同学们还记得正整数指数幂的运算性质吗?由a m ÷a n =a m -n ,当m<n 时,底数a 的指数(m-n)是负整数,那么它表示什么呢?
2.学习目标:
(1)知道负整数指数幂的意义及表示法.
(2)能运用分式的有关知识推导整数指数幂的意义. 3.学习重、难点:
重点:整数指数幂的意义的推广.
难点:用负整数指数幂的意义进行有关计算和变式. 二、自学
1.自学指导:
(1)自学内容:教材第142页到第143页“思考”之前的内容. (2)自学时间:5分钟.
(3)自学方法:认真阅读课本,回顾正整数指数幂的意义,思考a m 中当m<0时,a m 表示什么?
(4)自学参考提纲: ①a -2=
2
1
a 是如何得来的?
一方面a 3÷a 5=a 3-5
=a -2
,另一方面,a3÷a5=35a a =323a a a •=21
a
.
∴a -2=
2
1
a ②当n 是正整数时,a -n =
1n a
(n≥1), 即a -n (a≠0)是a n
的倒数. ③试说说当m 分别是正整数、0、负整数时,am 各表示什么意义?
当m 是正整数时,a m 表示m 个a 相乘.当m 是0时,a 0表示一个数的n 次方除以这个数的n 次方,所以特别规定,任何除0以外的实数的0次方都是1.
当m 是负整数时,am 表示|m|个
1
a
相乘.
2.自学:请同学们结合自学指导进行自学.
3.助学: (1)师助生:
①明了学情:了解学生的自学情况,收集学生自学中存在的问题. ②差异指导:对学困生进行学习方法和认知方法的指导. (2)生助生:结合实例讨论如何得出a -n=1an (a≠0) 4.强化:
(1)当n 为正整数时,a -n =
1n a
(a≠0),即a -n
(a≠0)是a n 的倒数. (2)a m 的意义(m 为正整数、0、负整数). (3)口答:4-1= 14
(14
)-1=4 (-14
)2=
116
-2-2=-1
4(1
3
)-3=27 (-1
3
)3=-1
27
(3-2)0=1
1.自学指导:
(1)自学内容:教材第143页“思考”到第144页例9上面的内容.
(2)自学时间:5分钟.
(3)自学方法:尝试教材上的方法,用负整数幂或0指数幂,验证正整数幂的性质.
(4)自学参考提纲:
①教材第143页几个具体实例说明了什么?a m·a n=a m+n
②换其他整数指数验证①中的规律.
a7·a-7=a7-7=a0=1,a-8·a-2=a-8-2=a-10
③试用教材第143页的方法,计算a-5÷a-3、(ab)-4、(1
2
)-3,验证并归纳相应的运算性质.
④综合①②③实例说明了什么?a m·a n=a m+n,这条性质对于m,n是任意整数的情形仍然适用.
⑤试用你找到的规律填空(结果写成分式的形式):
⑥由以上的试验运算说明:正整数指数幂的运算性质可以推广到整数指数幂的运算.
2.自学:请同学们结合自学提纲进行自学.
3.助学:
(1)师助生:
①明了学情:了解学生的自学情况,看是否真正理解正整数指数幂的运算性质可推广到整数指数幂.
②差异指导:对部分学生进行学习方法和认知方法的引导.
(2)生助生:学生之间相互交流帮助.
4.强化:
(1)交流同学们的验证结果,归纳a m·a n;a m÷a n;(a m)n;(ab)n中m、n 的适用范围.
(2)练习:
1.自学指导:
(1)自学内容:教材第144页例9及以下内容
(2)自学时间:10分钟.
(3)自学方法:阅读例9之前,回顾一下整数指数幂的运算性质.
(4)自学参考提纲:
①研究例9思考如何进行整数指数幂的运算,计算结果一般应化成怎样的形式?
运用整数指数幂的运算性质进行运算,结果一般化为最简分式或整式形式.
②引入负整数指数幂后,指数的范围就扩大到了全体整数,那么整数指数幂的性质有哪些?
上述式子中,m,n均为任意整数.
2.自学:同学们结合自学指导进行自学.
3.助学:
(1)师助生:
①明了学情:了解学生的自学情况,收集学生自学中存在的问题.
②差异指导:对例题中运算过程不熟知的学生进行引导,引导运算性质的识记和运用.
(2)生助生:学生之间相互交流帮助.
4.强化:
(1)整数指数幂的运算性质(式子表示)
(2)计算:
(3)整数指数幂的运算步骤及要求.
三、评价
1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和学后体验.
2.教师对学生的评价:
(1)表现性评价:对学生的学习态度、方法、成果及不足进行归纳点评.
(2)纸笔评价:课堂评价检测.
3.教师的自我评价(教学反思):
整数指数幂是在学生学习了分式的基本性质及乘除法之后的教学,教材中利用同底数幂相除的性质给出负整数指数及零指数的意义.在教学中,教师可在复习幂的有关运算性质后提出问题:“幂的这些运算性质中指数都要求是正整数,如果是负数又表示什么意义呢?”通过提问让学生寻找规律,猜想出零指数幂和负整数指数幂的意义,这不但可以调动学生学习的积极性,还可以达到预期效果.
一、基础巩固(每题10分,共70分)
1.填空:
2.若m,n 为正整数,则下列各式错误的是(D )
3.下列计算正确的是(C)
4.计算:
5.若(x-3)-2有意义,则x≠3;若(
1
x
x )-1有意义,则x≠0且x≠-1.
7.下列等式一定正确的是(D)
二、综合应用(每题10分,共20分)
三、拓展延伸(10分)
10.若a+a-1=3,试求a2+a-2的值.
解:∵a+a-1=3,
∴(a+a-1)2=9,
∴a2+a-2+2=9,
∴a2+a-2=7.。