汽轮机低压缸漏汽的原因分析与研究

汽轮机低压缸漏汽的原因分析与研究
汽轮机低压缸漏汽的原因分析与研究

参数的选择与汽轮机内效率分析

参数的选择与汽轮机内 效率分析 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

参数的选择对汽轮机内效率浅析 原创:孙维兵连云港碱厂22042 摘要:简要叙述电力和工业用汽轮机的内效率,以及蒸汽初、终参数选择对对全厂能耗的影响。 关键词:汽轮机内效率蒸汽参数能耗 一、汽轮机内效率 1、背压汽轮机数据模拟本表来源某碱厂6000kw背压机组,带下划线的 由于蒸汽和喷管叶片的磨擦生热,被蒸汽吸收后汽温提高,在下一级得到利用,机组级数越多,利用次数越多,总内效率有所提高。热机内效率η=100%×实际焓降÷理想焓降,汽轮机的内效率表示的是设计的汽轮机组的完善程度,相当于存在的所有不可逆损失的大小,即实际利用的焓降与理论上能达到的焓降的比值。 严济慈说:“所费多于所当费,或所得少于所应得,都是一种浪费”。提高热机的热效率的方法有二种,一是提高高温热源的温度,二是降低低温热源即环境的温度;低温热源变化较小,因此提高蒸汽初温和初压就成为提高机组的热效率的途径。相对地,提高热机的内效率则基本上只有一种方法,即设计更完善的机组使汽机内部各种不可逆损失减少到最少。

从热力学第二定律上看,冷源损失是必不可少的,如果用背压抽汽供热机组,它是将冷源损失算到热用户上,导致所有背压热效率接近100%,但内效率差距仍然很大。 即消耗同样多的蒸汽量发出的电能有大有小。小容量汽轮机的汽封间隙相对较大,漏汽损失较大,同时由于成本投资所限,汽轮机级数少,设计的叶型也属早期产品,所以容量小的机组内效率很低。目前电力系统主力机组亚临界压力汽轮机组都较大,总内效率高达90-92%,热力学级数达到27级;相比于发电用汽轮机,工业汽轮机级数少,内效率偏低,明显是不经济的。 3、喷咀和喷管。冲动式汽轮机的蒸汽在静止的喷咀中膨胀加速,冲击汽轮机叶片。对喷咀来说,存在临界压力和临界压力比。如渐缩喷管,流量达到最大值时,出口压力p2与进口压力p1之比βc约为,当背压p2下降低于βc ×p1时,实际流量和汽体的速度不再增加,相当于压力降白白损失了。反动式汽轮机内效率较高,但单级压降较冲动式更小。纯碱厂常用的压缩工业汽轮机有11级,但压力降能力较小,实际运行时内效率不高。真空岗位的工业汽轮机,只有一级双列速度级,单级压力降能力是有限的,如果选择的排汽参数太小,那么许多压力降是白白损失了,如上述真空透平机实际运行时内效率只有%,如果考虑机组的漏汽损失,内效率还会更低。在同样的进汽参数与排汽参数下,某国产真空工业汽轮机,冲动技术,厂家设计内效率只有%。 中压汽轮机为节省投资,最大限度地提高压力降,选用的第一级调节级为双列速度级,它的内效率也相对较低,为提高整个机组内效率,高压和超高压以上汽轮机组全部摒弃双列速度级只用普通的带反动度的压力级。同样的,当工业透平机的单级压力降太大时或排汽压力远远低于设计压力时,它的压力降不能得到有效的利用,级的内效率下降较快。由于纯碱厂的低压蒸汽管网运行压力远低于设计压力,远离设计参数,汽轮机、压缩汽轮机和真空机的内效率损失较大。 二、参数的选择 1、设计过程中存在的冗余。如DG140/59给水泵设计,内效率约在70-74%,所需轴功率为310-328千瓦(计算略),选用电机400千瓦即可,设计院一般选用电机为440千瓦。同样DG140/59给水泵,设计压力为,实际运行时省煤器进口压力约在-,当给水泵出口压力在时,即可满足锅炉用水需要,如果设计给水泵压力为,给水管道应选比正常值稍大如可选φ200左右,可节能16%左右。又如锅炉送风机风量,理论空气量已经满足燃烧要求,锅炉厂给出的送风量已经乘以的系数,如果设计院选风机时风量再乘以的系数,在选用配套电机时功率将变得更大。在锅炉与汽轮机配套设计中,锅炉以额定参数运行时,汽轮机入口压力将超过设计压力约,高压超高压机组汽轮机超过设计压力也较大。设计中存在的冗余对锅炉和汽轮机经济性影响较大,中压机组热效率影响

汽轮机本体结构(低压缸及发电机)

第一章600WM汽轮机低压缸及发电机结构简介 一、汽轮机热力系统得工作原理 1、汽水流程: 再热后得蒸汽从机组两侧得两个中压再热主汽调节联合阀及四根中压导汽管从中部进入分流得中压缸,经过正反各9 级反动式压力级后,从中压缸上部四角得4 个排汽口排出,合并成两根连通管,分别进入Ⅰ号、Ⅱ号2个低压缸。低压缸为双分流结构,蒸汽从中部流入,经过正反向各7 级反动式压力级后,从2个排汽口向下排入凝汽器。排入凝汽器得乏汽在凝汽器内凝结成凝结水,由凝结水泵升压后经化学精处理装置、汽封冷却器、四台低压加热器,最后进入除氧器,除氧水由给水泵升压后经三台高压加热器进入锅炉省煤器,构成热力循环。 二、汽轮机本体缸体得常规设计 低压汽缸为三层缸结构,能够节省优质钢材,缩短启动时间。汽机各转子均为无中心孔转子,采用刚性联接,,提高了转子得寿命及启动速度。#1 低压转子得前轴承采用两瓦块可倾瓦轴承,这种轴承不仅有良好得自位性能,而且能承受较大得载荷,运行稳定。低压转子得另外三个轴承为圆筒轴承,能承受更大得负荷。 三、岱海电厂得设备配置及选型 汽轮机有两个双流得低压缸;通流级数为28级。低压汽缸为三层缸结构,能够节省优质钢材,缩短启动时间。汽机各转子均为无中心孔转子,采用刚性联接,提高了转子得寿命及启动速度。低压缸设有四个径向支持轴承。#1 低压缸得前轴承采用两瓦块可倾瓦轴承,这种轴承不仅有良好得自位性能,而且能承受较大得载荷,运行稳定。低压转子得另外三个轴承为圆筒轴承,能承受更大得负荷。 汽轮机低压缸有4级抽汽,分别用于向4 台低压加热器提供加热汽源。N600-16、7/538/538汽轮机采用一次中间再热,其优点就是提

汽机缸效率

鲁北电厂供热影响缸效、煤耗经济性分析本文重点分析了供热造成再热蒸汽节流,造成汽缸效率变化,并且对煤耗和循环效率,经济性产生的影响。 一、鲁北电厂热力试验所得数据说明 1、汽轮机试验热耗率计算公式 Ht=((Gms-Gss)*(ims-ifw)+Gch*(irh-ich)+Gss*(ims-iss)+Grs*(irh-irs))/Pe Gms-----主汽流量 ims-----主蒸汽焓 Grh-----再热蒸汽流量 irh-----再热蒸汽焓 Gfw-----最终给水流量 ifw-----最终给水焓 Gch-----冷再热蒸汽流量 ich-----冷再热蒸汽焓 Gss-----过热器减温水流量 iss-----过热器减温水焓 Grs-----再热器减温水流量 irs-----再热器减温水焓 Pe------发电机输出功率 A、第一类修正(系统修正) 第一类修正计算按照ASME PTC6—2004的方法,将试验热力系统变量修正到设计条件下。修正项目包括: 加热器端差; 抽汽管道压损; 再热器减温水流量; 过热器减温水流量; 系统中各储水容器水位变化量; 凝结水泵和给水泵的焓升; 凝汽器凝结水的过冷度;

按照上述规定的修正项目,重新进行回热系统热平衡迭代计算和内功率计算,最后计算出修正后的热耗率和电功率,修正计算结果见附件。 B、第二类修正(参数修正) 设计工况下的热耗率为: HR=Ht/(C1×C2×C3×C4×C5) 式中:C1、C2、C3、C4、C5依次为主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、低压缸排汽压力对热耗率的修正系数。 设计工况下的发电机功率为: Per=Pe/(K1×K2×K3×K4×K5) 式中:K1、K2、K3 、K4 、K5依次为主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、低压缸排汽压力对功率修正系数。 以上各修正系数由制造厂给出的修正曲线查得,修正曲线见《汽轮机性能试验附件》。 2、1号机缸效和热耗值 a、为了分析机组目前的运行状况和经济指标,对额定出力工况和其他部分负荷工况的热耗率仅进行了二类修正,以供分析计算机组目前的发供电煤耗率。低负荷240MW工况,机组滑压运行,不修正主汽压力对试验结果的影响。

汽轮机运行讲解

第六部分汽轮机启动与停止 258.什么是汽轮机额定参数启动和滑参数启动? 答:额定参数启动时,电动主汽门前的新蒸汽参数在整个启动过程中始终保持在额定参数。这种启动方式为定参数启动。滑参数启动时,电动主汽门前的蒸汽参数随转速、负荷的升高而滑升,汽轮机定速并网后,调节门处于全开状态。这种启动方式为滑参数启动。 259.什么是汽轮机的冷态启动和热态启动? 答:按汽轮机启动前的金属温度高低,可分为冷态启动和热态启动,一般以汽轮机冷态启动维持汽轮机空转时,调节汽室处汽缸的温度水平(约150℃)来划分这两种启动。如果启动时汽轮机金属的温度低于此温度称为冷态启动,高于这个温度称为热态启动。 260.汽轮机启动前为什么要进行暖管? 答:一次暖管是指从电动主汽门前新蒸汽管道和暖管;二次暖管是指电动主闸门后至自动主汽门前管道的暖管。 机组启动时,如果不预先暖管并充分排放疏水,由于管道的吸热,这就保证不了汽轮机的冲动参数达到规定值,同时管道的疏水进入汽轮机造成水击事故,这是不允许的。261.汽缸为什么要进行疏水? 答:因为汽轮机启动时,汽缸内会有蒸汽凝结成水。如果不疏水,将会造成叶片冲蚀。另外,停机情况下造成汽缸内部有凝结水,腐蚀汽缸内部。有时在运行中锅炉操作不当,发生蒸汽带水或水冲击现象,也使汽缸过水。因此必须从汽缸内把这部分疏水放掉,保证设备安全。262.汽轮机电动主闸门后暖管为什么要先开旁路门? 答:由于主蒸汽管道内的压力很高,而在暖管前电动主闸门后没有压力。因此,电动主闸门前、后压差很大,使电动主闸门不易开启;先开旁路门,一方面能减小电动主闸门前后压力差,使电动主闸门开启容易;另一方面,用旁路门便于控制蒸汽流量和升温、升压速度,对减少管道、阀门、法兰等的热应力有利。 263.汽轮机启动前为什么要疏水? 答:启动时,暖管、暖机时蒸汽遇冷马上凝结成水,凝结水如不及时排出,高速流动的蒸汽就会把水夹带汽缸内造成水冲击,严重时引起汽轮机的振动。因此启机前,必须开疏水门。264.汽轮机启动前为什么要先抽真空? 答:汽轮机启动前,汽轮机内部已存在空气,机内压力相当于大气压力,如果不先抽真空,空气无法凝结,因而排汽压力很大。在这种情况下启机时,必须要有很大的蒸汽量来克服汽轮机及发电机,各轴承中的磨擦阻力和惯性力,才能冲动转子,这样就使叶片受到的蒸汽冲击力增大。此外,转子冲动后,由于凝汽器内存在空气,使排汽与冷却水中间的热交换效果降低,结果排汽温度升高,使汽轮机后汽缸内部零件变形。凝汽器内背压增高,也会使凝汽

汽轮机上下缸温差严重超限的原因分析

汽轮机上下缸温差严重超限的原因分析 摘要:汽轮发电机组的大轴弯曲是电力系统中二十五项重大事故之一,而汽缸的上下缸温差大又是造成大轴弯曲的主要原因之一。本文将对南海发电一厂#2机组在一次跳机事故后上下缸温差严重超限的原因进行分析,找到事故原因及应对措施,为电力系统的安全生产提供有益参考。 关键词:跳机事故;缸温差超限;原因;措施 概述 1.事故经过 发生跳机事故之前,#2机组带165MW负荷正常运行,各主要参数均在正常范围。由于该机组的锅炉是刚更新扩建的国内第一台大容量(670吨/时)燃水煤浆锅炉,相关技术和运行经验都不成熟,容易出现锅炉灭火。本次跳机事故就是由锅炉MFT引起的,在汽轮机被联跳之后,运行人员迅速进行了不破坏真空停机操作,维持凝汽器真空90 KPa并立即恢复系统准备重新启机。在重新启机的过程中,低旁减温减压器的减温水门打不开且未能得到及时处理,维持此状态达3小时之久,导致中压缸内壁上下缸温差拉大至66℃,超过了《汽轮机运行规程》(以下简称《规程》)规定的50℃上限,无法正常启机。调整系统无效后值长下令:机炉全停、破坏真空作闷缸处理。期间中压缸内壁上下缸温差最大到72℃,经调整至五抽母管逆止门前后及中压缸本体疏水后,中压缸内壁上下缸温差才稳住并开始缩小。与此同时,高压外缸内/外壁上下缸温差拉大至55/73℃,且两者仍在继续拉大,直至高压外缸外壁上下缸温差到94℃时才缓慢缩小,高压缸前汽封处已有明显的摩擦声。 由于高中压缸缸温差严重超限,无法立即启机,还可能会造成严重的设备损坏和重大经济损失。经公司各专家研究后决定投高压缸下夹层加热,以提高高压外下缸壁温,从而减小高压外缸上下缸温差并达到快速启机条件,降低设备危险和经济损失。 在高压外缸内/外壁上下缸温差达70/89℃时,汽缸夹层联箱经过充分暖箱疏水后,准备投下夹层加热。当刚开下夹层进汽门时,高压外下缸内壁温度从310℃突降至277℃,立即关门停止下夹层加热,该点温度明显回升,高压外缸内/外壁上下缸温差最大到102/105℃。由于联系及时,操作时间短,故未造成更大危险。后来经各专家研究后决定再次投入高压缸下夹层加热,此时高压外下缸内壁温度开始上升。当高压外缸内/外壁上下缸温差缩至32/45℃;中压缸内壁上下缸温差缩至48℃时,检查汽轮机各参数都满足《规程》规定,汽机开始冲转、并网,直至带200MW额定负荷均正常。 2.事故原因分析

汽轮机内效率计算方法

楼主对效率的理解有误,透平机输出功率N=G.ΔHs.η/3600,这是你需要的公式,这里: N:kW G:蒸汽流量,kg/h ΔHs:等熵焓降,kJ/kg,注意这里是等熵焓降! η:等熵效率,也称内效率,%,一般也就60~70%,这个效率也就是你所言的那个60%的效率。 再来看看你的蒸汽参数: 1、汽轮机入口过热蒸汽: 压力P=23.5barg,温度T=390C,比焓H=3,218kJ/kg,比熵S= 6.9933 kJ/kg.C;2、汽轮机出口蒸汽: 注意,你既然指定了等熵效率60%,那么你就应该计算和入口蒸汽比熵相等的熵值的蒸汽参数,其温度压力这俩参数你不能都去指定,而需要你计算: 压力P=8barg(压力值你可以指定,这个与背压汽轮机控制出口蒸汽压力的过程是吻合的) 比熵S= 6.9933 kJ/kg.C(比熵一定要和入口蒸汽相等!此点非常重要,这是你计算的基准!) 根据上述两个条件,即指定的压力和比熵,确定最终汽轮机出口蒸汽参数为:温度T=253.22 C,比焓H=2,954kJ/kg,你的计算错在这里!因为你指定了等熵效率60%,那么你就不能再指定出口蒸汽的温度、压力这两个参数了,你应该指定比熵、压力这两个参数,由这俩参数计算比焓,求出焓降: ΔHs=3218-2954=265 kJ/kg; 因此N=G.ΔHs.η/3600=10000x265x60%/3600=441.7 kW=0.442 MW,拿计算器摁都成,MW消耗蒸汽量(俗称的汽耗)W=10/0.442=22.6 T/MW,一般工厂用汽轮机用蒸汽参数要比楼主给出的蒸汽参数更高,比如5MPa,450C蒸汽,汽耗一般在20T/MW(或者说20kg/kW),你这个汽轮机的数据略高了些,但你的蒸汽参数低啊,经验数据还是差不多的,贵厂的汽轮机发电是不是差不多这个数?呵呵。

影响汽轮机组热耗率

影响汽轮机组热耗率(效率)的因素有哪些? 影响汽轮机组热效率(效率)的因素的主要由汽轮机通流部分效率与蒸汽动力循环热效率俩部分效率与蒸汽动力循环热效率俩部分构成,汽轮机通流部分效率和蒸汽动力循环热效率高,则汽轮机热耗率低(效率高)。 汽轮机通流部分效率取决于汽轮机的设计、制造、安装水平,蒸汽动力循环热效率取决于循环形式与循环初终参数。 (1)汽轮机通流部分效率取决于汽轮机高压缸、中压缸、低压缸效率以及高压配汽机构的节流损失。 (2)蒸汽初参数 蒸汽初参数主要是指汽轮机主蒸汽门前的主蒸汽压力、主蒸汽温度。 主蒸汽压力、主蒸汽温度低于设计值对汽轮机热耗率的影响通过两个方面来体现: 1、循环热效率低,汽轮机热耗率上升; 2、造成汽轮机内部蒸汽膨胀也流动状态偏离设计值,缸效率下降,汽轮机组热耗率上升。 所以在汽轮机运行调整过程中,保持蒸汽初参数在运行规程规定范围内是保证汽轮机安全、经济运行的重要措施之一。 对于大容量机组,随着机组负荷的变化有定、滑压运行两种方式,机组定、滑压运行的经济性取决于汽轮机高压缸效率、高压配汽机机构的节流损失以及给水泵能耗的综合作用。 (3)蒸汽终参数 蒸汽终参数是指汽轮机低压缸排气压力。一般情况下,排汽压力低,则汽轮机热耗率越低。通常排汽压力通过测量真空和大气压力计算得到,排汽压力等于大气压力减去凝气器真空度,现场分析排汽压力对机组的影响时习惯上采用真空。 凝汽器真空度对汽轮机热耗率的影响通过两个方面来体现: 1、凝气器真空度低于设计值,热力循环冷源参数高于设计值,汽轮机冷源损失增加、循环热效率降低,热耗率上升。 2、凝汽器真空度降低,汽轮机低压缸内部末几级蒸汽膨胀发生变化:有效焓降降低、反动度增大,极效率降低;当凝汽器真空度剧烈变化时,反动度的变化可能引起轴向推力的变化,引起推力轴承负荷增加。所以在汽轮机运行调整过程中,保持较高的凝汽器真空度参数是保证汽轮机安全、经济运行的重要措施之一。 事实上,凝汽器真空度升高,在机组负荷、环境温度、真空严密性等条件不变的前提下必须依靠增加循环冷却水流量。而循环冷却水流量增大是以循环水泵耗电量增加为代价的,所以在实际运行工作中就有一个汽轮机最有利真空的控制。 4、在热循环 对于某一给定的蒸汽循环而言,在热蒸汽循环对汽轮机组热耗率的影响主要通过再热蒸汽温度、再热器减温水流量以及再热器压损来体现。 (1)在热蒸汽温度低于设计值。一是循环热效率降低,汽轮机组热耗率上升。二是汽轮机中压缸内部蒸汽膨胀与流动状态偏离设计值,造成汽轮机中压缸效率下降,汽轮机组热耗率上升。 (2)再热器减温水流量。再热器喷水减温的过程,是一个非再热的中参数循环,与主循环相比其热经济性要低许多。 (3)再热器压损,再热器压损增大,一方面按等级效焓降理论,蒸汽的作功能能力降低;另一方面再热器压力降低,中压缸内部蒸汽膨胀与流动状态偏离设计值,造成汽轮机中压缸效率下降,汽轮机组热效率上升。 (5)给水回热循环 给水回热循环对汽轮机热耗率的影响主要是通过给水回热循环的效果体现。

防止汽轮机上下缸温差大的27个控制点

防止汽轮机 上下缸温差大的27个控制点 1、在机组启动过程中,轴封供汽温度必须与缸温相匹配,当高压内上缸内壁温度在350℃以下时,用厂用联箱供汽,在350℃以上时,用主蒸汽供汽,在事故情况下,轴封汽源可直接将厂用蒸汽供除氧器进行接带,防止轴封供汽中断。 2、轴封供汽暖管时,必须将轴封联箱疏水门开启,并将高压缸前后轴封、中低压缸前后轴封供汽门开启,待轴封供汽管内积水充分疏尽后关闭各分门,轴封供汽暖管至联箱,如轴封供汽采用联络门供汽,必须将联络门前后疏水打开充分疏水后方可供汽。 3、轴封供汽投入时,首先向低压轴封供汽,待低压轴封处冒汽确证无水后,再向高、中压前后轴封供汽。 4、加热装置暖体时,必须在抽真空前将夹层、法螺进汽联箱疏水及法螺回汽联箱疏水门、回汽分门、总门打开,并将上下夹层供汽门、左右螺栓供汽门及门后疏水门打开,充分放水后关闭,待机侧主蒸汽温度接近或高于高压内上缸内壁温度时,进行夹层、法螺联箱暖体,保证法螺加热柜充分预热,暖体不发生水

击泄漏。 5、主机真空维持在55~60kpa,不得太高。 6、炉点火稍见压后,先开高旁前后疏水,然后适当开启高旁减压阀进行暖管疏水,但必须监视高压缸缸温变化,如高排逆止门严密可缓慢开大高旁减压阀,否则必须待机侧主汽温度高于或接近高压内上缸内壁温度时方可投入高旁减压阀,待高旁投入正常后,关闭前后疏水门。 7、机组启动抽真空前,应将本体疏水箱水打空。 8、热态启动应尽量早送轴封、抽真空、投低旁及减温水,将所有蒸汽管道及缸体疏水由排大汽导入疏扩,加强系统疏水。 9、管道疏水倒疏扩时,高排逆止门后疏水倒入疏扩即可,决不允许将高排逆止门前后疏水通过联络门同时倒疏扩。 10、机组启动时,应将冲转参数提前通知锅炉,并控制好冲车参数。 11、当机侧主汽温度高于或接近高压内上缸内壁温度时,即可开启自动关闭器进行暖管,但高中压导管疏水必须开足,并注意监视缸温变化及盘车运行情况,否则打闸,关闭高、中压自动关闭器。 12、机组冲转前如发生缸温突降,必须查明原因,只有缸温

汽轮机停机后高压缸上下缸温差大的原因分析

汽轮机高压缸上、下缸温差大的原因分析及处理措施 (广州市旺隆热电有限公司,广东广州511340) 摘要:针对广州市旺隆热电有限公司两台N110/C68-8.83/0.981汽轮机开机过程和停机后高压缸上、下缸温差大的现象,详细分析造成此现象的原因,在机组检修和开、停机过程中采取有针对性的处理措施,控制高压缸上、下缸温差。 广州市旺隆热电有限公司(以下简称旺隆公司)两台汽轮机为哈汽生产的N110/C68-8.83/0.981双缸、单轴、冲动式、单抽、凝汽式汽轮机,分别于2005年9月和10月投入运行。自投产后两台汽轮机多次在开机过程和停机后出现高压缸上、下缸温差大的现象,特别是当机组故障停机后三小时内汽轮机高压缸上、下缸温差就超过50℃,致使机组无法快速恢复运行。 1. 旺隆公司汽轮机高压缸上、下缸温差大现象 1.1 2006年12月24日1点31分,#2机保护动作机组掉闸,机组停运后在3点30分时左右汽缸温差已扩大到50℃,机组停定后3小时内,下缸温度降幅10℃/h以上。 1.2 2008年5月8日15点35分,#1机保护动作机组掉闸,掉闸前汽机上缸内壁温度50 2.6℃,下缸内壁温度498.5℃。17点34分上缸内壁温度降至477.4℃,下缸内壁温度降至426.4℃,上下缸温差51℃,机组停定后3小时内,下缸温度降幅10℃/h以上。 1.3 通过收集2009年两台机滑参数停机后缸温数据发现,机组停定8小时后两台机上、下缸温差均会超过50℃,机组停定后3小时内,下缸温度降幅10℃/h

以上。 1.4 2006年至2009年期间,机组热态开机过程中有数次高压缸上、下缸温差超过50℃,机组被迫打闸停机。 2. 缸温差大的影响和危害 当出现缸温差时,转子偏心会出现一定程度的变化。当出现较大偏心尤其异常性反弹时,可能会发生缸体内部的动静部分摩擦,摩擦处产生热量温度升高,动静部分间隙进一步减小,碰磨加剧,给机组带来严重损害。 另外,当缸温差较大时,缸体将发生“猫拱背”变形,轻则破坏汽机结合面的严密性,导致漏汽,重则致使动、静部分间隙变小,导致动静摩擦,另外缸体变形会使轴承中心发生变化,使机组发生剧烈振动。 因缸温差大会对汽轮发电机组产生严重危害,一般来讲,运行规程规定机组启动前当上、下缸温差超过50℃时机组不得启动,机组启动过程中上、下缸温差超过50℃应打闸停机,如机组启动过程中或热态停机后缸温差超标,则机组将被迫停机或延迟启动,特别是热态停机后如缸温差超标,通常只得等缸温下降至冷态水平上、下缸温差才降低到50℃以下,延误时间至少3天以上,给电厂带来极大的经济损失。 3. 旺隆公司汽轮机高压缸缸温差大形成的原因分析 3.1 热态开机缸温差大原因分析 汽轮机在启动初期蒸汽在汽缸内壁凝结放热,凝结水在重力作用下沿汽缸内壁向下流动,在下缸形成水膜,影响下缸传热,造成下缸温升比上缸慢,因此在机组启动初期会出现上缸温度高于下缸,且差值迅速增大。但是在机组带上一定的负荷之后,汽缸内壁已有较高的温度,蒸汽凝结放热过程逐渐结束,

防止汽缸上下缸温差大技术措施及原因1

汽缸上下缸温差大原因 1、上下缸具有不同的重量和散热面积,下缸重量大于上缸,下缸布置有抽汽管道,散热面积大,在同样的加热或冷却条件下,下缸散热快而加热慢,所以上缸温度大于下缸; 2、在汽缸内,蒸汽上升,其凝结水下流,使下缸受热条件变化; 3、在周围空间,运转平台以上的空气温度高于其以下的温度,气流从下向上流动,造成上下缸冷却条件不同,使上缸的温度高于下缸; 4、当调速汽门开启的顺序不当时,造成部分进汽,也会使上下缸温差增大; 5、在启机过程中,汽缸疏水不畅,停机后有冷汽冷水从抽汽管道返回汽缸,使下缸温度下降; 6、下汽缸保温不良,因为下汽缸保温不如上汽缸那样易于严密,从面造成空气冷却下汽缸; 7、停机后汽缸内形成空气对流,温度高的空气聚集于上汽缸而下汽缸内的空气温度低,从面使上下缸的冷却条件不同。 防止汽缸上下缸温差大技术措施 汽缸上下温差是造成汽轮机大轴弯曲的重要原因之一,为了在操作上避免汽缸出现过大的温差,特制定如下措施: 一、停机后防止温差措施 1、机组停机打闸前应关闭所有减温水调整门、截门,保证减温水隔离彻底。 2、停机打闸后及时关闭下列疏水门:高、中压缸汽缸疏水门;高中压缸进汽导管疏水门;高中压主汽门、调门疏水门;各段抽汽逆止门前后疏水门;高排逆止门前疏水门。 3、停机转子静止真空到零后,停止轴封供汽,关严轴封各路汽源的供汽调整门、截门,关闭高中压缸供汽分门,开启轴封母管大气疏水门。 4、停机打闸后,应检查高中压主汽门、调门、高排逆止门、低压蝶阀、各段抽汽逆止门、各段抽汽电动门关闭到位严密。 5、机组停止后应马上投入连续盘车,因故连续盘车投不上应按规程要求进行定期手动盘车。 6、停机后缸温最高点高于150℃不得随意停止盘车运行,如必须停止需主管运行公司领导批准。 7、停机后应经常监视高低加、轴加、除氧器、凝汽器的水位,保证各水箱水位正常,防止冷水返入抽汽管道。 8、停机后经常监视各抽汽管道的壁温,防止积水返入汽缸。

发电厂汽轮机运行效率的优化

发电厂汽轮机组运行效率的优化

1、主蒸汽温度对汽机效率的影响。 当主汽压恒定时,主蒸汽的温度会随之降低,其中含有的焓也会随着减少。进而造成蒸汽做功能力下降,致使汽轮机汽耗增加。于此同时,主蒸汽温度较低也会在一定程度上致使汽轮机的末级蒸汽产生更强的湿度,造成湿汽损失逐渐增加。除此之外,还会造成对末级叶片产生冲蚀。更为严重的是,如若产生水冲击的情况,则会进一步影响到汽轮机的正常、安全运行。 2、主汽压低对汽轮机效率的影响。 研究表明,在其它运行条件始终维持现状的情况下,如若主汽压出现降低的情况,那么蒸汽之做功能力就会出现下降。假如想让机组的负荷保持恒定,则必须增加汽轮机的进汽量。而这样做,也势必会让汽机的汽耗随之增大,严重影响汽轮机的工作效率。 3、凝汽器真空低对汽轮机效率的影响。 当下,很多机组在具体运行过程中均会不同程度上出现凝气汽真空较低的情况。伴随真空的不断降低,整个机组的内效也会随之下降,造成运行过程中的热耗及汽耗增大,影响整个机组的运行效率。除此之外,伴随真空的不断降低,凝结水的温度也会不断升高,最终造成冷源产生损失,影响整个机组的运行效率提升。 3、回热系统运行状况对机组效率的影响。 影响回热系统运行的因素较多。诸如:( 1 )水位异常运行;( 2 )端差增大;( 3 )旁路泄露;( 4 )加热器停运等。一旦出现上述情况,均会不同程度上致使回热系统处于不正常运行状态,造成上一级蒸汽部分流入下一级当中,造成整个机组之热经济性出现降低的情况,造成冷源出现一定损失。 5、再热器减温水量对机组效率的影响。

在机组运行过程中,减温水直接喷入再热器的受热面会迅速形成蒸汽。产生的蒸汽仅在汽轮机的低压缸以及中压缸做功,形成一个低压蒸汽循环。但这种低压蒸汽循环的循环效率却是极低的。另外,假如整个机组的负荷保持不变,但低压缸以及中压缸却多做了功,那么则必然会致使高压缸内的蒸汽减少,造成高压缸出现少做功的情况。 6、系统泄漏对机组效率的影响。 泄露通常分为两种:( 1 )内漏;( 2 )外漏。当整个设备与管道出现破损时,无疑会造成蒸汽亦或是水泄露。于此同时,当阀门没有关严时,同样也会造成泄露。不过,无论是上述哪一种泄露,均会不同程度上造成热损失,进而影响整个机组的运行效率提升。 7、机组通流部分效率。 如若在通流部分出现效率下降的情况,大多数原因均是因为相关设备存在缺陷。诸如:( 1 )轴封和汽封间隙过大;( 2 )结垢;( 3 )堵塞等。每逢出现上述问题时,均会不同程度上造成机组整个运行效率的低下。 2 优化汽轮机组运行效率的措施 1、提高主、再热蒸汽温度。 研究表明,主、再热蒸汽温度的影响因素很多,具体包括:( 1 )减温水流量;( 2 )受热面清洁程度;( 3 )风量;( 4 )煤质;( 5 )火焰中心位置;( 6 )负荷;( 7 )受燃烧强度等。基于此种情况,为有效提升再热气温具体可采取如下策略:( 1 )做好管道保温工作;( 2 )降低内漏及蒸汽输送阻力;( 3 )对锅炉的燃煤水分及热值进行严格把控;( 4 )对锅炉受热面进行定期清理。 2、选择汽轮机定压和滑压的运行参数。

汽机运行中上下缸温差大的问题及应对策略 唐功剑

汽机运行中上下缸温差大的问题及应对策略唐功剑 发表时间:2019-01-16T10:43:41.043Z 来源:《电力设备》2018年第26期作者:唐功剑[导读] 摘要:对于热力发电厂而言,其热力系统中不可缺少的一个部分就是热力发电厂的疏水系统。(国家电投集团贵州金元股份有限公司纳雍发电总厂贵州省毕节市 553300)摘要:对于热力发电厂而言,其热力系统中不可缺少的一个部分就是热力发电厂的疏水系统。疏水系统的好坏对整个厂区的安全运行有重要影响,一旦电厂疏水系统发生故障,若不及时处理便会引发一系列的问题,影响到整个电厂的正常生产。在实际生产中我们较为常见的一种故障就是汽轮机运行中出现上下缸温差大的问题,鉴于此,本文就汽机运行中上下缸温差大方面的内容进行了简要分析,以供参 阅。 关键词:汽机运行;上下缸;温差;问题;策略引言在热力发电厂的整个体系当中,疏水系统、汽封系统是发电厂整体性热力系统当中不能缺失且十分重要的组成部分,并且对发电厂的经济、安全运行有着非常重要的影响。如果接入疏水系统的方式不恰当,轻则能够引发水击、震动等事故,严重的甚至能够造成管道或者是设备的损坏,在汽轮机疏水过程中由于疏水不顺畅而导致的事故在国内已经发生了很多起,大轴弯曲等严重的事故也曾经出现过。 1汽机运行中上下缸温差大的问题现象在对汽机运行中上下缸温差大的问题现象叙述前,对汽机的简单概念要有一个了解,确保下文叙述故障现象的理解。汽机原指蒸汽机和汽轮机,但由于随着现代城市工业发展,蒸汽机这一运作设备已经被淘汰掉,则现在所说的汽机指的是热力发电厂中的汽轮机。一般汽轮机会根据工作压力、工作原理和排汽压力三方面进行分类,第一类按照工作压力分为低压、高压、超高压、亚临界等;第二类按照工作原理分为冲动式、反动式和反动度;第三类按照排汽压力分为凝汽式、背压式、带抽汽等。而上下缸设置的目的是,在汽机整体正常运作时,通过比较进水后缸壁之间的温度差确定是否有水流进行气缸之中。由于不同种类汽机运行中上下缸温差大的问题现象都不同,则为准确叙述汽机运行中上下缸温差大现象,在此设定超高压、反动式、抽汽凝汽式的汽轮机出现上下缸温差问题:在发生上下缸温差过大问题时,设备操作人员可以清楚发现设备中盘车电流出现不稳定的晃动,并可以清楚的听到高中缸重轴封部位有清楚的摩擦声,接连着其他设备部分也出现各种摩擦声和杂音,调动汽轮机疏水系统,发现上下缸温差会随着调动而改变,进而上下缸内温度差越来越大,无法正常检测气缸进水现象,气缸变形、盘车停止工作,甚至出现设备内部螺栓拉断,热力发电设备被损坏停止运作。 2温差大的原因分析经过分析大量的设计图纸与多次进行现场考察,人们发现造成机组上下缸温差大,主要是由于没有合理的布置疏水,没有按照逐级疏水的原则进行疏水。如图1所示,由于A侧主汽门具有很高的疏水压力,而导管的实际疏水压力相对较低,A点实际压力比导管疏水入口处的实际压力高,这样会导致从导管中流出疏水困难,引发疏水倒流,造成疏水由导管疏水管道流流向了汽轮机,以致出现汽机上下缸温差过大现象,引发盘车电流晃动急剧,盘车比较困难。 图1 3汽机运行中上下缸温差大问题的应对策略对于汽机运行过程中上下缸存在着温差较大的问题,我们首先将导管的疏水与调节级的高压缸的疏水进行准确的结合,把他们接入到单独的疏水扩容器之中,之后便会进入到凝汽器之中,高压缸本体疏水之前的级别高疏水与其是没有进行有效的连接的,这样就能够有效的防止水倒流问题的出现。一般情况下,高压缸中疏水参数都是相对很高的,如果直接让其进入到了凝汽器中,那么就会增加热损失,当我们对其进行相应的调节后,在启动机组或是停机的过程中,可以将其疏水经扩容器后,接入到1号低压加热器进行热量回收。这么做的目的就是要不断的降低排向凝汽器中的热负荷压力,同时由于排入凝汽器中的疏水温度过高而导致的热量损失也降低了。主气门之前的疏水与高旁阀门前的疏水位置是没有发生变化的,始终保持在原来的位置上。其改造后的具体的疏水流程图如图2所示。在热力发电厂的整个体系之中,疏水系统是一个非常重要的并且不可或缺的组成部分,其对热力发电厂运行的安全性和经济性是有着重要的影响的。如果我们为疏水系统所选择的接入方式是不够科学合理的,那么就可能会导致水击和震动等责任事故的发生,严重时还会导致管道以及机组设备的完全损坏,并且在我国众多的热力发电厂中,也多次出现了因为汽机在疏水过程中的不顺畅而导致的责任事故,而大轴弯曲等后果较为严重的责任事故也是时有发生的。因此为了有效防止责任事故的发生,我们就应对汽机疏水系统进行适当的改造,充分的加强盘车电流的稳定性,这样汽轮机组运行过程中上下缸温差的问题才会逐步呈现出缩小的趋势,并且在所投入的成本较低的情况下,也提高了汽机的热经济性,在将改造后的结构投入使用后,几乎没有再出现汽机运行中上下缸温差大的问题,真正的提高了汽机运行的安全性和可靠性同时也促进了我国热力发电企业的良性发展。 图2 结束语

汽轮机热效率计算

汽轮机热效率计算 摘要: 计算了一次蒸汽经减温减压后的?损失。提出利用背压式汽轮机进行余压发电,使蒸汽按品质梯级利用。将一次蒸汽(参数为36 t/h、3. 43 MPa、435 ℃)减温减压至工艺设备需要的二次蒸汽(参数为1. 25 MPa、260 ℃) ,一次蒸汽?损失率为0. 15。利用二者压力差进行余压发电,每年发电量为1226. 62×104 kW·h /a。 ?的注音:yòng 简体部首:火?的部首笔画:4 总笔画:9 当系统由任意状态可逆的变化到与给定环境相平衡的状态时,理论上可以无限转换为任何其他能量形式的那部分能量,称为?(Ex)。与此相对应,一切不能转换为?的能量称为火无【目前并未被收录进汉语词典】(An)(anergy)。任何能量E均由?(Ex)和火无(An)所组成,即E=Ex+An。 ?反应能量的”数量“与能量之间“质”的差别的统一尺度,国内一些人把?称为可用能、有效能或可用度。?作为一种评价能量的价值参数,从“量”与“质”的结合上规定了能量的“价值”,解决了热力学和能源科学中长期以来还没有任何一个参数可以单独评价能量的价值问题,改变了人们对能的性质、能的损失和能的转换效率等传统看法。 某钢铁厂炼铁部1号锅炉房现有2台燃用高炉煤气的中温中压锅炉,每台锅炉产汽(一次蒸汽)量为18 t/h,压力为3. 43 MPa,温度为435 ℃。原设计中,利用一次蒸汽通过凝汽式汽轮机发电,带动送风机向高炉送风。现计划用这2台锅炉替代焦化厂锅炉,向焦化厂输送蒸汽,送风机改用外网电力驱动。焦化厂工艺设备用汽(二次蒸汽)压力为1. 25 MPa,温度为260 ℃。为达到焦化厂工艺设备的用汽参数要求,一次蒸汽须经减温减压后变为符合工艺设备要求的二次蒸汽。减温减压过程一般由减温减压装置完成,减温减压装置由减压系统、减温系统、安全保护装置及热力调节仪表组成。一次蒸汽通过减压系统将压力减至设定压力,减温水经喷嘴喷射入蒸汽管道内,使减压后的一次蒸汽降温,变为二次蒸汽。减温水的压力为3. 82 MPa,温度为104 ℃。本文对蒸汽在减温减压过程中的?损失进行了计算,并探讨了余压发电在节能降耗方面的效果。 1 蒸汽在减温减压过程中的?损失 ?表示能量的做功能力,因此可用来评价能量的品质。当工质的?减少时,也就意味着

#1机高压缸上下缸温差异常原因分析

#1机高压缸上下缸温差超限原因分析 一、问题的提出 1、高压缸温差监测方法。 华能岳阳电厂汽轮机高压缸的温差监测有中段上下缸温差、排汽端上下缸温差、中段左右法兰温差、顶部与左侧法兰温差、顶部与左侧法兰温差。每个测点均为双支布置。 2、中段上下缸温差异常 在2003年5月17日,#1机组冷态开机,并网发电,正常运行后发现高压缸外缸上下温差TDTX020点报警,达到-25℃,下缸温度高;6月1日再次开机后,该点温差达到-38℃,TDTX018点达到-34℃,TDTX020点已超出了±35℃的限制标准,且该温差随高压缸进汽温度变化而出现波动,TDTX018点的波动范围在-26~-38℃,TDTX020点的波动范围在-30~-42℃。 3、其他温差及转子振动 排汽端上下缸温差、中段左右法兰温差均未出现变化,并且相对很稳定,波动幅度未超过3℃;轴系各轴承的振动未出现明显变化。 二、检查分析 1、运行变工况比较 分别比较不同负荷、不同高压进汽参数的运行工况对该温差的影响;负荷变化及进汽压力与上下缸温差的变化未发现明显规律,但是高压缸进汽温度变化的影响却很明显,由于高压缸进汽会受高压调门开度变化的影响而出现波动,进汽温度升高,上下缸温差减小,进汽温度降低,则上下缸温差增大。通过将机组运行方式调整为滑压运行进行试验,高压缸进汽温度稳定在530~534℃,上下缸温差波动幅度减小,TDTX018点稳定在-32~-34℃,TDTX020点为-35~-37℃。 从上述检查中可知高压缸的进汽温度变化会造成温差的波动,由此可以知道该负温差的出现与内缸的蒸汽外漏存在必然关系。内缸的正常外漏蒸汽为进口端内缸轴封漏汽,此为整圈均匀的漏气,该部分的漏汽一部分通过内外缸夹层引至高压排气,另一部分进入外缸轴封抽汽。造成上下缸负温差的原因必然是出现了额外的不均匀的漏汽。可能出现的漏气处有内缸与进汽管的密封环处、内缸轴封轴向压力面、八段抽汽连接密封环处。由于缺乏内缸图

影响汽轮机组热耗率

影响汽轮机组热耗率 (效率)的因素有哪些? 影响汽轮机组热效率(效率)的因素的主要由汽轮机通流部分效率与蒸汽动力循环热效率俩部分构成,汽轮机通流部分效率和蒸汽动力循环热效率高,则汽轮机热耗率低(效率高)。 汽轮机通流部分效率取决于汽轮机的设计、制造、安装水平,蒸汽动力循环热效率取决于循环形式与循环初终参数。 (1)汽轮机通流部分效率取决于汽轮机高压缸、中压缸、低压缸效率以及高压配汽机构的节流损失。 (2)蒸汽初参数 蒸汽初参数主要是指汽轮机主蒸汽门前的主蒸汽压力、主蒸汽温度。 主蒸汽压力、主蒸汽温度低于设计值对汽轮机热耗率的影响通过两个方面来体现: 1、循环热效率低,汽轮机热耗率上升; 2、造成汽轮机内部蒸汽膨胀也流动状态偏离设计值,缸效率下降,汽轮机组热耗率上升。 所以在汽轮机运行调整过程中,保持蒸汽初参数在运行规程规定范围内是保证汽轮机安全、经济运行的重要措施之一。 对于大容量机组,随着机组负荷的变化有定、滑压运行两种方式,机组定、滑压运行的经济性取决于汽轮机高压缸效率、高压配汽机机构的节流损失以及给水泵能耗的综合作用。 (3)蒸汽终参数 蒸汽终参数是指汽轮机低压缸排气压力。一般情况下,排汽压力低,则汽轮机热耗率越低。通常排汽压力通过测量真空和大气压力计算得到,排汽压力

等于大气压力减去凝气器真空度,现场分析排汽压力对机组的影响时习惯上采用真空。 凝汽器真空度对汽轮机热耗率的影响通过两个方面来体现: 1、凝气器真空度低于设计值,热力循环冷源参数高于设计值,汽轮机冷源损失增加、循环热效率降低,热耗率上升。 2、凝汽器真空度降低,汽轮机低压缸内部末几级蒸汽膨胀发生变化: 有效焓降降低、反动度增大,极效率降低;当凝汽器真空度剧烈变化时,反动度的变化可能引起轴向推力的变化,引起推力轴承负荷增加。所以在汽轮机运行调整过程中,保持较高的凝汽器真空度参数是保证汽轮机安全、经济运行的重要措施之一。 事实上,凝汽器真空度升高,在机组负荷、环境温度、真空严密性等条件不变的前提下必须依靠增加循环冷却水流量。而循环冷却水流量增大是以循环水泵耗电量增加为代价的,所以在实际运行工作中就有一个汽轮机最有利真空的控制。 4、在热循环 对于某一给定的蒸汽循环而言,在热蒸汽循环对汽轮机组热耗率的影响主要通过再热蒸汽温度、再热器减温水流量以及再热器压损来体现。 (1)在热蒸汽温度低于设计值。一是循环热效率降低,汽轮机组热耗率上升。二是汽轮机中压缸内部蒸汽膨胀与流动状态偏离设计值,造成汽轮机中压缸效率下降,汽轮机组热耗率上升。 (2)再热器减温水流量。再热器喷水减温的过程,是一个非再热的中参数循环,与主循环相比其热经济性要低许多。 (3)再热器压损,再热器压损增大,一方面按等级效焓降理论,蒸汽的作功能能力降低;另一方面再热器压力降低,中压缸内部蒸汽膨胀与流动状态偏离设计值,造成汽轮机中压缸效率下降,汽轮机组热效率上升。 (5)给水回热循环

汽轮机中压缸上下缸温差大问题原因探讨

汽轮机中压缸上下缸温差大问题原因探讨 发表时间:2016-04-18T14:17:42.720Z 来源:《电力设备》2016年1期供稿作者:程朝辉[导读] 浙江大唐国际绍兴江滨热电有限责任公司 312366)某燃气热电公司安装2台M701F4型燃气—蒸汽联合循环、热电联产发电机组,机组采用单轴一拖一布置。 程朝辉 (浙江大唐国际绍兴江滨热电有限责任公司 312366)[摘要]: M701F4型燃气—蒸汽联合循环发电机组,汽轮机运行中一直存在冷态启动过程中压缸上下缸金属温度较大,上缸温度高于下缸30-40℃的问题,在机组升负荷过程中需人为控制升降负荷使中压缸上下温差在规程42℃以内,从而使机组启动时间延长,本文探讨可能导致温差大的原因及处理方案,为同类型汽轮机类似问题提供经验与借鉴。 [关键词]:汽轮机中压缸上下缸温差大部套配合间隙间隙过大蒸汽泄露概况简述 某燃气热电公司安装2台M701F4型燃气—蒸汽联合循环、热电联产发电机组,机组采用单轴一拖一布置。机组额定功率为452.07MW,汽轮机型号为 TC2F‐35.4inch,型式为高压中间再热双缸双排汽凝汽式汽轮机,高中压缸合缸。 #1机组2013.03投产,运行中高中压缸中压缸部分上下温差正常,在2013.06月因余热锅炉侧大量小米粒状金属异物进入汽轮机导致隔板出汽边击瘪,进而导致主汽、再热超压进行高中压缸开缸检查后,运行中一直存在冷态启动过程中压缸上下缸金属温度较大,上缸温度高于下缸30-40℃的问题,在机组升负荷过程中需人为控制升降负荷使中压缸上下温差在规程42℃以内,从而使机组启动时间延长40min-60min,但机组热态启动高中压缸温差正常,为机组的冷态启动带来很大的困扰,同时大大降低了机组的热效率。 中压缸温差大异常事件发生后,通过与厂家反复沟通,本着先易后难的原则,确定的基本处理原则和方向为先检查高中压缸外部条件,在全部排查确认无问题后后再进行汽缸内部通流间隙及部套间隙的检查。 1.1校验中压缸上下缸金属测温热电偶及检查TCS画面所有通道是否正常。 1.2各方见证复装热电偶,确保测温孔内无异物,热电偶插至测温孔底部,记录相关数据和厂家图纸核对。 1.3检查高中压外缸疏水节流组件及疏水管,是否发生节流孔堵塞或管道疏水不畅。 1.4延迟高中压缸疏水阀关闭,暂时将当前高中压缸疏水阀的关闭条件:中压进气压力设定值从大于0.74MPa更改为1.36MPa,观察中压缸上下缸温差变化情况。 1.5检查下缸保温情况,有无存在空气夹层。 针对第一二条:在东汽厂厂家代表共同检查热电偶插入深度,详细比照图纸是否符合图纸要求,同时检查插孔底部是否是否存有异物,同时对中压缸上下热电偶,进行了校验。 针对第三条:机组冷态启动前将三根疏水管上的节流组件4.6mm节流孔切下检查清洁度及堵塞情况,三个节流组件清洁无堵塞,同时使用内窥镜检查了节流组件的上下游疏水管道,清洁畅通(高中压下缸的热电偶所在位为中压缸第一级、第二级隔板套中间底部,和第一根疏水管较近,第二根疏水管位为中压缸第二级、第三级隔板套中间底部,第三根疏水管位为中压缸第三级隔板套后中间底部(排汽道),第四根疏水管位为排汽侧中间底部)。 针对第四条:延迟高中压缸疏水阀关闭时间,暂时将当前高中压缸疏水阀的关闭条件:中压进气压力设定值从大于0.74MPa更改为1.36MPa,观察中压缸上下缸温差无改善。 针对第五条:对汽缸原有的保温进行拆除、检查、尤其是检查下缸保温是否密实、是否存在保温整体下垂与下缸体有空气夹层,保温恢复后观察中压缸上下缸温差无改善。 #1机组中压缸上下缸温差大异常事件利用机组停机时间经过上述多次排查、多次机组启动试验,中压缸温差大无明显改善,由厂方、业主方组成的专业会认为可能导致温差大的外部原因已经完全排除,会议指向高压缸内部通流部套可能存在部件损坏、通流间隙或缸体与隔板套配合间隙不合格导致汽流短路,进而影响上下缸温差,针对此问题,决定进行#1机组高中压缸开缸检查、查找问题原因。 高中压缸开缸检查的实施 2015年1月,对汽轮机实施了开缸检查,在高中压外缸揭开缸后通过上缸的试扣对中压缸#1、#2、#3隔板套与缸体的凹凸配合面进行了涂红丹粉接触检查,检查发现高中压外缸中压缸与#1隔板套凹凸配合密封面存在间隙过大情况,3个部位,最大间隙0.7mm,间隙弧度长度100-260mm不等。 按厂家设计要求,中压缸#1、#2、#3隔板套与缸体的凹凸配合间隙(轴向间隙)为0.20±0.05mm,且在进气侧紧密贴死,间隙为零,0.20mm膨胀间隙留在凹凸配合间隙出汽侧。高压缸排汽中的一小部分蒸汽作为冷却高压缸外缸与内缸的夹层蒸汽,其冷却蒸汽通过高压内缸与外缸凹凸配合处10-Φ6轴向孔洞流入中压缸进气室罩壳外部腔室,在这里通过中压缸进气室罩壳外部腔室12-Φ10径向的小孔回流进中压进气室,和中压主蒸汽汇合进入中压缸作功(见下图)。 根据上述测量数据判断,高压缸夹层冷却蒸汽到达中压缸进气室罩壳外部腔室时,由于中压缸与#1隔板套凹凸配合密封面存在多个部位间隙过大超标情况,造成冷却蒸汽从有间隙弧段位置泄漏至高中压外缸和#1隔板套形成的夹层位置,此处的位置正好是中压缸外缸上部温度测点位置,进而造成中压缸上半壁温升高,从而上半壁温高于下半壁温,温差过大。 同时,从该型汽轮机的结构分析,如果中压缸#1隔板套组件#1#2#3隔板汽封及围带汽封顶部间隙超标同样可能导致中压缸外缸上缸温度高于下缸温度过大,为了慎重起见,进一步吊开高压内缸上缸、中压进汽罩壳对中压缸#1隔板套组件#1#2#3隔板套的隔板汽封及围带汽封左右间隙、顶部间隙进行了复测,未发现数据超标。

相关文档
最新文档