主变跳闸分析报告

主变跳闸分析报告
主变跳闸分析报告

主变跳闸分析报告

一、故障情况

1、故障前运行方式

110kV 某坊站某#2主变经某52开关送10kV#7母线,10kV分段某67、78开关热备用,10kV 某潘二回某77开关运行.

2、故障简要经过

2017年4月24日08时03分35秒,10kV 某潘二回某77开关保护启动;

经过155毫秒,10kV 某潘二回某77开关电流I段动作,某77分闸;(装置报文:I1CK,73.50A;定值:38A,0.15S)经过1735毫秒,10kV 某潘二回某77开关重合闸动作,某77合闸;(装置报文:CHCK;定值:1.5S)

经过2003毫秒,10kV 某潘二回某77开关电流I段动作,某77分闸;(装置报文:I1CK,72.00A;定值:38A,0.15S)2017年4月24日08时03分35秒, #主变后备保护启动;

经过2440毫秒, #主变低后备复压闭锁过流II 段一时限动作;(装置报文:I21CK1,16.25A ;定值:10.3A ,0.6S ,跳 某67、78开关, 某67、78开关热备用)

同时, #主变低后备复压闭锁过流III 段一时限动作;(装置报文:I31CK1,16.25A ;定值:10.3A ,0.6S ,跳 某67、78开关, 某67、78开关热备用)

经过2640毫秒, #主变低后备复压闭锁过流II 段二时限动作, 某52开关分闸;(装置报文:I21CK2,17.00A ;定值:10.3A ,0.8S ,跳 某52开关) 保护动作时序图如下:

3、设备简介

1、 某77开关柜参数:

设备名称(运行编号):10kV 某潘二回 某77开关柜

设备型号:XGN2-12z-07LT 155ms 1580ms 268ms 10kV 某潘

二回线路故

障, 某77电

流I 段动作,

某77分闸 某77重合闸动作, 某77重合 某77电流I 段动作, 某77分闸 #主变低后备复压闭锁过流II 段一时限动作, #主变低后备复压闭锁过流III 段一时限动作 #主变低后备复压闭锁过流II 段二时限动作

437ms 200ms

电压等级:10kV

出厂日期:2002.06

投运日期:2002.10

生产厂家:襄樊众能电器控制设备有限公司

2、某77开关参数:

设备型号:ZN68-12/T1250-31.5(弹簧机构)

电压等级:10kV

出厂日期:2002.01

投运日期:2002.10

生产厂家:陕西宝光真空电器股份有限公司

二、故障处理

9时08分现场检查某52开关为某#2主变低后备过流保护动作跳闸,某77开关处于半分半合状态,某77开关位置待确定,某10kV II段母线系统检查无异常,9时28分将某77开关操作至冷备用后,某#2主变低压侧某52开关送电正常。

三、设备检查情况:

1、某77开关一次部分检查。某77开关本体及机构各导电、传动、电磁铁及脱扣部件外观检查无异常。分合闸线圈低电压动作试验合格,分闸140V,合闸186V,开关分合正常。(检查情况见附表)

分、合闸试验结果

三相接触电阻测试结果分别为:A相46μΩ,B相47μΩ,C相

43μΩ。开关断口耐压42kV,1分钟通过;开关整体耐压38kV,1分钟通过。由此可判断开关绝缘良好,正常分合时满足运行要求。

2、对某77开关保护装置二次回路接线及所用压板进行了检查。某77开关保护装置二次回路接线紧固正确,所用压板均处于正确位置。

3、故障发生时某10kVII段母线跳闸后某#2站用变失压,未自动切至某#1站用变而导致某坊站交流电源消失。

4、故障时,交换机短时失电,站内UPS未启动,导致站内通讯中断。

四、故障分析

1、某77开关机构故障分析

由保护装置动作行为可判定,某潘二回线路发生永久性故障后,某77开关第一次分闸后,重合闸动作,并加速跳开,而此时开关处于分合闸中间状态,线路故障未切除,越级至某#2主变低压侧导致某#2主变低后备保护动作跳开某52开关导致母线失压。

现场检查时,经历故障后某77开关状态如下图所示,某77开关此时储能灯亮,分合闸指示灯无指示,可判定此时开关可能处于两种状态:一是开关重合成功后,分闸失败;二是重合闸动作时,开关重合失败。

上图为正常状态下开关分、合位指示

根据故障发生时后台报文, 某77开关在动作过程中仅有第一次跳闸后的分位,重合闸动作后并无 某77开关合位报文,可判定 某77开关在重合闸时合闸不到位,处于半分半合状态,如下图所示。

某77开关位置分位后无合位报文

进一步将某77开关面板取下发现,开关已处于合闸位置,但合闸弹簧能量未完全释放,导致另一端凸轮在通过连杆将开关打合后未复位而悬在连杆上方,此时若进行分闸操作虽能脱扣但因凸轮将连杆卡住而使开关无法分闸,如下图所示。

下图为开关处于正常合闸状态时机构内各附件状态,可与上图进行比较。

对某77开关多次分合闸操作反复模拟该异常状态,可发现合闸

弹簧未完全释放,导致另一端凸

轮未完全复位

通过连杆可判断此时开关已

合闸到位,但机构并未到位而

卡在中间位置,未完全切换

开关正常合位时,合闸弹簧完全释放,另一端

凸轮将开关打合后完全复位,与连杆错开一定

空间,下一步可正常分闸

弹簧能量未完全释放是因在合闸时弹簧释放过程中机构内断路器减速器内部齿轮发生卡涩。将减速器拆下后手动旋转齿轮,旋转时有明显卡涩现象。

2、站用变未自动切换故障分析

当某#2站用变失压后,交流第二路电源失电,此时2KM继电器失电,2KM继电器的常闭节点发生卡涩未能恢复闭合状态,导致第一路电源无法使1KM继电器通电励磁,1KM继电器常开节点未能闭合,

致使第一路电源未能接入,对2KM继电器传动连杆进行了注某润滑,常开、常闭节点均打磨后多次试验,切换自如,节点连接可靠,可正常自动切换。如下图所示。

2KM继电器常闭节点未能复位

该2KM的常闭节点卡涩未能自动

复位,导致#2站用变失电时#1站

用电无法切换

3、故障时通讯中断

故障发生时,某10kVII段母线失压,某#2站用电失压,某坊站因#1站用变自动切换回路的继电器故障未正常工作,某坊站交流失压,由于蓄电池因充电机失电,电池电压降为207V,此时自动化系统的UPS未能正常启动,通讯管理机失电,通讯中断。

根据DL/T 5224-2014《电力工程直流系统设计技术规程》第3.2.4条,在事故放电末期,蓄电池组出口端电压不应低于直流电源系统标称电压的87.5%,即192.5V。按规程要求,直流系统在大于192.5V 时,直流设备应能正常工作。经现场检查,UPS设备因本身质量问题在直流电压为207V时未能正常启动。

五、采取的措施

1、对某77开关断路器减速器进行更换,下一步将结合某坊变电站下一次预试的停电工作,对站内10kV开关的减速器进行检查,发现问题及时处理。

2、进一步加强站用变设备的运行维护管理,每月对变电站内站用电系统进行一次检查,并进行自动切换试验,发现问题及时处理,保证站用变系统正常的自动切换。

3、已对站内自动化系统的UPS进行更换,下一步将在设备采购、安装和验收阶段做好UPS设备的调试和验收工作,杜绝不满足规程要求的设备入网,进一步提高入网设备质量。

附件一:保护装置动作报文

某77过流一段动作、重合闸动作、重合加速保护动作报文

限动作报文

关于主变跳闸的整改措施1

关于主变跳闸的整改措施1 关于主变跳闸的整改措施1 次检修班主变跳闸事件整改措施 一,规范作业流程 规程是人们长期实践经验的总结,是千百次血的教训换来的,是指导人们安全行为的水准.作为供电企业的员工,大家都十分熟悉供电行业对从业人员的大致要求,所必须掌握的一些安全知识,安全规程及规章制度. 在继电保护中,因工作中布臵的安全措施不完善或者工作终结时应恢复而未恢复接线及工作内容不细致具体等情形经常导致事故或障碍发生.在企业(公司)“两会”以及安全工作会,电工作会和生产工作会等一系列安全生产工作会议的宣贯和落实下,依照“强化反违章,实现无违章”,“精益生产年”活动,应强调了水准化作业和危险点分析与控制工作.到现在为止应对每一个工作的危险点进行了仔细的分析,并抓紧时间规范水准作业指导书.对于继保人员而言,只要仔细贯彻执行这些措施,将安全防范关口前移,并在工作中克服习惯性违章等病,就可以大大降低事故发生的可能性. 现场作业时,人员的作业行为除了受自身技术和安全素质的直接影响外,还受到很多其他因素的影响,如情绪,当天的工作状态,经验等.实际情形也表明,即使是一个作业经验很丰富的员工.在执行相同的作业任务时,处理的手段和步骤也不尽相同.因这,为了防止作业人员的工作行为受“情绪性,经验性,随意性”的影响.必须推行水准化作业,通过“作业指导书”及“二次回路工作安全技术措施票”来规范作业行为,确保工作质量和现场作业的安全. X,正确编制和动态补充作业指导书 “作业指导书”的内容一般于以下X个方面.一是对各类规程,导则和工作规定,去粗取精,合并而形成的针对具体工作的凭据;二是由每一种事故,障碍和工作失误提炼形成的规范和水准;三是依照作业人员自身技术素质和特点,以提升工作效能为目的,融合各方经 1 / 18

输电线路故障跳闸原因分析报告模板)

输电线路故障跳闸原因分析报告(模板) XX月XX日XXXkVXXX线路故障跳闸原因分析报告(模板) 1 线路概况 1.1 简介(电压等级、线路名称、线路变更情况、线路长度、杆塔数、海拔、地形、地质、建设日期、投运日期、资产单位、建设单位、设计单位、施工单位、运行单位) 1.2设计气象条件 1.3 故障点基本参数 1.3.1杆、塔型。 1.3.2导、地线型号。 1.3.3 绝缘子(生产厂家、生产日期、绝缘子型式、外绝缘配置) 。 1.3.4基础及接地。 1.3.5线路相序。 1.3.6线路通道内外部环境描述。 2 保护动作情况 保护动作描述、重合闸动作情况、保护测距情况、重合不成功强送电情况、抢修恢复时间。 3 故障情况 3.1 根据保护测距计算的故障点 3.2 现场实际发现的故障情况 3.3 现场测试情况 4 故障原因分析 4.1 近期运检情况 4.2 气象分析故障(当日天气情况) 4.3 故障点地形、地貌 4.4 测试分析(雷电定位、接地电阻测量、绝缘子检测、绝缘子盐密和灰密(绝缘子污秽程度) 、复合绝缘子憎水性、绝缘试验情况、在线监测等) 4.5设计校验(故障点基本参数、绝缘配置、防雷保护角、鸟刺加装、弧垂风偏校验) 4.6现场走访情况 (向故障点周边群众了解故障当时的天气、外部环境变化、异响、弧光等) 4.7其它故障排除情况(故障排除法) 5 故障分析结论 6 暴露的问题 7 防范措施 7.1 已采取措施 7.2 拟采取措施(具体措施、措施落实责任人、措施落实时限) 附件一:现场故障现象(故障周边环境、故障点受损部件、引发故障的外部物件)图片 附件二:现场故障测试图片 附件三:现场故障处理图片 附件四:相关资质单位的试验鉴定报告 附件五:保护动作及故障录波参数 附件六:参加故障分析人员名单 单位:日期:

某主变跳闸事故分析与处理

某主变跳闸事故分析与处理 摘要:本文通过对一起主变出口短路跳闸事故,引起变压器油中色谱数据异常,介绍了如何结合油中溶解气体检测、电气试验数据等判断、分析事故原因的过程和处理方法。 关键词:总烃电弧放电空载电流 1 事故概述 某35千伏主变压器型号为SZ10-10000/35kV,接线组别为YNd11,额定容量为10000千伏安, ±?kV。该变压器2003年11月生产,2013年8月该主变差动保护动作额定电压为(354 2.5%)/10.5 跳闸。次日电气试验人员对主变进行了诊断性试验及油色谱分析,初步判断线圈存在故障点,返厂 解体后发现A相高压线圈中部有放电痕迹。 2 故障的分析判断过程 2.1油中溶解气体分析 该主变差动保护动作跳闸后,现场对该主变压器外观进行检查,无明显异常,受到雷雨天气影 响,不具备开展现场电气诊断性试验条件,仅对该主变进行本体油色谱分析,该变压器油中溶解气 体分析数据见表1。 μL/L 由表1可以看出,其总烃、乙炔及氢的含量均远远超出注意值,计算其绝对产气速率,总烃 15.6mL/d(注意值12mL/d),乙炔9.0mL/d(注意值0.2mL/d),氢43.0mL/d(注意值10mL/d), t/m,两次取样时间间隔为94天。) 均超过注意值。(总油量重4.69t,油密度0.893 通过分析,三比值编码为(2,0,2),故障性质为“电弧放电”,典型的故障实例有:线圈匝 间、层间短路,相间闪络、分接头引线间油隙闪络、引线对箱壳放电、线圈熔断、分接开关飞弧、 引线对其他接地体放电等。由于此次故障中,一氧化碳、二氧化碳含量也明显增加,且△CO2/△CO<3,

厂区10KV架空线路跳闸事故的分析与防范措施(新版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 厂区10KV架空线路跳闸事故的分析与防范措施(新版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

厂区10KV架空线路跳闸事故的分析与防范 措施(新版) 焦化厂厂区高压供电线路的可靠与否,对确保焦炉安全生产和煤气外供具有十分重要的作用。这里通过对一起10KV架空线路瓷瓶受化工生产漂浮污染物的侵蚀,导致绝缘击穿爬弧引跳闸事故的分析,以引起焦化企业从事生产,设备,规划设计和安全管理部门的重视,从诸多环节上采取防范措施,避免类似事故的发生。 1事故现象 1999年3月26日生期五凌晨5:50分,江苏镇江焦化厂总降变电所至厂生产区的一路10kV114#架空线路突然发生跳闸,总降变电所114#开关柜上速断装置动作,速断信号掉牌,信号灯出现闪光,总控盘上光字牌显示10kV配电装置事故跳闸。据此,当班值班电工判断该114线路上出现短路故障。此时,在10kV114线上受电力的

为动为车间配电房电房1台S7-1000kVA变压器,运行负荷当时为550kW,供电范围为一炼焦分厂、化工分厂和机炉车间。当114线路发生短路故障时,短路故障波及正在运行的117线路,使117线路瞬间电压下降,导致117线路供电的二炼焦分厂、余热锅炉等用电设备跳闸,停电约15min。 114线路故障后,厂调度协调将114线上的负荷转至117线路上运行,至晨6:15分本厂生产恢复正常。 2事故分析 该跳闸事故发生后当天,厂设备科立即组织调查,上午机炉车间反应,凌晨该车间大夜班操作工在5:50分左右发现厂区114-4#电杆上有很亮的放电火光(电弧光),此放电火光出现后,该机炉车间即发生停电。设备科同时在当天迅速组织10多名电工先后对厂区114架空线路的所有电杆、金具和总降出线电缆、闸刀以及由114线供电的4个车间配电房的进线闸刀、金具、避雷器进行了全面检查和更换。上述各个配电房进线电气设备及电缆经查确认无问题后,我们将4个配电房的杆上进线闸刀全部拉开,对该线路绝缘测试,

10KV线路跳闸的主要原因

2、故障跳闸原因分析 (1)漯河供电公司郊区10KV线路大都分布在野外、点多、线长、面广、受季节性影响的特点比较明显,6-8月这3个月累计跳闸达109次,占线路跳闸总数的%,期间正是迎峰度夏高峰期,雷雨大风天气多、温度高、湿度大、树木生长旺盛,易于发生各类跳闸故障。 (2)从各类故障跳闸比例中可以看出,因线路配电设备自身原因,占线路跳闸总数的31%为最高,分析其原因有以下几点: 一是80%以上的线路设备是农网前两期时代的产物,受当时资金及技术条件的限制,工程标准起点低,网架结构薄弱,装备水平差,近年来负荷发展快,导线截面小,极易引发线路故障,如跳闸次数最多的商农线、姬工线等大都因负荷电流大,而烧坏刀闸和烧断跳线弓子等故障。 二是由于线路年久失修,加之部分线段污染严重,一遇恶劣天气易发生绝缘子击穿放电、避雷器击穿损坏、跌落保险熔管烧毁、引流线断落等故障引起跳闸。 三是线路导线80%以上为裸体线,档距大,弧垂超标,遇大风时易造成导线舞动,引发相间短路故障。 四是由于郊区负荷年增长率在35%以上,配电变压器的增容布点远远跟不上负荷的发展速度,由此屡屡造成因配变过负烧毁引起线路跳闸,据调查统计2011年烧毁各类型号的变压器62台,烧毁配变的主要原因固然有设备过负方面的(如某些厂家的变压器短时过载能力较差),但也有管理方面的,所烧毁的变压器80%以上是因三相负荷不平衡引起单相线圈烧毁。 (3)因用户配电设备原因,占线路跳闸总数的%。仅次于公用线路配电设备,分析其原因在于乡镇供电所对专变用户的设备疏于管理。 (4)因外力破坏原因占线路跳闸总数的%。如因司机违规驾驶撞击电杆,高架车挂断导线,施工取土挖断电缆等事故,如3月7日9点零7分Ⅰ姚工线被吊车撞断杆子,导致线路短路跳闸。

电厂发变组跳闸事件分析报告

电厂发变组跳闸事件分 析报告 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

电厂#2发变组跳闸事件分析报告1、事件经过 (1)2006年6月29日前,#02高厂变低压套管底部已渗油多日,属原安装质量问题,但因保质期未过,要等厂家来人解决,故此缺陷一直未处理。为安全起见,从6月26日起将厂用电倒至#9B高备变,#02高厂变转热备用。6月29日下午厂家来人,在履行完工作票手续后,准备处理此缺陷。 (2)事件前,#2机运行参数无异常。16:13时#2发电机在运行中突然跳闸退出运行,#2发电机出口开关502和#2主变220kV侧开关2202 跳开,灭磁开关跳闸,主汽门关闭。检查#2发变组保护屏和#02高厂变保护屏,有“高厂变压力释放”、“灭磁开关联跳”、“主汽门关闭”等信号。DCS有远控-5OPC动作报警,汽机最高转数达3160rpm。值班员迅速对汽机打闸。 (3)电气专工到达现场,检查所有报警信息后,意识到在处理#02高厂变缺陷时,没有将有关的保护退出,于是将#02高厂变所有保护退出。16:40时汽机重新挂闸成功,16:43时汽机重新并网。 2、原因分析

(1)电气检修工作班成员、厂家技术服务人员在处理#02高厂变低压套管底部渗油时,由于没有意识到#02高厂变的保护没有退出,工作中不慎,误碰了变压器顶部压力释放器的开关,引起压力释放器保护动作,从而引发一系列开关动作,造成机组跳机。这是此次事故的直接原因。(查看事故报警记录,从动作时间上的顺序判断,引起#2机发变组跳闸的原因就是“高厂变压力释放”动作造成的。) (2)由于在处理#02高厂变缺陷工作前考虑不周,在填写处理#02高厂变渗油的工作票时,没有填写二次设备及回路工作安全技术措施单,致使#02高厂变的相关保护没有及时退出。这是造成此次事故的主要原因。 (3)运行人员在接到处理#02高厂变渗油的工作票后,没有认真审核,对不完善的安措没有给予及时补充,造成不完善的工作票发出,这也是此次事故发生的主要原因。 3、暴露问题 (1)员工在实际的工作中没有很好的执行工作票制度,工作票从签发到许可都没有很好的把关。工作票签发人、工作负责人、工作许可人,这

第三季度:10kV配网线路跳闸调研报告

XX电网10kV配网线路跳闸 调研报告 10kV配电线路是县级供电企业电力设施的重要组成部分,它们担负着向城乡供电的重要任务,由于长期处于露天情况下运行,又具有点多、线长、面广等特点,10kV线路和设备发生故障不但给供电企业造成经济损失、影响广大居民的正常生产和生活用电,而且在很大程度上也反映出我们的优质服务水平。根据我公司配电网络的实际运行状况,对今年1-8月期间所发生的10kV配电运行事故进行分类统计分析,找出存在的薄弱点,积极探索防范措施,这对于提高配电网管理水平具有重要意义。本调研报告只针对属公司资产或运维的线路,不含属用户资产的供电线路或小水电上网线路。 一、总体情况分析 截止2015年8月底,属公司运维10kV公用配电线路共计64条, 10kV配电线路累计故障跳闸停电146条次(不含重合闸成功次数,计划检修停电次数),平均故障停电次数为2.28次/条;故障跳闸呈以下特点: (一)从故障性质上分:主要有单相接地和相间短路。 1-8月公司配网共发生单相接地60条次,占全部故障的41.1%;相间短路86条次,占全部故障的58.9%。

(二)从设备产权性质上分:公司资产(运维线路)故障和用户资产故障。 1-8月公司资产(运维线路)范围内发生故障90条次,占全部故障的62%,其中单相接地故障35条次占23.9%,相间短路55条次占37.7%;用户资产发生故障56条次,占全部故障的38%,其中单相接地故障25条次占17.1%,相间短路30条次占20.5%。 (三)从主线、支线上分: 1-8月公司配网主干线发生故障停电19条次,占全部故障的13%,其中单相接地故障9条次占6%,相间短路故障10条次占7%;支线发生故障126条次,占全部故障的87%,其中单相接地故障51条次占34.9%,相间短路故障75条次占51.3%。 (四)从故障因素上分: 1、设备自身故障跳闸42条次,占全部故障的28.7%;其中:导线故障条8条次,避雷器故障4条次,变压器故障5条次,断路器故障1条次,绝缘子故障4条次,电缆故障2条次,故障原因不明(没有查出明显故障点)18条次。 2、树障跳闸18条次,占全部故障的12.3%; 3、自然灾害造成跳闸83条次,占全部故障的56.8%;其中:导线故障18条次,避雷器故障22条次,变压器故障

一起35kV主变跳闸的分析

一起35kV主变跳闸的分析 【摘要】通过分析一起35kV变压器跳闸事故,指出保护装置插件绝缘老化,且跳闸继电器动作电压偏低,应是发生本次跳闸的主要原因是引起事故的主要原因,并提出处理对策。 【关键词】变压器;继电保护;保护装置插件 1 事件经过 2012年3月29日9时56分,35kV××变#2主变35kV侧302开关、10kV侧602开关跳闸,现场只有开关变位信号,保护装置、监控主机、调度SCADA系统的事件记录中无任何保护事项。 2 原因分析 2.1经过对一次设备的检查与试验,可排除一次设备本身存在故障可能。 2.2人员误碰的可能性非常小。由于两侧开关同时跳闸却没有任何事项,而事后各保护装置测试后遥信正常,通过分析保护原理图,只有保护装置内的跳闸出口继电器误动作才会造成没有任何信号输出的开关跳闸。 2.2.1差动、高/低后备保护跳两侧开关回路的出口继电器都相互独立,同时误动的可能性非常较小。 如图1所示: 2.2.2非电量保护跳两侧开关的回路由同一组跳闸出口继电器(1K9、1K10)驱动,且非电量信号输出由1K1至1K4继电器的其它常开接点负责,只有12LP5、12LP6、12LP7、12LP8等四个压板的“②”端带正电源,才会造成1K9、1K10驱动两侧开关跳闸且无任何信号输出的情况。 但压板的前面板在开工前早已用胶布包封,周边的压板两端又都没有带电压,除非是用一端接正电源、一端触及上述所说的“②”端,才有造成此种现象。因此,分析认为此种情况不大可能发生。 2.2.3设备老化而导致误动的可能性较大。 30日10时许,退出#2主变非电量保护,进行继电器测试,插件外观有少许静电灰尘;测试1K1(重瓦斯动作继电器)动作及返回电压正常,其接点动作正常;测试1K9、1K10串联动作电压为77V,动作电压较低,不满足要求(福建电网继电保护装置检验规程附件7 《PST-640系列变压器保护检验规程》4.12规定动作电压在50%-70%Ue范围,Ue=DC 220V);绝缘试验发现非电量保护装置

电气事故案例分析--1.

电气事故案例分析题 (2) 一、运行人员擅自传动发变组保护装置,造成机组跳闸 (2) 二、擅自解除闭锁带电合接地刀闸 (3) 三、安全措施不全电除尘内触电 (4) 四、带负荷推开关 (5) 五、野蛮操作开关,导致三相短路 (6) 六、小动物进入电气间隔,造成机组跳闸 (7) 七、PT保险熔断造成机组跳闸 (8) 八、励磁整流柜滤网堵塞,造成机组跳闸 (9) 九、励磁变温度保护误动,造成机组跳闸 (10) 十、6KV电机避雷器烧损,发变组跳闸 (11) 十一、MCC电源切换,机组跳闸 (12) 十二、励磁机过负荷反时限保护动作停机 (13) 十三、220千伏A相接地造成差动保护动作停机 (14) 十四、查找直流接地,造成机组跳闸 (15) 十五、查找直流接地,造成机组跳闸 (16) 十六、检修工作不当,造成机组跳闸 (17) 由于人员工作不当,229出线与220kV下母线距离过近放电,引起保护动作。 (17) 十七、主变差动保护误动 (18) 十八、主变冷却器全停使母线开关跳闸 (19) 十九、试验柴油发电机造成机组停运 (20) 二十、定冷水冷却器漏泄,定子接地保护动作停机 (21)

电气事故案例分析题 一、运行人员擅自传动发变组保护装置,造成机组跳闸 事件经过 1月8日某厂,#3发电机有功85MW。运行人员XX一人到#3发-变组保护屏处学习、了解设备,进入#3发-变组保护A柜WFB-802模件,当查看“选项”画面时,选择了“报告”,报告内容为空白,又选择了“传动”项,想查看传动报告,按“确认”键后,出现“输入密码”画面,再次“确认”后进入保护传动画面,随后选择了“发-变组差动”选项欲查看其内容,按“确认”键,#3发-变组“差动保护”动作出口,#3发-变组103开关、励磁开关、3500开关、3600开关掉闸,3kV5段、6段备用电源自投正确、水压逆止门、OPC保护动作维持汽机3000转/分、炉安全门动作。 原因分析: 1.在机组正常运行中,运行人员在查看3号发-变组微机保护A柜“保护传动”功能时,越权操作,造成发- 变组差动保护出口动作。是事故的主要原因。 2.继电保护装置密码设置为空,存在人员误动的隐患。是事故的次要原因。 3.运行人员无票作业,且未执行操作监护制度。 暴露问题: 1、违反《集团公司两票管理工作规定》,无票作业。 2、集团公司《防止二次系统人员三误工作规定》执行不到位,继电保护密码管理存在漏洞。 3、运行人员安全意识不牢固,盲目越权操作。 4、运行人员技术水平不高,对操作风险无意识。 采取措施: 1、加强对运行人员的技术培训,并吸取此次事故的教训。 2、认真对照集团公司《防止二次系统人员三误工作规定》进行落实、整改,进一步完善制度。 3、加强“两票”管理,各单位要严格执行《集团公司两票管理工作规定》,严禁无票作业。 4、发电部加强对运行人员安全教育和遵章守纪教育及技术培训,并认真吸取此次事故的教训,不要越限操作。 5、继电保护人员普查所有保护设备,凡有密码功能的一律将空码默认形式改为数字密码。完善警告标志,吸 取教训。完善管理制度,加强设备管理。

电厂发电机失磁保护动作跳闸事件分析报告

电厂#2发电机失磁保护动作跳闸事件分析报告1、事件经过 2006年03月27日9:23时,#2汽轮发电机失磁保护动作跳闸,但在#1电子间#2汽机保护屏前未见任何保护动作信号,询问在场的运行人员答复已将保护屏跳闸信号复归。检查动作记录报文,其中有失磁保护动作与TV断线。于是拉开#1PT刀闸,检查1PT的一次保险和二次接线无开路现象,检查#2PT二次空开下桩头接线B相松动,将其紧固。因怀疑PT一次保险质量不良,用保险丝与1PT一次保险并联后,推上#1PT刀闸,重新起励,控制屏上显示励磁为FCR 方式,检查励磁屏上两通道均有PT断线告警,将其复归(在检查PT 回路拉开1PT刀闸时发出),再次起励升压并网成功。 2、原因分析 (1)保护屏内故障报文,因CPUO和CPUE的报文一样,CPUE的时间更接近实际时间,故以CPUE的报文作为分析依据,相关故障报文如下:

09:17:25:306失磁保护动作t1(0.5s) 09:17:26:303失磁保护动作t2(1s) 09:17:28:291主汽门关闭 09:18:48:463发电机3W定子接地TV1断线 09:18:35:541发电机3U0定子接地TV1断线 09:19:00:393发电机逆功率TV1断线 09:19:01:388发电机失磁保护TV1断线 可知故障是因#2发电机失磁引起失磁保护动作跳开发电机出口开关502,联跳主汽门。综合检查情况,基本可排除PT断线的因素造成,PT断线保护可闭锁,励磁也可切换到手动通道,保护出口前无PT断线信号,TV1断线信号是在发电机开关跳闸甩负荷后发出的,为甩负

荷时系统冲击引起(3W、3U0定子接地同理),现场检查PT也未开路,从失磁保护报文看,保护启动正确,当时检测到的参数已达到动作范围。 (2)造成失磁的原因由于分析素材不足,难以作出准确的判断,但可能是: ①励磁装置自行误动作减磁或灭磁。 ②不排除有人在触摸屏检查时误按“灭磁开关跳闸”按键。(正常时黑屏) 3、暴露问题 (1)保护屏上信号复归过快,不利于故障分析。 (2)运行励磁投切方式无记录。

配电线路跳闸的原因分析及防范措施

配电线路跳闸的原因分析及防范措施 摘要:故障的情况下进行开关合闸,但常因过流保护动作跳闸而无法正常送电。现场情况表明,对这类存在开关异常跳闸状况的线路进行合闸送电瞬间,电流表指针往往大幅度偏转,然后又在较短的时间内返回到正常值。合闸冲击电流过大会导致过流保护动作跳闸,更为严重的是,有的线路只能将线路分段后逐段送电。 一跳闸原因: 1 管理原因: (1)外力破坏:电力线路受外力破坏易造成倒杆断线恶性事故,严重威胁电网安全运行。 (2)盗窃设施:电力线路多为金属材料,受价格上涨因素,犯罪分子偷盗电力设施,案发前必然先造成线路跳闸停电后实施犯罪。 (3)车辆撞杆:线路延公路两侧架设方案仍是目前普遍推行的首选方案,它便于施工与接火跳线,但随着车辆快速增长,违章行车直接撞击电杆事故也呈上升趋势。 (4)杆根取土:修路、建房、烧砖等取用土时,对架设在田间地头电杆地段进行取土,破坏了电杆基础,造成电杆倾斜倒塌。 (5)破坏拉线:组立在农村耕地上带有接线的电杆,因其不便于农机作业和农作物的收种,从而擅自拆除拉线,引起电杆倒塌。 (6)焚烧农作物秸秆:每年农作物收割之后,废弃在耕地中或堆积在田间地头、公路两侧的秸秆就地焚烧而引起线路跳闸。 (7 短路:人为因素较多,大都是缺乏电力保护常识而引发障碍。重点有:风筝、过街宣传横幅,彩带等绕线;金属丝抛挂,此类故障多集中在村庄附近和空旷地段;架空导线飞鸟短路,地下电缆出线裸露部分小动物短路。 (8线路巡查不到位:线路的安全管理重点在线路上,线路巡查工作必须要认真仔细,并要正确巡查所有设备,确保线路设备保持良好的运行状态。 (9 路薄弱点不清:没有标定危险部位与薄弱环节,遇到负荷高峰期,线路连接薄弱点放电发热烧断导线。 二原因:

(完整word版)漏电跳闸原因分析

0前言 漏电保护器在人身安全、设备保护和防止电气火灾等方面起着重要的作用。由于它使用安全方便得到广泛应用,而使用中也存在这样那样的问题、笔者从使用者的角度介绍它的相关知识和注意事项故障处理。 漏电保护器又叫漏电开关、它有电磁式、电子式等几种: 1漏电保护器的工作原理 1.1电磁式漏电保护器的工作原理 主要由高导磁材料(坡莫合金)制造的零序电流互感器、漏电脱扣器和常有过载及短路保护的断路器组成、全部另件安装在一个塑料外壳中。被保护电路有漏电或人体触电时,只要漏电或触电电流达到漏电动作电流值。零序电流互感器的二次绕组就输出一个信号,并通过漏电脱扣器使断路器在0.1秒内切断电源,从而起到漏电和触电保护作用。当被保护的线路或电动机发生过载或短路时,断路器中的电磁式液压延时脱扣器中热元件上的双金属片发热动作、使开关分闸,切断电源。 1.2电子式漏电保护器的工作原理 主要由零序电流互感器,集成电路放大器,漏电脱扣器及常有过载和短路保护的断路器组成。被保护电路有漏电或人体触电时,只要漏电或触电电流达到漏电动作电流值,零序电流互感器的二次绕组就输出一个信号,经过集成电路放大器放大后,使漏电脱扣器动作驱动断路器脱扣,从而切断电源起到漏电和触电保护作用。如果使用兼有过压保护是利用分压原理取得过电压信号,使可控硅导通,切断电源。 2漏电断路器的选用原则 2.1根据使用目的和电气设备所在的场所来选择 漏电断路器用于防止人身触电,应根据直接接触和间接接触两种触电防护的不同要求来选择。 2.1.1直接接触触电的防护 因直接接触触电的危害比较大,引起的后果严重,所以要选用灵敏度较高的漏电断路器,对电动工具、移动式电气设备和临时线路,应在回路中安装动作电流为30 mvA,动作时间在0.1 s之内的漏电断路器。对家用电器较多的居民住宅,最好安装在进户电能表后。 如果一旦触电容易引起二次伤害(比如高空作业),应在回路中安装动作电流为15 mA,动作时间在0.1 s之内的漏电断路器。对于医院中的电气医疗设备,应安装动作电流为6 mA,动作时间在0.1 s之内的漏电断路器。

县供电公司2011-2015年配电网设备故障分析报告

2011-2015年配电网设备故障分析报告 国网高台县供电公司 2016年5月

一、概述 由于2011年至2013年度高台县供电公司尚未直管,省市公司配电网专业管理未延伸至县公司,2014年之前高台县供电公司配电网故障详细基础数据按照规定只做一年保存,未做长期保留,且统计口径不齐、失去了参考分析的价值。 2014年高台县10千伏配电网设备基本情况为: 至2014年底,高台县供电公司共管辖10千伏线路43条1413.12千米;10千伏配电线路按照在运时间,运行10年以内的共7条,197.16公里;运行10-20年的共7条,229.81公里;运行20年以上线路29条,983.15公里。 2014年配网基本故障情况为: 2014年1至12月份,配网故障154次(其中:重合成功118次、接地2次,重合不成功34次),线路平均每百公里跳闸次数10.89次,年平均跳闸3.581次/条。全年累计故障停电时间63.71小时,平均每百公里4.51小时。 引起线路跳闸的主要原因:鸟害46次(29.9%)、外力破坏26次(16.9%)、树障21次(13.7)、运维责任17次(11.01%)、用户侧原因44次(28.5%)。鸟害、外力破坏和用户设备原因,是造成全年跳闸的三大主要因素。 2015年高台县10千伏配电网设备基本情况为: 至2015年底,高台县供电公司共管辖10千伏线路43条1444.57千米;0.4千伏线路1031.3公里;配电变压器配电台区2588台22.12万千伏安,为城乡8.2万户客户供电。

10千伏配电线路按照在运时间,高台县供电公司共管辖10千伏线路43条1444.57千米;10千伏配电线路按照在运时间,运行10年以内的共7条,231.61公里;运行10-20年的共7条,229.81公里;运行20年以上线路29条,983.15公里。 2015年配网基本故障情况为:2015年1至12月份,配网故障203次(其中:重合成功135次、接地15次,重合不成功53次),1至9月份跳闸195次,占全年96.05%,10月至12月跳闸8次,占全年3.03%。线路平均每百公里跳闸次数14.05次,年平均跳闸4.72次/条。全年累计故障停电时间78.86小时,平均每百公里5.46小时,重合闸不成功跳闸和接地导致线路故障停电平均每次1.48小时。 引起线路跳闸的主要原因:鸟害82次(40.49%)、外力破坏43次(21.18%)、树障33次(16.25%)、运维责任22次(10.83%)、用户侧原因23次(11.33%)。鸟害、外力破坏和树障,是造成全年跳闸的三大主要因素。 2014年至2015年配电线路总体情况: 表1 国网高台县供电公司配电线路总体情况 二、故障原因分析 (一)故障总体情况

500kV主变压器跳闸事故分析

500kV主变压器跳闸事故分析 发表时间:2019-07-16T15:04:09.417Z 来源:《电力设备》2019年第6期作者:江琦[导读] 摘要:对一起500kV主变压器跳闸事故及原因进行分析,通过现场模拟验证,事故原因为电流互感器预防性试验中测量线误碰二次绕组端子导致主变压器跳闸。 (国网山西检修公司) 摘要:对一起500kV主变压器跳闸事故及原因进行分析,通过现场模拟验证,事故原因为电流互感器预防性试验中测量线误碰二次绕组端子导致主变压器跳闸。针对同类设备,提出反事故措施。 关键词:主变压器;事故分析;反事故措施 某主变压器冷却器全停保护动作,该主变冷却器控制系统使用可以编程逻辑控制器为核心,采用温度传感器将采集到的电阻信号,送入到PLC的模拟量输入模块,由PLC进行A/D转换和标度变换等处理得到主变实际温度。另外采用温度开关采集主变的温度信号,并将信号送入PLC的开关量输入模块参与逻辑控制。电动机运行状态的检测,利用接触器及热断路器辅助接点输出的运行、故障等信号,引入PLC的开关量输入模块,在程序中实现故障电动机的自动切换和报警。系统对电机配置完成的控制、保护、测量功能,主要保护功能包括:短路保护、过流保护、失压保护、缺相保护、相序保护、过载保护以及联锁保护。在设备运行过程中出现故障及系统异常等情况,系统采用指示灯的形式报警,在运行过程中,若工作冷却器故障,PLC自动停止故障冷却器的运行,自动投入备用冷却器,并继续完成主变冷却器的控制。PLC软件具有故障自诊断功能,对PLC模块故障、测量检测回路断线等故障能及时判断,通过PLC及时报警。 1事故经过 2006年5月13日,500kV磁湖变电站凤磁Ⅱ回停电进行修试校工作。工作内容包括:停电范围内一次设备年检及预防性试验。500kV母线为3/2接线方式,主变压器高压接入第一串,停电期间安全措施主要有:(1)断开磁5012、5013开关、磁50132、50121隔离刀闸;(2)合上磁501327、501217、501367接地刀闸;在磁13LCVT侧挂一组临时接地线;(3)断开磁13LCVT二次小开关,磁50132、50121隔离刀闸的操作电源。13:30左右,磁5012TAC相测量一次对末屏介质损耗,测量完毕,工作班成员解除测量线,恢复TA末屏接地,在此过程中,主变压器跳闸。主控室监视屏显示主变压器第一套差动保护动作,主变大差动保护动作电流整定值为0.1A,后故障录波器显示磁5012TAC相TA第8个二次绕组有0.38A的扰动电流。 2测量接线及原理 磁5012TA末屏运行时是接地的,停电测量一次对末屏的介质损耗时,要解开末屏接地线,并将测量仪器的测量线接至末屏,一次导电回路加试验电压。测量仪器为光导介损电桥。测量TA介质损,实际是测量TA电容屏的容性电流的大小及与试验电压的夹角。测量中加的试验电压为45/55Hz频率的高压,测量2次结果取平均值。 3故障原因分析及采取的措施 3.1故障原因分析 桐柏500kV开关失灵保护盘安装在地面继保室,发变保护盘安装在地下主厂房运转层机旁,连接电缆采用阻燃屏蔽电缆,电缆长度约700m,按设计要求,屏蔽层为信号源侧一点接地。从以上事故分析(未出口跳相邻开关和发远跳信号)可以看出:MV AJ101具有较大的启动功率,其误动可能性不大,而启动主变压器保护的中间继电器其启动功率不足0.3W,连接电缆长度为700m,从地下厂房一直连接至地面500kV开关站,周围电磁环境复杂,存在扰动出口的可能。主变压器保护装置本身由于受到运输、调试或地下厂环境湿度高等影响也有误动的可能。 3.2采取的措施 针对上述分析,为了排除其他原因,采取了以下措施:首先对连接电缆绝缘性能、屏蔽层的接地方式、接地点进行了检查,检查结果符合要求。其次对电缆回路再次进行了传动试验,动作正确。再者对继电器MV AJ101和中间继电器(K13/K14)现场进行测试,测试结果符合要求。最后对主变保护装置DRS进行了清洁和除湿处理并对装置再次进行了单体试验,试验结果正常。为了证实长电缆分布电容对中间继电器(K13/K14)干扰,对安装在主变压器保护盘内的失灵启动中间扩展继电器线圈(K13/K14)、至光耦输入点的电压波形进行了长达20多天的监测。失灵出口主变保护逻辑说明:线路开关和桥开关失灵保护装置P141延时段动作后,启动各自的失灵出口继电器MV AJ101。发现主变压器保护盘中500kV开关失灵动作,启动主变压器保护的中间扩展继电器线圈两端电压,在系统正常运行的情况下,其电压会发生大范围的跳变,监测到的最高跳变达106V,中间扩展继电器。现场实测的启动功率仅为0.3W,为此,基本可以判定主变压器保护收到开关失灵启动信号是由于长电缆分布电容干扰引起的。为此,采取了如下3项措施:(1)为提高抗干扰能力,现场对该继电器线圈两端并接合适电阻,以增大其启动功率,启动功率由原来的0.3W增大到约12W,经试验后,投入运行。(2)在合适的时候,将长电缆跳闸出口改为光缆跳闸出口。(3)作为后续的监视手段,将继电器的备用接点接入监控系统,用于长时间在线监视该继电器的动作行为。 4暴露问题 (1)变压器PLC控制器厂家对PLC控制器的动作逻辑设计不符合规范要求,将“油温高、绕组温度高和冷却器全停”三种非电量保护的出口均启动同一只出口继电器,致使现场运行时没有办法对上述三种非电量保护分别进行投退,继电器出口动作也不便于判断是哪种非电量保护动作。(2)设计单位在对变压器的非电量保护二次回路设计时,没有理解和掌握变压器PLC控制器的控制原理和逻辑,只是简单地将PLC控制器的开出接点设计引入到变压器非电量保护装置“冷却器全停”的开入端。在设计阶段没有发现PLC控制器动作逻辑的缺陷。(3)现场安装调试和投产验收时,没有对变压器PLC控制器的动作逻辑进行相关的试验验证,仅通过在PLC控制器上短接出口接点的方法验证二次回路的正确性。在投产验收阶段也没有发现PLC控制器动作逻辑的缺陷。 5感应电压及其现场模拟测量 5.1电场偶合产生的感应电势 测量TA用介损电桥的测量线为双芯线电缆带屏蔽层,测量时测量线一端芯线接TA末屏,屏蔽线悬空,另一端芯线接电桥,屏蔽线通过电桥接地。由于TA比较高,测量线比较长,约5m。当测量导线处于强电磁场环境中,带电导引线(临近设备)与测量线存在偶合电容C1,测量线与地之间也存在偶合电容C2,测量线的屏蔽线及芯线上会产生耦合电势,其值为:U=UNC1/(C1+C2)式中UN———带电导引线额定相电压;U———测量线中耦合产生的感应电压。C1及C2的大小与测量线的长度成正比,与它们之间的距离成反比。由于A、B、C三相带电设备都对测量线屏蔽线产生偶合,但由于距离不一致,所以在测量线上的感应电压实际是三相耦合电压的向量和,即U0=UA+UB+UC。回路电流I=U0/R,R为继电器回路电阻。此电流可能就是扰动电流,导致主变压器差动保护误动作。

至配网跳闸分析报告

2014年1至11月份配网跳闸分析报告 一、总体情况分析 截止2014年年11月底, 10kV公用配电线路共计65条,10kV配电线路累计故障跳闸238条次,平均跳闸次数为次/条;与去年302条次相比减少66条次,同比降低%。其中:设备跳闸80条次,占全部故障的%;去年同期设备跳闸123条次,占全部故障的%,同比下降了%。 树障跳闸44条次,占全部故障的%;去年同期树障跳闸50条次,占全部故障的%,同比下降了%。 外力跳闸25条次,占全部故障的%;去年同期外力跳闸29条次,占全部故障的%,同比下降了%。 其它类跳闸89条次,占全部故障的%;去年同期其它类跳闸95条次,占全部故障的%同,比上升了%。10kV配网主干线故障停电的主要原因依次为设备原因、树障因素、外力因素、其它类因素。(见饼状图) 二、配网线路跳闸情况

截止11月底,10千伏主干线故障238条次,比去年同期减少64条次(见柱状图4) 三、暴露问题 (一)配网主干及分支线路故障238条次。 1、其中因设备影响引起的故障为80条次,占配网故障的%,具体分类(见柱状图)。 经过对设备影响引起的故障原因分析发现:占前三位的依次为导线原因23次、变压器原因22次、避雷器原因12次。主要原因:一是我局10千伏配网设备大部分是农网一期以前的线路,当时建设标准低、线径细。二是近几年负荷增长迅速,配电设备长期在大负荷、重过负荷运行,老化严重,故障较多。三是设备

接地装置运行时间长,连接点氧化、锈蚀严重,连接不紧密。四是管理因素:有部分配变未按照规程要求合理配置高压熔丝、低压熔断器和断路器。有个别杆塔裂纹严重、倾斜或缺失拉线。有配变高压避雷器更换安装不规范,直接捆绑或直接安装到变压器上。有未及时发现修路或建房造成导线对地安全距离不够现象。 2、因树障影响引起的故障为44条次,占配网故障的%,具体分类(见柱状图)。 经过对树障影响引起的故障原因分析发现:主要原因:一是我局10千伏配网线路通道内还存在树障未清理现象,特别是偏远偏僻地方。二是近几年我县部分乡镇开展林木加工富民政策,村民大面积种植速生杨,造成部分10千伏配网线路通道外侧超高树木较多。 3、因外力影响引起的故障为25条次,占配网故障的%,具体分类(见柱状图)。

线路跳闸原因分析报告

线路跳闸原因分析报告 线路跳闸原因分析报告随着科技的发展迅猛,无线网络也进入家家户户,不管城市还是农村,居民生活对用电质量的要求提高,根据国家要求,现在每年计划的停电次数在逐渐减少,同时在发生故障之后能够及时处理设备,恢复用户用电。 1 配网线路跳闸原因分析 1.1 外力的破坏 配网线路一般放置于比较复杂的环境中,不可避免的要面对来自大自然的外力干扰,经调查外力的损坏占总比例高达30.2%,例如:狂风的破坏、暴雨的洗刷、雾霾的覆盖、寒冬暴雪的侵蚀,种种外力因素都可使线路的绝缘层遭到破坏导致绝缘层老化、变质,从而发生绝缘层断裂保护力下降等现象,最终导致跳闸。由此可见,外力的破坏也成为配网线路跳闸的一大因素[1]。 1.2 用户的原因 用户对于设备的监督检查管理力度不够,也可导致线路的绝缘能力下降,供电管理部门的检查力度不夠也可引发故障,各项监管工作做不到位,使各种问题和存在的隐患都可导致配网线路的损坏。一些用户存在对知识的匮乏,缺乏对配网线路规定的额定电压等级的认知,随意使用设备,从而导致设备故障。用户自身原因或者监管不够的原因占发生故

障总比例的17%,这些都是不可忽视的重要因素。 1.3 设备的缺陷 工作人员对于线路检查不够认真,态度随意,不能及时发现、处理问题,且发现问题不及时处理,都为设备造成缺陷致使引发跳闸。检修人员不按照规定的周期检查,也没有对设备进行清扫和处理,导致设备运行老化、卡涩、变形等异常。一旦发生异常,都可引发设备故障,导致跳闸。 1.4 绝缘子串闪络放电引发的原因 导致绝缘子串闪络的因素之一就是过电压,例如:配网系统自身的暂态过电压、供电的高峰期瞬间过电压等,四面八方的过电压叠加都可使电压值迅速上升,一旦超过系统的额定电压值,就会导致绝缘子串闪络问题,引发对地方电及短路等故障。如果绝缘子的绝缘度不达标质量不合格时,都可引发短路、跳闸。 2 配网线路跳闸治理措施 2.1 防范外力的破坏 外力损坏是引发配网线路跳闸的外部因素最重要的原因,因此就需要加大力度排除这种干扰因素,保护好配网线路及设备的安全。例如:预防恶劣天气带来的损坏,在经常发生冰雪覆盖的区域做调查,收集冰雪覆盖情况、冰凌的性质、结冻的高度、冰凌出现的月份和次数等。这些都可作为在改造线路时候的参考因素,且加强对积雪的处理,可避免

主变跳闸分析

变电所#2主变跳闸事故分析 一、故障前系统运行方式 该变220KV系统五回线正常运行;#1主变备用。 110KV系统由#2主变带110KV达通线、达依线、达沙线、达高线、达气线运行。 二、事故经过 2006年2月21日18时53分,该变电所110KV达通线B相单相接地,80ms开关跳闸,1.46s后重合闸动作,合闸后达通线转换成AB两相永久接地故障,100ms后#2主变三侧开关跳闸,之后20ms 达通线开关跳闸。 值班员检查达通线距离I段,零序I段,重合闸信号掉牌,#2主变差动保护信号掉牌。 三、达通线跳闸原因 经现场巡视故障点在达通线出口27号杆处,故障为杆塔地线先掉落在B相导线上,零序I段动作,重合后转换为AB两相接地故障。达通线距离I段、零序I段动作。 四、#2主变差动保护动作原因 #2主变差动保护由三块LCD-11型差动继电器构成,阿城继电器厂生产。每相高压侧、中压侧、低压侧电流分别经过各自的辅助变流器达到平衡,正常时差动继电器差流为零。 1)第一次故障时,高中压侧电流波形 根据录波图分析,第一次B相接地故障时,高、中压侧的故障波

形正常(见下图),差动保护未动作。 图一:中压侧的故障波形 图二:高压侧的故障波形 2)第二次故障时,高中压侧电流波形 根据录波图分析,第二次AB相间接地故障时,高、中压侧电流均发生严重偏移,两侧故障电流均有很大的衰减的非周期分量,110KV侧二次电流中直流分量可达22安培,220KV侧二次电流中直流分量也达12安培,见如下录波图。

图三:中压侧的故障波形 图四:高压侧的故障波形 3)非周期分量产生的原因 由于电感中的电流不能突变,在短路发生的零时刻,受故障发生时刻电压初始相角的影响,在短路电流中将出现一个非周期分量,其初值等于短路的稳态电流与短路前一瞬间的电流值的差,该非周期分量的大小与电压的初始相位角和负载的性质有关,在电势过零点时短路其值最大,其衰减时间与系统参数有关。 本次故障由于该#2变是自耦变压器,其高压侧和中压侧有电气联系,短路阻抗很小,因此在110KV侧故障,故障电流很大,根据录波器数据和短路计算,在达通线相间接地短路时,主变110KV侧故障电流达5300A,根据以上的分析,故障电流周期分量越大,相应的非周期分量也越大。 4)非周期分量和剩磁对CT的影响 CT励磁电抗是随着电源的性质而变化(电感线圈通入直流时,阻抗很小)。非周期分量传变到二次负载的能力远小于周期分量的传

变压器空充引起主变跳闸的判断及处理

变压器空充引起主变跳闸的判断及处理 发表时间:2019-11-08T11:38:17.287Z 来源:《基层建设》2019年第23期作者:齐绩[导读] 摘要:针对主变空充时励磁涌流引起微机差动保护误动这一情况,从保护装置原理及主变性能等方面分析微机差动保护误动的原因,提出了减少该类事件的建议,同时还提出如何识别空投变压器是否存在故障的方法,以避免延误主变的恢复送电关键词:空充主变;差动保护;励磁涌流;误动 1 变压器差动保护防止励磁涌流的原理及存在问题 1.1基本原理变压器差动保护是变压器的主保护,它是通过 比较变压器各侧二次电流的幅值 深圳供电局有限公司广东深圳 518000 摘要:针对主变空充时励磁涌流引起微机差动保护误动这一情况,从保护装置原理及主变性能等方面分析微机差动保护误动的原因,提出了减少该类事件的建议,同时还提出如何识别空投变压器是否存在故障的方法,以避免延误主变的恢复送电关键词:空充主变;差动保护;励磁涌流;误动 1 变压器差动保护防止励磁涌流的原理及存在问题 1.1基本原理 变压器差动保护是变压器的主保护,它是通过比较变压器各侧二次电流的幅值和相位后动作对变压器进行保护。正常运行时,差流几乎为零,保护不动作。在变压器内部故障时,差流超过定值,保护无延时动作并跳闸。当空投变压器时,变压器的励磁涌流可能使差流超过定值,但励磁涌流是变压器正常操作或运行时出现的现象,变压器保护不应该动作。因此为了区别励磁涌流和短路,继电保护装置利用励磁涌流的特点,制作了不同原理的变压器差动保护。 1.2微机差动保护在主变空充时误动作跳闸原因分析 微机差动保护在主变空充时误动的主要原因是不能及时识别出主变的空充状态而闭锁保护出口。微机差动保护现在所采用的励磁涌流闭锁方式(如二次谐波闭锁原理、波形判别闭锁原理等)还不十分可靠,容易引起误动或拒动,现以二次谐波闭锁原理为例,分析如下:变压器的励磁涌流中的二次谐波含量与空载合闸初相角、电源电压、系统阻抗、铁芯型式、饱和磁通、剩磁的大小和方向、三相绕组接线方式等因素有关。继电保护领域的专家、学者经过大量理论分析计算和试验,得出:在一般情况下,空充变压器时,总有一相的二次谐波含量大于15%的结论。因此,在《大机组继电保护整定导则》中给出了二次谐波制动系数整定范围为 15%~20%。然而由于大型变压器采用了磁化特性较“硬”的铁芯材料,在主变空充的情况下差电流中的谐波含量要低于传统的变压器,在不同合闸条件下的二次谐波成分可以减小到 10%以下[1],这种情况下主变差动保护有时因空投操作而误动是难已避免的。目前,各类国产微机主变差动保护制造厂家在励磁涌流制动逻辑方面一般提供2种选择:1)二次谐波一相制动闭锁三相;2)二次谐波分相制动。对于1)方案,空投变压器,当内部一相绕组存在匝间短路故障时,故障相电流具有内部短路电流的特征,差动保护应动作,但另两个健全相的电流却是空载合闸励磁涌流性质,后者使差动保护三相全被制动,一直到涌流衰减到不满足差动保护闭锁条件,故障相差动保护才能动作。而大型变压器的励磁涌流衰减是很慢的,它的衰减时间常数是由数值相当大的变压器励磁涌流电抗所决定[3]。故改为采用 2)方案,该方案有利用加快变压器区内故障的差动保护动作速度,尤其是空投主变时发生内部故障。但由前所述,采用此种方案对于防止空投主变励磁涌流误动却不十分可靠。微机差动保护最小动作电流整定值较小,且微机保护动作速度明显高于传统的电磁型保护,可达到 20~40 ms。这样,只要主变合闸涌流的前几个周波的数值达到差动动作门槛值,且二次谐波含量低于 15%,波形对称度好,就会造成比例差动保护的出口跳闸。 2 识别空投变压器是否存在故障的方法 2.1励磁涌流的特点 1、包含有很大成分的非周期分量,往往使涌流偏于时间轴的一侧。 2、包含大量的高次谐波分量,并以二次、三次谐波为主。往往使励磁涌流 波形中出现间断和不对称。 3、空充时三相电压基本不变、基本无零序电压和零序电流。 4、励磁涌流的衰减快慢由时间常数L/R决定,小型变压器电阻较大,电抗较小,衰减较快,约几个周期可达稳态;大型变压器,电阻较小,电抗较大,衰减较慢,有可能延续20s才达到稳态。 5、励磁涌流的数值很大,最大可达额定电流的6到8倍。 2.2励磁涌流的识别 1、识别原理(以南瑞继保RCS-978主变保护为例) A .谐波含量识别 励磁涌流时,波形中包含大量的高次谐波分量,主要以二次、三次谐波为主。 其中I2nd、I3rd分别为每相差动电流中的二次和三次谐波,I1st为对应相的差流 基波,K2xb、K3xb分别为二次谐波和三次谐波制动系数整定值。一般整定为0.15。 B 波形畸变识别 故障时,差流基本上是工频正弦波。而励磁涌流时,有大量的谐波分量存在, 波形发生畸变,间断,不对称。利用算法识别出这种畸变,即可识别出励磁涌流。故障时,有如下表达式成立: 其中S是差动电流的全周积分值,S+ 是“差动电流的瞬时值+差动电流半周前的

相关文档
最新文档