液晶显示器基础知识(QC)

合集下载

液晶显示器基础知识-

液晶显示器基础知识-

液晶显示器基础知识-液晶显示器基础知识☆解析度目前市面上LCD monitor可以买得到的, 大概有以下几种解析度XGA: 1024*768 SXGA: 1280*1024 SXGA+: 1400*1050 UXGA: 1600*1200另外还有一些解析度更高的面板 (通常是有特殊用途的), 以及在台湾大概还没有人在用的宽萤幕16:9 or 16:10, 在此先不讨论 .液晶显示器的解析度, 表示它可以显示的点的数目. 这是一个固定值, 没有办法调整的. 同样的尺寸之下, 解析度越高则可以显示的画面越细致. 假设你买了一个XGA的monitor, 则你的显示卡千万不要设定成其他解析度, 比如说800*600 . 因为在这种情况之下, 电脑实际上是把一个800*600的画面, scale成1024*768在显示, 结果就是看到一个比较模糊的画面.正确的做法就是, 买了什麽解析度的monitor, 显示卡就设定成那个解析度.☆ DVI (Digital Visual Interface)电脑处理的是数位信号, 处理完之後送出来的也是数位信号, 但是传统的CRT monitor使用的是类比信号. 为了与CRT沟通, 送到CRT 的信号, 必须先转换成类比的才能使用. 因此一般显示卡的输出 (D-sub, 就是有15 pin的那个小插槽), 送的是类比信号.LCD monitor使用的也是数位信号, 但是为了与一般显示卡相容, 所以会设计成可以接收D-sub接头送出来的类比信号, 然後再把这个类比信号, 转换成数位信号去处理与显示. 这里就产生一个问题了, 不论是数位转类比, 或类比转数位, 一定都会有信号的遗失.因此为了与CRT相容的这个愚蠢理由, LCD monitor进行了两次本来不必要的信号损失. 造成的结果就是, 看到的画面会有一点点模糊. 而其实LCD原本的能力, 可以显示得更清楚.由於这两年液晶显示器开始热卖, 显示卡厂商也开始推出可以直接输出数位视讯的显示卡, 也就是多了一个叫作DVI的插槽. 如果你买一个有DVI插槽的显示卡, 再买一个有DVI插槽的LCD monitor, 这时LCD monitor所显示的清晰程度, 才是该LCD原本所设计出来的能力.当然, 这样的组合现在好像有比较贵, 如果你不是对画质非常挑剔, 可以用就好的话, 可以考虑省这笔钱 .☆坏点(dot defect)所谓坏点, 是指液晶显示器上无法控制的恒亮或恒暗的点 . 坏点的造成是液晶面板生产时因各种因素造成的瑕疵, 可能是particle落在面板里面, 可能是静电伤害破坏面板, 可能是制程式控制制不良等等.坏点分为两种:亮点与暗点. 亮点就是在任何画面下恒亮的点, 切换到黑色画面就可以发现. 暗点就是在任何画面下恒暗的点, 切换到白色画面就可以发现.一般来说, 亮点会比暗点更令人无法接受, 所以很多monitor厂商会保证无亮点, 但好像比较少保证无暗点的. 有些面板厂商会在出货前把亮点修成暗点. 另外某些种类的面板只可能有暗点不可能有亮点.例如MVA, IPS的液晶面板, 面板厂商会把有坏点的面板降价卖出. 通常是无坏点算A grade, 三点以内算B grade, 六点以内算C grade. 一般来说这都是可以正常出货的, 至於更低等级的面板, 在景气好面板缺货的时候 (例如2000年时), 还是会有人来买.今年的话, 大家眼睛最好也睁大一点 , 坏点没有办法修. 如果你买的monitor有保固坏点, 你拿去退给他, 他就是换一台给你.☆ muramura本来是一个日本字, 随着日本的液晶显示器在世界各地发扬光大, 这个字在显示器界就变成一个全世界都可以通的文字. mura是指显示器亮度不均匀, 造成各种痕迹的现象.最简单的判断方法就是, 在暗室中切换到黑色画面, 以及其他低灰阶画面. 然後从各种不同的角度用力去看, 随着各式各样的制程瑕疵, 液晶显示器就有各式各样的mura. 可能是横向条纹或四十五度角条纹, 可能是切得很直的方块, 可能是某个角落出现一块, 可能是花花的完全没有规则可言, 东一块西一块的痕迹.mura不会对使用上造成什麽影响, 这属於品味问题. 面板厂商会把有mura的面板, 打成次级品用较低价格卖出. 但是我没有听说, monitor厂商有那种保证无mura的. 这个通常也不会写进monitor规格, 所以买之前眼睛睁大一点, 买到了只好自认倒楣.☆对比显示器的对比是这样定义的, 在暗室之中, 白色画面下的亮度除以黑色画面下的亮度. 因此白色越亮, 黑色越暗, 则对比值越高. 一般LCD monitor的规格书上都会写出它的对比值, 但是这个值通常只能参考. 因为面板厂商为了保护自己, 有一些规格值会写得很保守, 对比就是其中一项.比如说, 某机种的对比值明明可以做到三百, 但是规格书写的是typical 200, minimum 150 , 这是为了量产的时候, 万一出了什麽问题, 导致黑色漏光对比下降, 该批货还是可以正常出货.如果你想比较的两款LCD monitor, 对比值分别是写350, 400, 不要以为四百的那个真的有比较好, 那只是这一家他敢写而已. 事实上, 两款分别写300, 400的, 我都还会怀疑那可能是差不多的. 实际上运气好的话, 都有可能是做到五六百.如果你会很care这个, 可以把想比较的两台显示器白色亮度调到一样, 然後切换到黑色画面, 在暗室下看谁比较黑. 如果不是对画质非常挑剔, 在一般使用情况下, 我认为对比三百应该是够用的.☆色饱和度 (color gamut)色饱和度是指显示器色彩鲜艳的程度. 显示器是由红色绿色蓝色三种颜色光, 来组合成任意颜色光. 如果RGB三原色越鲜艳, 则该显示器可以表示的颜色范围就更广. 这是因为无法显示比三原色更鲜艳的颜色, 所以某显示器三原色本来就不鲜艳, 那个该显示器所能显示的颜色范围就比较窄了.色饱和度是面板厂商的重要规格, 但是我到现在好像还没看过有monitor厂商把色饱和度写进规格的. 他们都是写可以组合出来的颜色数目. 比如说, 某显示器的RGB三种颜色光都可以分成64灰阶 (6 bit), 则该显示器的颜色种类总共有64*64*64=262,144种组合. 如果该显示器的RGB三种颜色光, 都可以分成256灰阶(8 bit). 则该显示器的颜色种类总共有256*256*256=16,777,216种组合.当然灰阶数越多颜色层次看起来会越细致, 但不表示颜色会比较鲜艳. 色饱和度的表示是以NTSC所规定的三原色色域面积为分母, 显示器三原色色域面积为分子去求百分比. 比如某显示器色饱和度为71% NTSC, 表示该显示器可以显示的颜色范围为NTSC规定的百分之七十一.71% NTSC大约为为目前CRT电视机的标准, LCD显示器目前作到这个程度的,在色彩上就算高阶了. 目前笔记型电脑用的萤幕色饱和度大约40~50% NTSC. 桌上型液晶萤幕大多作到60%~65% NTSC.当然各大厂都有持续开发高色饱和度显示器的计划, 或已有量产, 请不要拿来和我擡杠. 我说的是"目前"和"大多" . 选购的时候, 把喜欢的两台monitor摆在一起, 点相同的画面, 通常就可以看出谁的色饱和度比较好.☆亮度亮度是指显示器在白色画面之下明亮的程度, 单位是cd/m^2, 或是nit . 亮度是直接影响画面品质的重要因素. 在实验室里面我们常讲一句话: 「一亮遮三丑」. 一个明亮的显示器即使色饱和度比较差, 或颜色偏黄等其他不利因素, 还是有可能看起来画面会比较漂亮.目前市售的monitor, 一般亮度规格大约是250nits. Notebook亮度规格大约是150nits. 当然更亮规格的产品, 各厂都有在开发当中或已量产. 如果是液晶电视, 亮度通常会有400nits, 这是因为看电视时不像使用监视器时距离那麽近, 并且会考虑摆电视的环境会比较明亮.液晶显示器会发光, 是因为它的背光模组藏有灯管. 就像你现在擡头可以看到的照明用萤光灯管是很像的东西, 只不过小了一点. Notebook里面会摆一支, Monitor会摆上两到六支或以上.目前灯管厂商都会保证灯管寿命, 在三万小时或五万小时以上. 也就是使用三五万小时之後, 亮度会掉到一半. 所以其实液晶显示器还算蛮长寿的. 没有其他破坏性动作造成故障的话, 应该可以活到你想淘汰它的时候.显示器的亮度是使用者可以调整的, 调到你觉得舒服的亮度就可以, 调得太亮除了可能不舒服外, 也会损耗灯管寿命.☆视角(一)液晶显示器由於天生的物理特性, 使得使用者从不同角度去看时, 画面品质会有所变化. 与正看时相比, 斜看的时候, 转到当画面品质已经变化到无法接受的临界角度时, 称之为该显示器之视角. 视角的定义有三种1. 对比从斜的方向去看液晶显示器, 与正看时相比, 白色部分会变暗, 黑色部分会变亮, 因此对比会下降. 一般定义当对比下降到10的时候的角度为该显示器的视角. 也就是定义大於此视角的时候, 黑白已经不易分辨. 一般面板厂商与监视器厂商规格书上, 对於视角的定义最常使用这一条.2. 灰阶反转理论上显示器从零灰阶 (黑色) 到二五五灰阶 (白色), 应该是灰阶数越高则越亮. 但是液晶显示器在某个大角度的时候, 有可能看到低灰阶反而比高灰阶还亮, 也就是看到类似黑白反转的现象, 这种现象称之为灰阶反转.定义不会产生灰阶反转现象的最大角度为视角, 也就是超过这个角度就有可能看到灰阶反转, 而灰阶反转是无法接受的影像品质. 这个定义和第一个定义的差别在於, 用对比定义只考虑零灰阶和二五五灰阶, 而灰阶反转是考虑所有的灰阶.3. 色差从不同角度去看液晶显示器, 会发现颜色会随着角度而变化, 比如说本来是白色画面变得比较黄或比较蓝, 或是颜色变得比较淡等等. 随着角度变大, 当颜色的变化已经大到无法接受的临界点时, 定义该角度为视角.关於色差, 我说过颜色可以量化, 所以颜色的差异可以用数字表示, 但什麽叫做无法接受的色差, 目前并没有一定标准, 所以写规格的时候没有人用这个定义, 但是在实验室里面, 我们在比较两种显示器的时候还是会care相同角度时谁的色差比较大, 这是使用者会直接感觉到的品味问题.最早的TFT-LCD所使用的是一种叫做TN的液晶模式, 这种技术最大的缺点就是视角很小, 以对比来定义, 目前大概都是作到左右视角各45~50度, 上视角 15~20度, 下视角35~40度.为了解决视角的问题, 有几种广视角技术就发展出来, 目前市面上的主流广视角技术有三种: TN+film, MVA, IPS. 目前市售的notebook LCD, 通常不会应用广视角技术, 因为考量notebook是个人使用, 广视角效益不大, 而monitor通常会使用广视角, 考量使用monitor时, 可能会秀一些资料或画面给在旁边的人看.☆视角(二)1. TN+film所谓TN+film就是在原来的TN型TFT-LCD上贴上一种广视角补偿膜. 这种广视角补偿膜是Fuji Film (没错, 就是作底片的那一家) 的独家专利技术, 称为Fuji Wide View Film. 一旦贴上这种补偿膜, 以对比为定义, 原本大约左右视角100度, 上下视角60度, 立刻增加到左右140度, 上下120度. 但是TN+film, 还是没有解决灰阶反转的问题2. MVAMVA是Fujitsu所开发出来的独家专利技术. 除Fujitsu之外, 台湾尚有奇美电子与友达光电获得授权生产. MVA可以做到上下视角与左右视角都超过160度, (但不是每个方位都有这样的视角), 并且解决了大部分灰阶反转的问题. 除非是从很特殊的方位, 并且很大的角度去看, 才有可能看到灰阶反转3. IPSIPS最早由Hitachi所发展, 另外IBM Japan, NEC, Toshiba等也拥有IPS技术. 国内则有瀚宇彩晶获得Hitachi的授权生产. IPS上下视角与左右视角号称到170度, (但不是每个方位都有这样的视角), 并解决大部分灰阶反转问题.160度与170度的差异其实没有意义, 有兴趣的话拿起量角器来看看80度是多大的视角. 基本上超过这个视角, 一个平面已经快变成一条缝了, 根本没有办法进行量测. 他敢写170度(两边各85度), 是在80度的时候可能量到对比二三十, 所以有把握85度时对比仍可以超过十. 其实MVA也可以 .除了以上三项广视角技术, 比较有名的广视角技术, 另有Sharp拥有独家专利ASV. 韩国的Samsung有一种MVA的变形叫做PVA的. 韩国的Hydis (原Hyundai的TFT-LCD部门)则拥有IPS的变形FFS等.☆视角(三)Notebook的液晶萤幕, 不使用广视角技术有几个理由. 除了之前说过的notebook是个人使用的之外, 最主要的原因是notebook讲求轻薄省电, 所以背光板只能摆一根灯管, 而且必须做很薄(也就是天生作不亮).为了得到比较好的光使用效率, 所以采用穿透率最高的TN型设计, 而比较少使用MVA, IPS, ASV等等技术. 而TN+film技术, 除了穿透率有比TN低一些之外, 多了两张广视角补偿膜, 也会增加厚度与重量. 而notebook用面板对厚度重量的要求, 一向是机构工程师的恶梦 .判断monitor是不是使用TN+film最简单的方法, 就是去看灰阶反转. 下视角是最容易看到灰阶反转的角度. 把monitor随便切到一个有不同颜色与亮度的图案, 把脸贴到monitor下方, 然後眼睛往上看. 如果看到灰阶反转的现象(就是亮的地方变暗, 暗的地方变亮), 就可以肯定这是TN+film型monitor了. 如果是notebook液晶萤幕,连左右视角都很容易看到TN+film的左右视角, 依设计可能有120度或140~150度(以对比为定义). 这是因为Fuji Film又有推出新一代的广视角补偿膜. 不过有件令我印象非常深刻的事, 有一次拿到某社的TN+film面板, 规格写左右typical各75度, 但是没有写minimun值, 实际一量发现只有60度. 这才发现敝公司在写视角规格时, 实在稍嫌老实了一点, 不但都typical value老实写, 而且还保证minimum value. 人家大笔一挥, 技术立刻日进千里, 难怪卖得那麽好.MVA和IPS的判断, 像我们靠这一行吃饭的, 其实就是把显微镜拿起来去看面板的画素设计, 一般使用者则可以从规格书看出一点端倪. 除了视角规格>160与170的差别之外, MVA的响应时间规格是25ms,IPS的响应时间大约是40ms. 如果是Sharp的面板规格, 又写上下左右视角超过160度, 那一定就是ASV.MVA和IPS各有优缺点, 比如说MVA的响应速度比IPS快, 但色差也比IPS大等等. 针对各自的缺点, 厂商都有持续开发改进的研究, 甚至已经量产. 而TN+film也不会有消失的一天, 因为它容易作得亮, 而且对面板厂商而言, 不须要特别的制程, 是低价monitor非常适合的选择 .☆响应时间(一)响应时间的定义就是在面板的同一点上面, 从黑色变到白色所需时间, 加上从白色变到黑色所需时间. LCD有响应时间的问题, 是因为 LCD 是以液晶分子的旋转角度, 来控制光线的灰阶亮暗, 而液晶分子旋转时需要时间.一般monitor使用的目的是文书处理与网页浏览 . 一般情况之下就是monitor会持续显示同一个画面很久一段时间, 然後才切换到另一个不同的画面. 这样的使用状况下, 其实反应时间多快多慢对使用者而言是没有影响的. 但是如果要使用monitor来看动画或影片, 因为画面会持续变化没有停止, 这时候响应时间就会影响画面品质.响应时间分为rise time和fall time, 对TN型面板来说, 驱动电压从低电压变成高电压时, 画面会从白色变成黑色 (电压rise). 因此白色变成黑色所需时间就是rise time. 而驱动电压从高电压变成低电压时, 画面会从黑色变成白色 (电压fall), 因此黑色变成白色就是fall time.MVA和IPS则刚好相反, 黑变成白是rise time, 白变成黑是fall time. 目前市面上量产面板的规格, TN型rise time大约15ms, fall time大约35ms. 实际上作到10ms + 20ms也不算难. 这里其实有一个陷阱.对LCD面板来说, 从全黑变到全白, 以及从全白变到全黑的响应时间, 其实是最快的. 但是中间灰阶的切换, 就不能保证这个速度. 比如说从128灰阶切换到140灰阶, 响应时间都会比规格值大上很多, 大於七八十毫秒都是可能的, 而你使用monitor时, 不可能只使用黑色和白色两种颜色.☆反应时间(二)一般LCD面板的画面更新频率是60Hz, 也就是每秒钟要换60次画面. 不管目前显示的图片是否有在变动, 都会以这种频率重新显示, 因此每个画面持续时间是1/60 = 16.67ms. 如果响应时间远大於这个值, 画面在动时, 就可能看到模糊的影像. 注意是模糊的影像, 不是残影. 残影是另外一个问题, 你可以这样测试:在MS Windows所附的萤幕保护当中有一个"留言显示", 设定值里面可以更改背景颜色和留言内容. 把背景选成灰色, 留言打入++++++, 字型选大一点, 然後让它跑. 仔细看, 可以看到加号背後拖着一个模糊的尾巴, 这就是响应时间不够快造成的.CRT没有这样的问题. 这就是说目前的LCD monitor, 其实不是很适合用来看影片. 不过我实际测试的结果, 普通使用者如果是观看一般影片(比如说ㄟ片), 其实影响不大, 要看那种画面闪来闪去的动作片, 很用力去盯着看某些, 其实平常不会去注意的背景, 才会发现品质下降. 玩game的话也没有什麽太大的问题.市售的LCD monitor对於响应时间的规格, 还有另一个陷阱. 有些厂商响应时间只写rise time, 所以如果买monitor时, 看到响应时间只有15ms甚至更低, 最好问清楚. 通常就是这种情况 , 真正小於15ms的产品, 大概还要过好些时间, 才有可能在市面上看到.另外有一些高阶LCD的响应时间的规格, 可能是写全灰阶切换小於16.67ms. 这是指不管是多少灰阶切换到多少灰阶, 都保证在16.67ms 之内完成动作. 注意不是rise + fall time 16.67ms, 这是在驱动电压上面, 动了一些手脚达到的. 目前还不多见, 但不是没有. 这种面板用来看影片, 画质比起传统的LCD就有相当程度的改善.☆保护玻璃有些人在购买液晶显示器的时候, 会要求装上保护玻璃. 这个动作好不好见仁见智, 我个人就很反对. 但我有一个同事就买一个有装玻璃的, CRT的表面是玻璃, 最大的问题就是会反光. 尤其如果背後有窗户或灯光就非常的讨厌, 常常会看不到画面.LCD的表面最外一层是一片偏光片, 这一片偏光片通常作过一些特殊表面处理, 硬度比较高 (一般规格是3H), 并且具有防炫光与抗反射的功能, 所以LCD不会有像CRT那样有反光的问题. 可是一旦装上保护玻璃, 这一切就毁了, 你背後的光源对你的CRT萤幕, 造成什麽样的困扰, 都会在LCD的保护玻璃上重现.浪费了表面偏光片原本的设计, 破坏影像品质. 那为什麽有人要装玻璃? 因为使用monitor时手指常常会在上面指来指去, 而偏光片印上指纹印之後会很难消除, 光用布是擦不掉的, 如果装上保护玻璃就很容易清理.另外就像我同事的情形, 他一买回家放, 他两个还没念幼稚园的儿子就来用力压, 当场让他觉得玻璃买对了. 其实LCD没有那麽脆弱, 若不是很用力去压或是撞击是不会破的, 坏点也不是摸出来的.除非摆LCD的地方, 常常有很没斩节的小朋友出没, 否则不建议装保护玻璃. 要擦掉偏光片上的指纹, 可以用水加一点点洗碗精, 用布沾湿後去擦, 再用布沾清水去擦即可. 轻压液晶萤幕不会使液晶流出来, 那是密封在面板里面的. 万一打破液晶萤幕的话(破裂处会黑掉), 要尽快处理掉, 并用肥皂洗手, 因为液晶是有毒的, 不要摸一摸然後不小心吃下去.☆残影残影是指画面切换之後, 前一个画面不会立刻消失, 而是慢慢不见的现象. 残影与反应时间不算同一件事, 残影可能要两三秒後才会完全消失, 而液晶的反应时间是十几到几十毫秒. 一个设计得好的液晶显示器, 就算反应时间是15+35ms, 也不可能让使用者看到残影.残影发生机制有些复杂, 通常是同一画面显示太久的情况下, 液晶内的带电离子吸附在上下玻璃两端形成内建电场, 画面切换之後这些离子没有立刻释放出来, 使得液晶分子没有立刻转到应转的角度所造成.另外一种可能情况则是因为画素电极设计不良, 使得液晶分子在状态切换时排列错乱, 这种情况之下也有可能看到残影, 所以以为反应时间快就不会看到残影, 这种观念是错误的.面板厂商测试残影的方法是, 常温下点西洋棋棋盘黑白方格画面十二小时, 然後切换到128灰阶去看, 标准是在5秒(?)内残影必须消失.一般使用者选购monitor时, 可以用power point画一些白底黑格的图, 以及一张128灰阶图去切换. 如果嫌麻烦, 也可以把萤幕背景设成128灰阶, 然後叫出踩地雷点到暴掉(所有黑色地雷会显示出来), 摆个几十秒或几分钟, 然後关闭.如可以看到残影 (不是五秒喔, 看得到就算), 那就不要买. 注意一点, 不要一直盯着测试画面看, 切换後才去看, 不然可能看到的是人眼的视觉残留.☆色温 (color temperature)色温是用来形容显示器的白色的颜色, 不限於LCD, 所有的显示器都通用. 当显示器的颜色与黑体的温度高到某一绝对温度时, 所发出来的光一样时, 称为该显示器的色温等於该温度.比如说, 当显示器的白色, 设计成接近黑体在温度6500K的时候, 所发出来的光颜色(接近晴天时上午的太阳光), 称为该显示器的色温为6500K.上面听不懂没关系, 下面三句记起来就好. 色温越低颜色会越偏黄色, 色温越高颜色会越偏蓝色, 一个色温偏高的显示器在秀图片的时候, 整个画面看起来色调就会偏蓝.据说亚洲人比较喜欢偏蓝色的白色, 欧洲人比较喜欢偏黄色的白色 , 所以在日本卖的CRT电视机色温内定值, 可以高到9300K甚至12000K. 在欧洲卖的色温就内定在6500K左右, 台湾则是follow日本. 你不喜欢偏蓝的白色也没有关系, CRT的色温可以让使用者很容易地去调整, 但LCD就有困难.目前LCD面板的白色通常设计在6500K左右(电视用的面板要求色温会更高), 但也有故意设计成更偏黄的, 因为灯管越偏黄亮度会越高, 偏蓝亮度就低. 如果偏蓝又要维持一样的亮度, 就要在其他部份花更多成本把亮度补回来 .色温高低没有好坏标准, 有人喜欢偏蓝有人喜欢偏黄, 选购的时候把几台中意的monitor摆在一起点同一个画面, 挑你喜欢的色调即可.☆ Gamma CurveGamma curve是指不同灰阶与亮度的关系曲线. 把零到二五五灰阶当x轴, 亮度当y轴, 画出来的曲线就叫做gamma curve. Gammacurve通常不会是一条直线, 因为人眼对不同亮度有不同辨识的效果, 比如说低亮度的辨识能力较高(一点点亮度变化就有感觉), 高亮度的辨识能力较低.Gamma curve会直接影响到显示器画面的渐层效果. 比如说一个显示器的gamma curve, 如果在高亮度的地方切得太细, 最高灰阶的那几阶亮度都差不多亮, 那麽在显示亮画面的图片时, 就会觉得很多地方都泛白太亮, 看不见渐层. 那麽使用者就会觉得影像不自然, 有些比较高阶的显示卡, 会提供调整gamma curve的功能不过若不是比较专业的使用者, 通常不会去动到那边, 而是直接使用监视器厂商的原始设定值. 测试的时候, 多带几张不同种类的图片. 整体而言, 比较亮的, 比较暗的, 或比较中间灰阶的都准备. 最好准备几张有大大的人像的, 因为肤色对人眼来说, 是很容易辨识的印象, 仔细看看图片的渐层效果, 会不会让你觉得很自然.☆ CrosstalkLCD的crosstalk是指萤幕中某区域的画面, 影响到邻近区域亮度的现象. 一般crosstalk测试画面如附档. 在底色一二八灰阶的状态下, 画一个有萤幕四分之一大的黑色方块摆在正中央, 理论上周围还是都要维持一二八灰阶, 但若发现上下左右四块区域变暗, 就作叫crosstalk.也可以把黑色方块换成白色, 有crosstalk的话上下左右就会变亮. 一般面板厂商的规格是, 有黑色方块时与没有黑色方块时, 上下左右区域的亮度差别不可以超过4%. 不过其实这是蛮宽松的规格, 通常达到2%时人眼就可以看得很清楚了, 所以有些客户会要求小於1%, 而这通常也是面板厂设计标准. 选购的时候, 就点上面讲的那个画面, 看得见crosstalk就不要买. 另外通常商家都经挑选最完美的机子展示, 以上的标准看看,展示机非常值得考虑.TFT LCD液晶显示器常见的广视角架构良好光学补偿膜抵消TN型液晶的相位延迟现在大尺寸的液晶显示器大多是利用TN(Twisted Nematic)型液晶来制作的。

液晶屏基本知识及关键指标参数

液晶屏基本知识及关键指标参数

液晶屏基本知识及关键指标参数液晶显示屏(LCD Liquid Crystal Display)的工作原理与传统球面显示屏完全不同。

液晶显示屏就是两块玻璃中间夹了一层(或多层)液晶材料,玻璃后面有几根灯管持续发光,液晶材料在信号控制下改变自己的透光状态,这样就能在玻璃面板前看到图像了。

液晶显示屏性能是有以下几个参数:响应时间响应时间的快慢是衡量液晶显示屏好坏的重要指标,响应时间指的是液晶显示屏对于输入信号的反应速度,也就是液晶由暗转亮或者是由亮转暗的反应时间。

一般来说分为两个部分:Tr(上升时间)、Tf(下降时间),而我们所说的响应时间指的就是两者之和,响应时间越小越好,如果超过40毫秒,就会出现运动图像的迟滞现象。

目前液晶显示屏的标准响应时间大部分在25毫秒左右,不过也有少数机种可达到16毫秒。

拥有16ms 的超快响应时间,就可以用每秒显示60帧画面以上的速度,完全解决传统液晶显示屏在玩游戏或者看DVD影碟时所存在的拖影、残影问题。

对比度对比度是指在规定的照明条件和观察条件下,显示屏亮区与暗区的亮度之比。

对比度是直接体现该液晶显示屏能否体现丰富色阶的参数,对比度越高,还原的画面层次感就越好。

目前液晶显示屏的标称为250:1或者300:1,高档产品在400:1或500:1。

这里要说明的是,对比度必须与亮度配合才能产生最好的显示效果。

400:1或500:1的高对比度将使显示出来的画面色彩更加鲜艳,图像更柔和,让您玩游戏或者看电影效果直逼CRT显示屏。

亮度液晶显示屏亮度普遍高于传统CRT显示屏,液晶显示屏亮度一般以cd/m2(流明/每平方米)为单位,亮度越高,显示屏对周围环境的抗干扰能力就越强,显示效果显得更明亮。

此参数至少要达到200cd/m2,最好在250cd/m2以上。

传统CRT显示屏的亮度越高,它的辐射就越大,而液晶显示屏的亮度是通过荧光管的背光来获得,所以对人体不存在负面影响。

屏幕坏点屏幕坏点最常见的就是白点或者黑点。

LCD液晶显示器基础知识

LCD液晶显示器基础知识

LCD液晶显示器基础知识显示器是计算机的主要输出设备,可是您是否真正的了解它呢?正因为这样很多人在购买电脑时,只关心显示器是19寸还是22寸的,而并不关心显示器的其它性能。

下面我们将详细的给大家讲讲显示器的基础知识。

显示器的主要分类有CRT(阴极射线管)显示器和LCD(液晶)显示器。

CRT作为发展最成熟的显示器,显示性能仍然是相当不错的,只是能耗、体积、最大屏幕尺寸和辐射种种瓶颈使它的发展走到了尽头。

LCD作为平板显示设备的一员,在画面质量、色彩、清晰度方面大大超过了CRT,而且无辐射,体积小,能耗低,是未来显示器的发展趋势之一。

在下面的课程里我们主要围绕LCD(液晶)显示器来讲。

其他平板显示设备还有PDP(等离子),OLED(有机发光二极管)等等。

大家只是简单了解一下就可以了,希望更深的研究可以自己查阅相关资料。

等离子相比较液晶而言,不存在视角问题,画面质量则不分伯仲,但是工艺上尚无法生产小尺寸等离子面板,所以目前仅在彩电领域应用。

OLED是全新的平板显示设备,目前只有很小的尺寸商用,更大尺寸还处于研发阶段,但是反应出的特性已经超过了它的前辈,比如可制成柔性面板,能耗更小、色彩更鲜艳等等,是非常有潜力的平板显示设备。

液晶显示器(LCD)英文全称为Liquid Crystal Display,是一种介于固态和液态之间的物质,是具有规则性分子排列的有机化合物,如果把它加热会呈现透明状的液体状态,把它冷却则会出现结晶颗粒的混浊固体状态。

正是由于它的这种特性,所以被称之为液晶(Liquid Crystal)。

用于液晶显示器的液晶分子结构排列类似细火柴棒,称为Nematic 液晶,采用此类液晶制造的液晶显示器也就称为LCD(Liquid Crystal Display)。

和CRT显示器相比,LCD的优点是很明显的。

由于通过控制是否透光来控制亮和暗,当色彩不变时,液晶也保持不变,这样就无须考虑刷新率的问题。

《液晶显示器基础》课件

《液晶显示器基础》课件

响应时间
响应时间
响应时间是指液晶显示器像素点对信号反应的快慢。响应时间越短,显示动态图像时的 拖尾现象就越少,画面流畅度越高。常见的液晶显示器响应时间在5-10ms左右。
适用场景
对于需要观看高速动态图像或者进行游戏等场景,选择响应时间较短的液晶显示器更为 合适。
可视角度
可视角度
可视角度是指用户在不同角度下能够清 晰观看显示器画面的范围。一般来说, 可视角度越大,用户可以更加自由地观 看显示器。常见的液晶显示器可视角度 在170°左右。
新技术与新应用领域
总结词
随着科技的不断发展,液晶显示器正不断涌现出新技 术和新应用领域,拓展其在各个行业的用途。
详细描述
液晶显示器的柔性化技术使得显示器可以弯曲甚至折 叠,为移动设备、穿戴设备等领域带来新的可能性。 透明液晶显示器的出现则打破了传统显示器的框架, 使得信息展示更加丰富多样。此外,液晶显示器在虚 拟现实、增强现实、智能家居等领域的应用也日益广 泛,为人们的生活和工作带来更多便利和创意。
详细描述
液晶显示器按照工作原理可以分为扭曲向列型(TN型)、垂直排列型(VA型)和面内切换型(IPS型)等几种。 不同类型的液晶显示器在视角、颜色、响应速度等方面有所不同,各有其特点。
02
液晶显示器的技术参数
分辨率
分辨率
分辨率是液晶显示器的重要技术参数之一,它决定了显示画 面的清晰度和细腻度。一般来说,分辨率越高,显示效果越 好。常见的液晶显示器分辨率有1080p、4K和8K等。
低能耗与环保材料
总结词
为了响应节能减排的全球倡议,液晶显示器正不断采用 低能耗技术和环保材料,以降低能源消耗和减少对环境 的影响。
详细描述
液晶显示器的低能耗技术通过优化电路设计和采用先进 的电源管理系统,有效降低能耗,延长设备的续航时间 。此外,越来越多的液晶显示器开始采用环保材料,如 可回收材料和无毒材料,以减少对地球资源的消耗和环 境污染。

液晶屏基础知识课件

液晶屏基础知识课件
HDR技术的支持
高动态范围(HDR)技术可以提高液晶屏的亮度和对比度,从而提供更出色的画面效果 。目前,HDR技术已经逐渐成为液晶电视的标配。
多点触摸技术
更丰富的交互方式
多点触摸技术可以实现同时多点 触控,提供更丰富的交互方式,
如多人游戏、多人会议等。
更好的用户体验
多点触摸技术可以提供更直观、更 自然的操作方式,使用户可以更加 方便地操作液晶屏。
3
液晶屏的显示Βιβλιοθήκη 果通过改变液晶材料的排列状态,实现不同灰阶的 显示效果。
03
液晶屏的应用领域
电子产品领域
智能手机
游戏机等 数码相机
平板电脑 笔记本电脑
汽车电子领域
01
汽车仪表盘
02
车载导航
03
车载音响
04
车载空调等
工业控制领域
生产流水线显示面板
数控机床显示面板等
工业控制设备显示面 板
医疗仪器领域
液晶屏基础知识课件
目录
• 液晶屏概述 • 液晶屏工作原理 • 液晶屏的应用领域 • 液晶屏的发展趋势 • 液晶屏的制造工艺流程 • 液晶屏常见问题及解决方案
01
液晶屏概述
液晶屏的定义
01
液晶屏是一种被动显示器件,它 利用液晶分子的光学特性,在电 信号的作用下显示图像或文字信 息。
02
它主要由背光源、彩色滤光片、 液晶层、薄膜晶体管(TFT)等组 成。
液晶屏的特点
01
02
03
04
低功耗
液晶屏的功耗远低于传统的 CRT显示器,可以有效地节约
能源。
体积小
由于液晶屏的体积相对较小, 因此可以制作成各种形状和大

液晶彩色电视机整机QC检验规范

液晶彩色电视机整机QC检验规范

液晶彩色电视机整机QC检验规范1.范围本规范规定了我公司所有液晶彩色电视机的一般要求、技术要求和检验方法,是液晶电视检验时进行质量检验的重要依据。

2.引用标准下列标准及文件,通过在本标准中引用而构成本标准条文的一部分。

所有标准及文件都会被修订及更新,使用本标准的各方应探讨使用下列标准及文件最新版本的可能性。

GB 8898-2001 音频、视频及类似电子设备安全要求GB/T 10239-2003 彩色电视广播接收机通用规范Q/SCWR 002-2007 《彩色电视机企业标准》Q/SCWB 2040-2008 《注塑成品后壳检验标准》Q/SCWN001-2004 《光油机壳检验标准》Q/SCWB 2020-2008 《彩色液晶电视机LCD屏缺陷定义及检验标准》3.一般要求3.1 正常测试条件温度:15~35℃相对湿度:25%~75%大气压力:86Kpa~106kPa电源电压:交流160V-260V电源频率:50/60 Hz在上述测试条件下,被测设备应满足其性能规范,但在比上述测试条件更宽的范围内,设备仍能工作,但可不满足其所有的性能规范,并允许被测设备在更为极端的条件下储存。

3.2外接设备要求彩色电视机与耳机、外接扬声器、音箱、录音机、录像机、微机和电缆系统等视频、音频设备配接时,其视频、音频和高频的互连配接要求按GB 12281和GB/T 15859中的有关规定,视频连接器也可按SJ 2303的要求。

彩色电视机与外接直流电源的配接要求由产品标准中规定,但不得采用与音频、视频和高频配接时相同连接器。

4. 检验要求和方法4.1 安全检验要求和方法4.1.1 在交流3000V高压漏电检查时不应出现击穿和打火(飞弧)。

4.1.2 直流绝缘电阻阻值应在4-10MΩ之间。

4.1.3 安全质量检验方法采取仪器、仪表、目测、等检测,具体检测标准按附录A的规定。

4.2 外观检验要求及方法4.2.1 产品外观必须具有标志,且标志正确、清晰可辨;4.2.2 产品机壳或后盖贴纸上必须有产品商标、型号、名称、商标、生产企业名称;4.2.3 产品后盖必须具有警告用户安全使用的“警告标记”;4.2.4 产品后盖上应有电源性质、额定电压、最大电流、电源频率、功耗等;4.2.5 产品后盖贴纸上必须有3C认证、环保标识;4.2.64.2.7 产品面壳上必须有正确的电源开关丝印;4.2.8 产品面壳表面检验项:表面光滑,不能存在凹凸变形、粗糙不平、划伤、脱漆、缩水、间隙、裂纹、毛刺、边缘棱角突出、霉斑、脏污、色差、网孔堵塞、金属斑点、黑点、纹理等任何缺陷;4.2.9 外观各类文字、图案及符号丝印应端正、清晰、牢固,标识功能应与实际产品特性相符;4.2.10 产品保护膜应粘贴良好,无破损、脏污等不良;4.2.11 产品铭牌、装饰件、紧固件及其它零部件应无锈蚀、变形、划伤、金属斑点、黑点等任何不良现象,且安装牢固、匹配良好,无缺损、脱落、松动、歪斜、间隙、台阶、螺孔错位等问题;4.2.12 指示灯、接收头及其白镜或红镜安装应规范,不应漏装或歪斜凹凸等现象;4.2.13 开关、按键等应操作灵活可靠,无缺损、变形、划伤、歪斜凹凸等问题;4.2.14 各类音视频输入输出接口(含RF、S、YPBPR、VGA、HDMI接口等)应安装牢固、端子颜色正确。

液晶显示器基础知识

液晶显示器基础知识

基板去胶完成后,以 图案检查机确认基板 有无Short 。
PI前清洗 Before PI Cleaning
配向膜前洗净机,彻 底清洗基板表面,脏 点、油污,以达到PI 膜印刷最佳效果。
涂膜 PI Coating
利用APR凸版将PI 膜图形转印于ITO基 板面内,作为液晶定 向用 。
预烘 PI Pre-baking
– 蓝色(搭配LCD的种类:TN正显,STN灰膜, FSTN) – 白色(搭配LCD的种类:TN正显,STN灰膜, FSTN)
LCD的背光源
• CCFL背光优点:亮度高 • CCFL背光缺点:寿命短,1万~2万小时; 需要附加逆变器(由直流12V变为交流 270V~300V); • CCFL背光的常见颜色:
LCD工作原理
OFF态
ON态
OFF态 液晶 分子俯视图
通过加电,使得液晶分子发生旋转,改变偏 振光的偏振方向,利用偏光片的光学特性, 得到想要的显示画面。
LCD工作原理
• 液晶显示是一种被动的显示,它不能发 光,只能使用周围环境的光。 • 正性TN-LCD(白底黑字),当未加电压到 电极时,LCD处于“OFF”态,光能透过LCD呈 白态;当在电极上加上电压LCD处于“ON” 态,液晶分子长轴方向沿电场方向排列, 光不能透过LCD,呈黑态。
LCD的显示方式
• 透反射型
• 可以利用自然光和背光源 • 外界光线较强时,可以不用背光源 • 外界光线较弱时,使用背光源
LCD的经济尺寸
• LCD是从基片玻璃上切割而得的,而基片 玻璃(14〞╳16〞)是固定的,所以若能 充分利用基片玻璃的尺寸,就可以以较低 的成本获得较大的尺寸。 • LCD 的经济尺寸就是将基片玻璃能够分成 整数个LCD的尺寸。

、液晶显示器基本常识4页word

、液晶显示器基本常识4页word

一、液晶显示器基本常识LCD基本常识液晶显示是一种被动的显示,它不能发光,只能使用周围环境的光。

它显示图案或字符只需很小能量。

正因为低功耗和小型化使 LCD成为较佳的显示方式。

液晶显示所用的液晶材料是一种兼有液态和固体双重性质的有机物,它的棒状结构在液晶盒内一般平行排列,但在电场作用下能改变其排列方向。

对于正性TN-LCD,当未加电压到电极时,LCD处于"OFF"态,光能透过LCD呈白态;当在电极上加上电压LCD处于"ON"态,液晶分子长轴方向沿电场方向排列,光不能透过LCD,呈黑态。

有选择地在电极上施加电压,就可以显示出不同的图案。

对于STN-LCD,液晶的扭曲角更大,所以对比度更好,视角更宽。

STN-LCD是基于双折射原理进行显示,它的基色一般为黄绿色,字体蓝色,成为黄绿模。

当使用紫色偏光片时,基色会变成灰色成为灰模。

当使用带补偿膜的偏光片,基色会变成接近白色,此时STN成为黑白模即为FSTN,以上三种模式的偏光片转90°,即变成了蓝模,效果会更佳。

二、液晶显示器件的结构下图是一个反射式TN型液晶显示器的结构图.从图中可以看出,液晶显示器是一个由上下两片导电玻璃制成的液晶盒,盒内充有液晶,四周用密封材料-胶框(一般为环氧树脂)密封,盒的两个外侧贴有偏光片。

液晶盒中上下玻璃片之间的间隔,即通常所说的盒厚,一般为几个微米(人的准确性直径为几十微米)。

上下玻璃片内侧,对应显示图形部分,镀有透明的氧化甸-氧化锡(简称ITO)导电薄膜,即显示电极。

电极的作用主要是使外部电信号通过其加到液晶上去。

液晶盒中玻璃片内侧的整个显示区覆盖着一层定向层。

定向层的作用是使液晶分子按特定的方向排列,这个定向层通常是一薄层高分子有机物,并经摩擦处理;也可以通过在玻璃表面以一定角度用真空蒸镀氧化硅薄膜来制备。

在TN型液晶显示器中充有正性向列型液晶。

液晶分子的定向就是使长棒型的液晶分子平行于玻璃表面沿一个固定方向排列,分子长轴的方向沿着定向处理的方向。

液晶显示器基础知识(QC)

液晶显示器基础知识(QC)
液晶的种类
根据液晶分子不同排列方式,可以分为三大类:即向列相 液晶、胆甾相液晶和层列相液晶。
向列相液晶
向列相液晶的分子 种类的重心混乱无 序,使它像普通液 体一样可以流动, 但分子杆的指向矢 大体一致。
胆甾相液晶
在胆甾相液晶中,分子 的重心排列是无序的, 但分子的指向失在一个 平面内大致指向一个方 向。在垂直于这个平面 上的方向上,分子的指 向矢会旋转成螺旋结构。
蚀刻 使用此制程将玻璃上未 受到光刻胶保护部份的 ITO利用蚀刻液去除, 形成最终需要的图形 。
LCD工艺流程
剥离 目的将其ITO基板上剩 余光刻胶清除,使整片 基板上无光刻胶覆盖, 成为有ITO图形的基板。
图案检查 基板剥膜完成后,使用 显微镜等设备确认基板 有无Short & Open。
液晶显示原理(图示)
LCD视角特性
LCD只有从某个特定的角度看,显示才会清晰,我们采用钟表 的几点钟来表示这个角度,这个角度就是视角。例如:视 角为6点的,当LCD正放在桌子上时,从靠近我们的一边看 过去显示最清晰。一般从一个方向看LCD显示清晰时,从 LCD对面看,沿着刚才的视线方向仍然显示清晰的
利用电光效应制作的常用的液晶显示器大致有以下几种: TN-LCD,STN-LCD, FSTN-LCD等
TN-LCD是Twist Nematic Liquid Ctystal Disply的简称﹐即 扭曲向列相液晶显示。这种显示模式的特点是液晶分子基 本平行于基板排列﹐但上下液晶分子取向呈扭曲排列﹐整 体扭曲角为90° 。

3. a≤t , b≤1.0mm,c≤5.0mm 允许
(t为玻璃厚度)
4. 破损造成银点或密封圈外露 不
允许
LCD检验基础

液晶显示器详解

液晶显示器详解

液晶显示器工作原理今日对液晶显示器这个名称, 大多是指使用于笔记型计算机, 或是桌上型计算机应用方面的显示器. 也就是薄膜晶体管液晶显示器. 其英文名称为Thin-film transistor liquid crystal display, 简称之TFT LCD. 从它的英文名称中我们可以知道, 这一种显示器它的构成主要有两个特征, 一个是薄膜晶体管, 另一个就是液晶本身. 我们先谈谈液晶本身.液晶(LC, liquid crystal)的分类我们一般都认为物质像水一样都有三态, 分别是固态液态跟气态. 其实物质的三态是针对水而言, 对于不同的物质, 可能有其它不同的状态存在. 以我们要谈到的液晶态而言, 它是介于固体跟液体之间的一种状态, 其实这种状态仅是材料的一种相变化的过程(请见图1), 只要材料具有上述的过程, 即在固态及液态间有此一状态存在, 物理学家便称之为液态晶体.这种液态晶体的首次发现, 距今已经度过一百多个年头了. 在公元1888年, 被奥地利的植物学家Friedrich Reinitzer所发现, 其在观察从植物中分离精制出的安息香酸胆固醇(cholesteryl benzoate) 的融解行为时发现, 此化合物加热至145.5度℃时, 固体会熔化,呈现一种介于固相和液相间之半熔融流动白浊状液体. 这种状况会一直维持温度升高到178.5度℃, 才形成清澈的等方性液态(isotropic liquid). 来年, 在1889年, 研究相转移及热力学平衡的德国物理学家O.Lehmann, 对此化合物作更详细的分析. 他在偏光显微镜下发现, 此黏稠之半流动性白浊液体化合物,具有异方性结晶所特有的双折射率(birefringence)之光学性质, 即光学异相性(optical anisotropic). 故将这种似晶体的液体命名为液晶. 此后, 科学家将此一新发现的性质, 称为物质的第四态-液晶(liquid crystal). 它在某一特定温度的范围内, 会具有同时液体及固体的特性.一般以水而言, 固体中的晶格因为加热, 开始吸热而破坏晶格, 当温度超过熔点时便会溶解变成液体. 而热致型液晶则不一样(请见图2), 当其固态受热后, 并不会直接变成液态, 会先溶解形成液晶态. 当您持续加热时, 才会再溶解成液态(等方性液态). 这就是所谓二次溶解的现象. 而液晶态顾名思义, 它会有固态的晶格, 及液态的流动性. 当液态晶体刚发现时, 因为种类很多, 所以不同研究领域的人对液晶会有不同的分类方法. 在1922年由G. Friedel利用偏光显微镜所观察到的结果, 将液晶大致分为Nematic Smectic及Cholesteric三类. 但是如果是依分子排列的有序性来分(请见图3), 则可以分成以下四类:1.层状液晶(Sematic) :其结构是由液晶棒状分子聚集一起, 形成一层一层的结构. 其每一层的分子的长轴方向相互平行. 且此长轴的方向对于每一层平面是垂直或有一倾斜角. 由于其结构非常近似于晶体, 所以又称做近晶相. 其秩序参数S(order parameter)趋近于1. 在层状型液晶层与层间的键结会因为温度而断裂,所以层与层间较易滑动. 但是每一层内的分子键结较强, 所以不易被打断. 因此就单层来看, 其排列不仅有序且黏性较大. 如果我们利用巨观的现象来描述液晶的物理特性的话, 我们可以把一群区域性液晶分子的平均指向定为指向矢(director), 这就是这一群区域性的液晶分子平均方向. 而以层状液晶来说, 由于其液晶分子会形成层状的结构, 因此又可就其指向矢的不同再分类出不同的层状液晶. 当其液晶分子的长轴都是垂直站立的话, 就称之为"Sematic A phase". 如果液晶分子的长轴站立方向有某种的倾斜(tilt)角度,就称之为"Sematic C phase". 以A,C等字母来命名, 这是依照发现的先后顺序来称呼, 依此类推, 应该会存在有一个"Sematic B phase"才是. 不过后来发觉B phase其实是C phase的一种变形而已, 原因是C phase如果带chiral的结构就是B phase. 也就是说Chiral sematic C phase就是Sematic B phase(请见图4). 而其结构中的一层一层液晶分子, 除了每一层的液晶分子都具有倾斜角度之外, 一层一层之间的倾斜角度还会形成像螺旋的结构.2.线状液晶(Nematic) :Nematic这个字是希腊字, 代表的意思与英文的thread是一样的. 主要是因为用肉眼观察这种液晶时, 看起来会有像丝线一般的图样. 这种液晶分子在空间上具有一维的规则性排列, 所有棒状液晶分子长轴会选择某一特定方向(也就是指向矢)作为主轴并相互平行排列. 而且不像层状液晶一样具有分层结构. 与层列型液晶比较其排列比较无秩序, 也就是其秩序参数S较层状型液晶较小. 另外其黏度较小, 所以较易流动(它的流动性主要来自对于分子长轴方向较易自由运动)。

液晶显示器的基础知识

液晶显示器的基础知识

液晶显示器的基础知识什么是液晶显示器?液晶显示器英文是Liquid Crystal Display,缩写为LCD。

它的主要原理是为以电流刺激液晶分子产生点、线、面配合背部灯管构成画面。

液晶显示器有什么特点?一、机身薄,节省空间:与比较笨重的CRT显示器相比,液晶显示器只要前者三分之一的空间。

二、省电,不产生高温:它属于低耗电产品,可以做到完全不发烫,相对与CRT显示器,因显像技术不可避免产生高温。

三、无辐射,益健康:液晶显示器完全无辐射,这对于整天在电脑前工作的人来说是一个福音。

四、画面柔和不伤眼:不同于CRT技术,液晶显示器画面不会闪烁,可以减少显示器对眼睛的伤害,眼睛不容易疲劳。

LCD显示器的基本参数:1、分辨率LCD是通过液晶象素实现显示的,但由于液晶象素的数目和位置都是固定不变的,所以液晶只有在标准分辨率下才能实现最佳显示效果,而在非标准的分辨率下则是由LCD内部的ic通过插值算法计算而得,应此画面会变得模糊不清,然而LCD显示器的真实分辨率根据LCD 的面板尺寸定,15英寸的真实分辨率为1024×768,17英寸为1280×1024,19英寸为1440×900,20和22英寸为1680×1050。

2、点距LCD显示器的像素间距(pixel pitch)的意义类似于CRT的点距(dot pitch)。

不过前者对于产品性能的重要性却没有后者那么高。

CRT的点距会因为遮罩或光栅的设计、视频卡的种类、垂直或水平扫描频率的不同而有所改变。

LCD显示器的像素数量则是固定的。

因此,只要在尺寸与分辨率都相同的情况下,所有产品的像素间距都应该是相同的。

例如,分辨率为1024×768的15英寸LCD显示器,其像素间距皆为0.297mm(亦有某些产品标示为0.30m3、波纹波纹(亦称作水波纹Moire),也是和相位一样是看不出来的,水波纹会在画面上显示出像水波涟漪一般的呈相结果,在一般的情况下相当难看得出来,但是您也可以用全白的画面来检测,虽然不是很容易察觉,但是站的稍微和显示器有一些距离,仔细瞧一瞧就可以发现,水波纹也是可以调整的。

第一章液晶基础知识ppt课件

第一章液晶基础知识ppt课件
• 向列液晶有 n// n ,所以Δn>0,即向列 液晶一般都呈现正单轴晶体的光学性质。
• 胆甾型液晶具有负单轴晶体的光学性质,
这是因为:
1
nO 12(n//2 n2)2
ne n
nnenO0
液晶器件所基于的三种光学特性
由于液晶具有单轴晶体的光学各向异性,所以具有以下 光学特性: 1)能使入射光沿液晶分子偶极矩的方向偏转; 2)使入射的偏光状态,及偏光轴方向发生变化; 3)使入射的左旋及右旋偏光产生对应的透过或反射。 液晶器件基本就是根据这三种光学特设计制造的。
• 当入射光通过偏振片后成为线偏振光,在外电场 作用时,由线偏光经过扭曲向列液晶的旋光特性 决定,在出射处,检偏片与起偏片相互垂直,旋 转了90°的偏振光可以通过。因此呈透光态。
• 在有电场作用时,当电场大于阈值场强后,液晶 盒内液晶分子长轴都将沿电场方向排列,即与表 面呈垂直排列,此时入射的线偏振光不能得到旋 转,因而在出射处不能通过检偏片,呈暗态。
1 有序参量 2 各向异性 3 弹性常数 4 临界电场
1.3 液晶的光电特性
1 液晶的各向异性 2 液晶的双折射 3 液晶的电光效应
液晶的光电特性
• (1)液晶的各向异性
//
• P型液晶 (Δε>0)正介电各向异性液晶 • N型液晶(Δε<0)负介电各向异性液晶
液晶短轴方向ε∥ 液晶短轴方向ε⊥
P型液晶 N型液晶 阈值电压
2 液晶的双折射
向列相液晶 正单轴晶体光学性质 胆甾相液晶 负单轴晶体光学性质
2 液晶的双折射
由于液晶具有单轴晶体的光学各向异性,所以 具有以下光学特性:
1 能使入射光沿液晶分子偶极矩的方向偏转; 2 使入射光的偏光状态及偏光轴方向发生变化; 3 使入射的左旋及右旋偏光产生对应的透射或反射.

gigabyte g27qc lcd 显示器用户手册说明书

gigabyte g27qc lcd 显示器用户手册说明书

LCD 显示器用户手册版权© 2020 GIGA-BYTE TECHNOLOGY CO., LTD.保留所有权利。

本手册中提到的商标是其各自所有者合法注册。

免责声明本手册中的信息受版权法保护,属于 GIGABYTE。

GIGABYTE可能会修改本手册中的规格和功能,恕不另行通知。

未经GIGABYTE事先书面许可,不得以任何形式或以任何方式重制、复制、翻译、传输或出版本手册的任何部分。

• 为帮助使用此显示器,请仔细阅读用户指南。

• 有关更多信息,请访问我们的网站:https://LCD 显示器用户手册••••LCD 显示器用户手册LCD 显示器用户手册LCD 显示器用户手册LCD 显示器用户手册10LCD 显示器用户手册LCD 显示器用户手册安全注意事项使用显示器之前,请仔细阅读以下安全注意事项。

• 仅使用随显示器提供的附件或制造商推荐的附件。

• 请将产品的塑料包装袋放置在儿童够不到的位置。

• 将显示器连接到电源插座之前,请确保电源线的额定电压与您所在国家/ 地区的电源规格兼容。

• 电源线插头必须连接到正确接线的接地电源插座。

• 请勿用湿手触摸插头,否则容易触电。

• 将显示器放在稳定通风处。

• 请勿将显示器放置在任何热源附近,如电热器或直射的阳光。

• 显示器上的孔或开口用于通风。

不得用任何物体遮盖或堵塞通风孔。

• 请勿在靠近水、饮料或任何液体的地方使用显示器。

否则可能会导致触电或显示器损坏。

• 清洁前,务必从电源插座上拔下显示器的电源插头。

• 由于屏幕表面容易划伤,请避免用任何坚硬或尖锐的物体接触表面。

• 使用柔软的无绒布擦拭屏幕,不要使用纸巾。

如果需要,可使用玻璃清洁剂清洁显示器。

但是,切勿将清洁剂直接喷在屏幕上。

• 如果长时间不使用显示器,请断开电源线。

• 请勿尝试自行拆卸或维修显示器。

LCD 显示器用户手册目录SAFETY INFORMATION (3)Regulatory Notices (3)安全注意事项 (9)简介 (12)打开包装 (12)包装内容 (14)产品概述 (15)使用入门 (17)安装支架底座 (17)抬起显示器 (18)调整视角 (20)安装壁挂支架(可选) (22)建立连接 (24)使用设备 (25)打开/关闭电源 (25)用户舒适度建议 (26)Selecting the Input Source (27)操作 (28)快捷菜单 (28)功能键指导 (30)配置设备设定 (33)附录 (43)规格 (43)支持时序列表 (44)故障排除 (45)基本保养 (46)USB充电注意事项 (46)LCD 显示器用户手册GIGABYTE 服务信息 (46)LCD 显示器用户手册简介打开包装1. 打开包装箱上盖。

液晶显示器基础知识

液晶显示器基础知识
1. 1.2这种介于固体和液体的物体,兼具有液体的流动性,和晶体的光学各异向性.
固态
液晶态
气态
熔点
澄清点
1.2.液晶的种类:
1.2.1向列型液晶(Nematic):每个分子长轴皆互相平行,且方向一致.无论在静止 状态或流动过程中,分子永远维持着平行和同相的关系,应用于TN、STN type。
1.2.2层列型液晶(Smetic):分子排列不但平行,且有分层组织 1.2.3胆固醇液晶 (Cholesteric):每个分子轴与邻近分子轴除了互相平行外,各 分子的分子轴还沿着垂直分子轴方向逐渐转成螺旋性结构. 1.3.液晶使用范围:
(STN定向烘烤温度一般温为100±5℃;宽温为120±5℃) (TN、HTN定向烘烤温度:一般温度为80±5℃;,宽温为130±5℃) 1.4.液晶在LCD中的作用
在电场作用下对光线的扭转能力发生变化。
二.LCD/LCM基础知识
1.LCD:Liquid crystal display (液晶显示器)
前制程流程
COG制程介绍
中片玻璃
切割
裂片
烘烤
灌液晶
电測作业
定向烘烤
后制程流程
LCD 电測
返洗
LCD表面清洗
封口
压合
ITO清洁
ACF贴附
ILB BONDING
功能测试
FPC ACF贴附
OLB BONDING
ITO封胶
貼片
加壓烘烤
COG后段組裝
功能測試
外觀
包装
六.静电防护及注意事项
ESD 防护
1.前言
3.TAP:Tape Carrier Packing 卷带式封装技术,成本相对较低,细间距程度无法与COF相比且电子元件 可 以直接镶嵌在COF上,TAP类逐步被COF取代。

液晶显示器基础知识

液晶显示器基础知识

液晶显示器基础知识(一)、液晶显示器的显像原理1、什么是液晶液晶是介于固态和液态之间,不但具有固态晶体光学特性,又具有液态流动特性,所以液晶可以说是处于一个中间相的物质。

而要了解液晶的所产生的光电效应,我们必须先来解释液晶的物理特性,包括它的黏性( visco-sity )与弹性(elasticity)和其极化性(polarizalility)。

液晶的黏性和弹性从流体力学的观点来看,可说是一个具有排列性质的液体,依照作用力量的不同方向,会有不同的效果。

就好像是将一簇细短木棍扔进流动的河水中,短木棍随着河水流着,起初显得凌乱,过了一会儿,所有短木棍的长轴都自然的变成与河水流动的方向一致,达到排列状态,这表示黏性最低的流动方式,也是流动自由能最低的一个物理模型。

此外,液晶除了有黏性的特性反应外,还具有弹性的表现,它们都是对于外加的力,呈现出方向性的特点。

也因此光线射入液晶物质中,必然会按照液晶分子的排列方式传播行进,产生了自然的偏转现象。

至于液晶分子中的电子结构,都具备着很强的电子共轭运动能力,所以,当液晶分子受到外加电场的作用,便很容易的被极化产生感应偶极性(induced dipolar),这也是液晶分子之间互相作用力量的来源。

而一般电子产品中所用的液晶显示器,就是利用液晶的光电效应,藉由外部的电压控制,再通过液晶分子的光折射特性,以及对光线的偏转能力来获得亮暗差别(或者称为可视光学的对比),进而达到显像的目的。

2、液晶的光学特性液晶同固态晶体一样具有特异的光学各向异性。

而且这种光学各向异性伴随分子的排列结构不同将呈现不同的光学形态。

例如,选择不同的初期分子取向和液晶材料,将分别得到旋光性、双折射性、吸收二色性、光散射性等各种形态的光学特性。

一旦使分子取向发生变化,这些光学特性将随之变化,于是在液晶中传输的光就受到调制。

由此可见,变更分子的排列状态即可实行光调制。

由于液晶是液体,分子排列结构不象固态晶体那样牢固。

液晶基础知识

液晶基础知识
1968年,美国RAC公司发现液晶“动的散乱效果”,开辟了液 晶的运用之路。
1973年,日本夏普公司开始将作为计算机表示体的动的散乱 型液晶(Dynamic Scattering Mode,简称DSM)进行实用化, 开始了液晶显示器产业。
液晶是什么东西
物质存在的三种状态
固体 液体 气体
液晶是无法用这三种状态来分类的第四种状态,是界 于固体和液体的中间状态。
液晶为什么能显像
黑暗中为什么看不见液晶
★液晶本身没有发光的功能
★依靠背面的光源透过来显示的类型叫做“透过型液晶 显示屏”。
★液晶显示器背面装有光源,这个光源就叫做背光源 (back light)
★在显示器的顶部安置了作为外光的电灯,以取代背光 源,用电灯光照射液晶显示器表面让其在液晶内反射, 从而使液晶显示屏转换为图像被看见,这种就叫做“反 射型液晶显示器”。
eXtended Graphics Array Engineering Work Station
High Difinition TV1 Wide eXtended Graphics Array Super eXtended Graphics Array
Plus Super eXtended Graphics Array
由于液晶显示器不是自发光型显示器,所以在元件的背面必须装 个作为光源的背光源,并且为驱动液晶而添加了驱动集成回路 (驱动IC),继而又配置了装载能控制这些集成电路的印刷板。 装载了驱动回路等的液晶被叫做“液晶模块”。
变极器
液晶显示器是如何成像的
液晶显示器画面上的文字和图案都是由许多细小的亮点组 成的,这些点被称为像素。 液晶显示就是像素的集合。显示器中的单位面积所含有的 像素越多,被再现出来的图像就越致密越绮丽。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蚀刻 使用此制程将玻璃上未 受到光刻胶保护部份的 ITO利用蚀刻液去除, 形成最终需要的图形 。
LCD工艺流程
剥离 目的将其ITO基板上剩 余光刻胶清除,使整片 基板上无光刻胶覆盖, 成为有ITO图形的基板。
图案检查 基板剥膜完成后,使用 显微镜等设备确认基板 有无Short & Open。
LCD工艺流程
曝光 在涂好光刻胶的玻璃表面 覆盖掩模版 ,利用紫外曝 光机将所需的图形曝光复 制于ITO基板上,准备进 行显影制程。
显影
将感光部分的光刻胶溶 解,利用显影液将所需 要的图形显示出来。
LCD工艺流程
竖膜 除去光刻胶膜中的水份, 使基板上的光刻胶表面 固化,增强胶膜与玻璃 的黏附性。
液晶显示器基础知识
介绍内容
LC 的 概 述 LCD显示原理 LCD工艺流程 LCD检验基础 LCD驱动原理 LCM工艺流程 LCM产品展示
一.LC概述
液晶的状态
1888年奥地利植物学家莱尼茨尔(F.Reinitzer)在测定某些物 质的熔点时,发现某些物质熔化后会经过一个乳白色粘稠液 体的状态,再继续加热才会变成清亮的液体.后经德国物理学 家莱曼(O.Lehmann)研究,这种乳白色粘稠液体具有光学各 向异性,因此建议称之为液体晶体(Liquid Crystal)。
装管脚
复测
打印 包装
LCD工艺流程
暗室投料 ITO玻璃(14″×16″)经 拆封后,阻值、厚度检 和外观查确认无误后准 备玻璃清洗制程 。
玻璃清洗
目的在于去除玻璃基板上 的脏点、油污、纤维。
干燥后进入下到制成。
LCD工艺流程
涂胶 在玻璃ITO面均匀涂一 层光刻胶。
烘烤 ITO玻璃基板经过光刻 胶涂布后,利用烘烤温 度将其中有机溶剂挥发 , 使均匀性更佳。
层列相液晶
在层列相液晶中,分子 形成一层一层的结构。 分子层的厚度大约是一 个分子的长度。分子垂 直于分子层平面排列, 分子的重心在分子层中 是无序的,形成一层层 的二维流体。
LCD分类
液晶显示器的种类很多,但相当普通而且广泛应用的是利 用液晶的电光效应而实现显示的。所谓电光效应实际上就 是指在电的作用下,液晶分子的初始排列改变为其它的排 列形式﹐从而使液晶盒的光学性质发生变化﹐也就是说电 通过液晶对光进行了调制。
液晶显示原理
液晶显示器件LCD的显示原理是:在两片玻璃基板上 装有取向膜(PI),所以液晶会沿着沟槽配向﹐具有 偶极矩的液晶棒状分子在外加电场的作用下其排列发 生变化,使得通过液晶显示器件的光被调制﹐从而呈 现明与暗或透过与不透过的显示效果。液晶显示器件 中的每个显示像素都可以单独被电场控制,不同的显 示像素按照控制信号的“指挥”便可以在显示屏上组 成不同的字符、数字及图形。因此建立显示所需的电 场以及控制显示像素的组合就成为液晶显示驱动器和 液晶显示控制器的功能。
从这里看 的最清楚
9 视 角 就 是 9

12 6
9点视角从这
3 里看也是最清 楚的
LCD工艺过程演示
掩模板 ITO膜
UV光
光刻胶 玻璃基板
LCD工艺流程图
投料
清洗
涂胶
烘烤 曝光 显影
PI涂布 清洗 图案检查 剥离 蚀刻 竖膜
预烘 电测
固化 摩擦 银点、密封圈丝印
封口
灌晶
划破片
SPACER
热压
贴片
利用电光效应制作的常用的液晶显示器大致有以下几种: TN-LCD,STN-LCD, FSTN-LCD等
TN-LCD是Twist Nematic Liquid Ctystal Disply的简称﹐即 扭曲向列相液晶显示。这种显示模式的特点是液晶分子基 本平行于基板排列﹐但上下液晶分子取向呈扭曲排列﹐整 体扭曲角为90° 。
LCD分类
LCD的结构
液晶显示器是一个由上下两片导电玻璃制成的液晶盒﹐盒内充 满液晶﹐四周用密封材料(一般为环氧树脂)密封﹐盒的两个外 侧贴有偏光片。液晶盒中上下玻璃片之间的间隔﹐即通常说的 盒厚﹐一般为几个微米(人的头发直径为几十微米)。上下玻璃 片内侧﹐对应显示图形部分﹐镀有透明的氧化铟锡(简称ITO)导 电薄膜﹐即显示电极(电极的作用主要是使外部电信号通过其加 到液晶上去)。
液晶的种类
根据液晶分子不同排列方式,可以分为三大类:即向列相 液晶、胆甾相液晶和层列相液晶。
向列相液晶
向列相液晶的分子 种类的重心混乱无 序,使它像普通液 体一样可以流动, 但分子杆的指向矢 大体一致。
ቤተ መጻሕፍቲ ባይዱ
胆甾相液晶
在胆甾相液晶中,分子 的重心排列是无序的, 但分子的指向失在一个 平面内大致指向一个方 向。在垂直于这个平面 上的方向上,分子的指 向矢会旋转成螺旋结构。
液晶显示原理(图示)
LCD视角特性
LCD只有从某个特定的角度看,显示才会清晰,我们采用钟表 的几点钟来表示这个角度,这个角度就是视角。例如:视 角为6点的,当LCD正放在桌子上时,从靠近我们的一边看 过去显示最清晰。一般从一个方向看LCD显示清晰时,从 LCD对面看,沿着刚才的视线方向仍然显示清晰的
LCD工艺流程
清洗 彻底清洗ITO基板表面 之脏点、油污,以达到 涂PI的最佳效果。
PI涂敷 采用选择性涂敷法,利 用APR凸版将定向溶液 转印于ITO基板上。
LCD工艺流程
预烘 将定向材料中的溶剂加 热挥发。
PI固化 经过高温烘烤,形成定 向膜。
LCD工艺流程
摩擦 用毛绒布在涂有定向层的玻 璃表面进行摩擦,形成定向 层。定向层处的液晶分子将 按照摩擦方向排列。
LCD分类
STN-LCD是Super Twist Nematic Liquid Ctystal Disply的 简称﹐即超扭曲向列相液晶显示。它与TN-LCD的结构相 似﹐不同的是其扭曲角不是90 °﹐而是在180 °〜270° 之间,其工作原理也与TN-LCD完全不同。
FSTN-LCD是Film Super Twist Nematic Liquid Ctystal Disply的简称﹐这里Film是指补偿膜或延迟膜﹐所以 FSTN-LCD称为补偿膜超扭曲向列相液晶显示。通过一层 特殊处理的补偿膜﹐能够克服STN-LCD的缺点﹐即克服 STN-LCD有背景色成为黑白显示﹐所以有人称FSTNLCD为黑白模式的STN-LCD。
相关文档
最新文档