智能材料的开发与应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能材料的开发与应用
智能材料又称机敏材料,其构想来源于仿生。不同于结构材料和功能材料,智能材料能通过自身的感知而获取外界信息,作出判断和处理,发出指令,继而调整自身的状态以适应外界环境的变化,从而实现自检测、自诊断、自调节、自适应、自修复等类似于生物系统的各种特殊功能。但是现有的材料一般比较单一,难以满足智能材料的要求,所以智能材料一般由2种或2种以上的材料复合构成一个智能材料系统。随着现代材料科学、微电子技术和计算机技术的快速发展,智能材料在许多领域已引起人们的兴趣并展现出广阔诱人的发展前景。
1智能材料的基本构成和工作原理
智能材料一般由基体材料、敏感材料、驱动材料和信息处理器4部分组成[1]。
(1)基体材料
基体材料担负着承载的作用,一般宜选用轻质材料。高分子材料重量轻、耐腐蚀,具有粘弹性的非线性特征而成为首选,其次也可选用金属材料,以轻质有色合金为主。
(2)敏感材料
敏感材料担负着传感的任务,其主要作用是感知环境变化(包括压力、应力、温度、电磁场、pH值等)。常用敏感材料如形状记忆材料、压电材料、光纤材料、磁致伸缩材料、电致变色材料、电流变体、磁流变体和液晶材料等。
(3)驱动材料
因为在一定条件下驱动材料可产生较大的应变和应力,所以它担负着响应和控制的任务。常用驱动材料有形状记忆材料、压电材料、电流变体和磁致伸缩材料等。
(4)其它功能材料
包括导电材料、磁性材料、光纤和半导体材料等。
(5)信息处理器
信息处理器是核心部分,它对传感器输出信号进行判断处理。
2智能材料的分类
可用于智能材料的材料种类在不断扩大,因此智能材料的分类方法很多。一般若按功能来分可以分为光导纤维、形状记忆合金、压电、电流变体和电(磁)致伸缩材料等。若按来源来分,可以分为金属系智能材料、无机非金属系智能材料和高分子系智能材料。金属系智能材料目前所研究开发的主要有形状记忆合金和形状记忆复合材料两大类;无机非金属系智能材料在电流变体、压电陶瓷、光致变色和电致变色材料等方面发展较快;高分子系智能材料的范围很广泛,有高分子凝胶、智能高分子膜材、智能型药物释放体系和智能高分子基复合材料等[2]。
3智能材料的应用领域
作为一种新兴技术材料,智能材料的应用日益引起人们的广泛兴趣,在军事、医学、建筑和纺织服装等领域都有着广阔的发展前景。
3.1军事领域中的应用
智能材料在军事应用中具有很大的潜力,其研究、开发和利用,对未来武器装备的发展将产生重大影响。目前,在各种军事领域中,智能材料的应用主要涉及到以下几个方面。
(1)智能蒙皮
光纤作为智能传感元件用于飞机机翼的智能蒙皮中,或者在武器平台的蒙皮中植入传感元件、驱动元件和微处理控制系统制成的智能蒙皮,可用于预警、隐身和通信[3,4]。1985年美国空军的“预测计划II”首先提出了光纤智能蒙皮/结构的概念。随着进一步的研究发展,1994年美国空军动力飞行实验室进行了结构飞行演示,麦道公司对F-15战斗机的外侧前缘、F-18战斗机的蒙皮进行了智能结构飞行试验。目前,为了未来的弹道导弹监视和预警卫星系统,美国弹道导弹防御局正在研究在复合材料蒙皮中植入核爆光纤传感器、X射线光纤探测器、激光传感器、射频天线等多种传感器的智能蒙皮。这种智能蒙皮可以被安装在天基防御系统空间平台的表面上,实时监视和预警来自敌方的各种威胁,预
计在2010年前后能获得初步应用。美国空军莱特实验室正在把一个承载天线结合到表层结构中,与传统外部嵌置的天线相比,这种一体化结构的天线能够有效提高飞行器的空气动力性能、减轻飞行器结构重量和体积、提高天线性能、降低生产成本和维修费用。该计划预计在2013年进行模型样机的试飞。
(2)结构检测和寿命预测
智能结构可以对构件内部的应变、温度、裂纹进行实时测量,探测其疲劳和受损伤情况,从而实现对结构进行监测和对寿命进行预测。
光纤具有尺寸小、质量轻、可挠曲、耐腐蚀,不受电磁干扰,与复合材料有良好相容性等特点,且灵敏度高、耐高温,易实现远距离测量而受到人们的青睐[5]。目前一些先进国家采用光纤智能材料与结构进行复合材料的状态检测与损伤估计,即在材料或结构的关键部位埋置光纤传感器或其阵列进行全寿命期实时监测、损伤评估和寿命预测[6]。空间站等大型在轨系统采用光纤智能结构,可实时探测由于交会对接碰撞、陨石撞击或其他原因引起的损伤,对损伤进行评估,实施自诊断。压电元件由于既可作传感器又可作驱动器,频响高,处理电路简单,近年来基于压电元件的结构损伤实时在线检测成为国际上的热点。美国斯坦福大学采用分布式压电传感器、驱动器进行了复合材料结构所受冲击机冲击损伤情况的研究,荷兰国家宇航实验室、美国波音公司、美国Sandia及LosAlamos国家实验室等研究机构也都在进行这方面的研究。形状记忆合金(SMA)应用于智能复合材料是由于其在低温下的形状记忆功能和其在高温下的超弹性,应用最为广泛的是NiTi合金。美国应用SMA制成了夹心结构树脂基复合材料用于“柔性机翼”。该机翼在各种飞行速度下可自动保持最佳翼型,提高飞行效率,并可自行抑制出现的危险振动。
(3)减振降噪
智能结构用于航空航天系统可以消除系统的有害振动,减轻对电子系统的干扰,提高系统的可靠性;用于舰艇,可以抑制噪声传播,提高潜艇和军舰的声隐身性能。国外正在研究的具有减振降噪功能的智能结构主要由压电陶瓷、形状记忆合金和电致伸缩等新材料制成。如Lord公司用超磁致伸缩材料研制的一套智能减震系统,安装在飞机发动机支架上,使机舱内的噪声减小20dB以上[7]。将压电材料置入飞机机身内,当飞机遇到强气流而振动时,压电材料便产生电流,使舱壁发生和原来振动方向相反的振动,抵消气流引起的振动噪音[6]。
(4)环境自适应结构
由智能结构制成的自适应飞机机翼,能实时感知外界环境的变化,同时驱动机翼发生弯曲、扭转以改变翼型和攻角,从而获得最佳的气动特性,自适应机翼将大大减轻重量,提高响应速度,减少转弯半径,改善雷达散射截面,增大升阻比。例如当飞机在飞行过程中遇到涡流或猛烈的逆风时,机翼中的智能材料就能迅速变形,并带动机翼改变形状,从而消除涡流或逆风的影响,使飞机仍能平衡地飞行。美国Grumman飞机公司用超磁致伸缩智能型材料作驱动组元制造的自适应机翼模型,其响应速度比传统的液压系统提高了20倍,后缘倾转60%,航程增加了35%。美国波音公司和麻省理工学院联合研究出在桨叶中嵌入智能纤维,可使电致流变体时桨叶扭转变形达几度[7]。
3.2医学领域中的应用
智能材料与现代医学联系日益密切,一些传统医疗方法得到革命性的改变,而智能材料医疗器械更是显现出其巨大的优势[8]。
(1)人造皮肤
科学家们已经在实验室里开发出了人造骨、人造血管、人造角膜、人造皮肤等人造器官。但安全性一直受到质疑,美国药物及食品管理局迄今为止只批准了人造皮肤这一个产品的市场销售[9]。从20世纪80年代美国麻省理工学院的Bell教授发现纤维细胞可渗入胶原中生长并形成真皮类似结构到后来在此基础上开发的双层人造皮肤Apligraft,人们一直想在这方面有更大的进展和突破[10]。1994年意大利比萨大学的科研人员研制成功一种人造皮肤智能材料,这种材料能够感知到温度、热流的变化以及各种应力的大小,并具有良好的空间分辨力。2004年日本北里大学黑柳能光教授研制出一种新型