液压传动基础知识86445
气压传动、液压传动和液力传动基础知识

气压传动、液压传动和液力传动基础知识一、气压传动篇气压传动以压缩气体为工作介质,靠气体的压力传递动力或信息的流体传动。
传递动力的系统是将压缩气体经由管道和控制阀输送给气动执行元件,把压缩气体的压力能转换为机械能而作功;传递信息的系统是利用气动逻辑元件或射流元件以实现逻辑运算等功能,亦称气动控制系统。
1、气压传动的特点工作压力低,一般为0.3~0.8兆帕,气体粘度小,管道阻力损失小,便于集中供气和中距离输送,使用安全,无爆炸和电击危险,有过载保护能力;但气压传动速度低,需要气源。
2、气压传动的组成气压传动由气源、气动执行元件、气动控制阀和气动辅件组成。
气源一般由压缩机提供。
气动执行元件把压缩气体的压力能转换为机械能,用来驱动工作部件,包括气缸和气动马达。
气动控制阀用来调节气流的方向、压力和流量,相应地分为方向控制阀、压力控制阀和流量控制阀。
气动辅件包括:净化空气用的分水滤气器,改善空气润滑性能的油雾器,消除噪声的消声器,管子联接件等。
在气压传动中还有用来感受和传递各种信息的气动传感器。
3、气压传动的优点•用空气做介质,取之不尽,来源方便,用后直接排放,不污染环境,不需要回气管路因此管路不复杂;•空气粘度小,管路流动能量损耗小,适合集中供气远距离输送;•安全可靠,不需要防火防爆问题,能在高温,辐射,潮湿,灰尘等环境中工作;•气压传动反应迅速;•气压元件结构简单,易加工,使用寿命长,维护方便,管路不容易堵塞,介质不存在变质更换等问题;4、气压传动的缺点•空气可压缩性大,因此气动系统动作稳定性差,负载变化时对工作速度的影响大;•气动系统压力低,不易做大输出力度和力矩;•气控信号传递速度慢于电子及光速,不适应高速复杂传递系统;•排气噪音大;二、液压传动篇液压传动是用液体作为工作介质来传递能量和进行控制的传动方式。
1、液压传动的基本原理利用液压泵将原动机的机械能转换为液体的压力能,通过液体压力能的变化来传递能量,经过各种控制阀和管路的传递,借助于液压执行元件(液压缸或马达)把液体压力能转换为机械能,从而驱动工作机构,实现直线往复运动和回转运动。
液压传动基础知识

液体的可压缩性一般用体积弹性模量K来表示 K
温度增加时,K值减小,在正常工作范围内,有5%~25%的变化;
整理课件
压力增大时,K值增大,当p≥3MPa时,K基本上不再增大;
当工作介质中混有气泡时,K值将大大减小。
《液压与气压传动》
一、液压传动工作介质的性质
3、粘性
粘度与温度、压力的关系:
温度升高,粘度下降。变化率的大小直接影响液压传动 工作介质的使用。粘度对温度的变化十分敏感。 压力增大,粘度增大,在整一理课般件 液压系统使用的压力范围 内,增大的数值很小,可忽略不计。
《液压与气压传动》
一、液压传动工作介质的性质
4、其它性质 液压传动介质还有其它一些性质,如:
可认为是常值
压力提高,密度稍有增加。
我国采用20℃时的密度作为油液的标准密度,以ρ20表示。
《液压与气压传动》
一、液压传动工作介质的性质
2、可压缩性 压力为p0、体积为V0的液体,如压力增大△p时,体积减小 △V,则体积的可压缩性可用体积压缩系数来表示
1 V
p V0
即单位压力变化下的体积相对变化量
稳定性(热稳定性、氧化稳定性、水解稳定性、剪切稳定性
等)
抗泡沫性 抗乳化性 防锈性 润滑性 相容性(对所接触的金属整、理密课件封材料、涂料等的作用程度)
《液压与气压传动》
二、对液压传动工作介质的要求
不同的工作机械、不同的使用情况对工作介质的要求有很大不同。 液压传动工作介质应具备如下性能: ➢合适的粘度,ν40=(15-68)×10-6m2/s,较好的粘温特性 ➢润滑性能好 ➢质地纯净,杂质少 ➢对金属和密封件有良好的相容性 ➢对热、氧化、水解和剪切有良好的稳定性 ➢抗泡沫好,抗乳化性好,腐蚀性小,防锈性好 ➢体积膨胀系数小,比热容大 整理课件 ➢流动点和凝固点低,闪点和燃点高 ➢对人体无害,成本低
一液压传动基础知识PPT课件

v =μ/ρ
运动粘度的法定计量单位为m2/s,
常用mm2/s。
2.2 液压油
2. 液压油的粘性 3)相对粘度 工程上常采用另一种可用仪器直接测量的 粘度单位,即相对粘度。
又称条件粘度,根据测量仪器和条件不同, 有恩氏、赛氏、雷氏等粘度。
2.2 液压油 2. 液压油的粘性
2.3 液体静力学基础
三﹑压力的传递
帕斯卡(静压力传递) 原理 :
在密闭容器中,施 加于静止液体上的 压力将以等值同时 的传递到液体内各 点。
(2)压力对粘度的影响 (3)温度对粘度的影响
2.2 液压油
2. 液压油的粘性 液压油(液)牌号 标称粘度等级是用液压油(液)在40℃
时运动粘度中心值的近视值来表示,单 位为mm2/s,同时用来表示液压油(液) 的牌号。
2.2 液压油 二、液压油(液)的选用
1.液压油(液)的品种和代号 (1)液压油(液)的品种分类 矿物型和合成烃型液压油, 难燃型液压油, 还有一些专用液压油。
六、液压传动的缺点
1. 漏油的存在,会造成环境污染,降低 传动效率,加上油液的可压缩性,使得 液压传动不能保证严格的传动比。
2.液压传动对油温的变化比较敏感,使 得工作的稳定性受到影响,所以它不宜 在温度变化很大的环境条件下工作。
六、液压传动的缺点
3.液压元件制造精度要求较 高,加工安装较困难。
三、液压传动系统的组成
3.控制元件 是对系统中油液的压力、流量或
流动方向进行控制或调节的装置 (控制阀,如单向阀、换向阀、溢 流阀、节流阀等)。
三、液压传动系统的组成
4.辅助元件 包括上述三部分之外的其它装置,
(油箱、滤油器、油管、压力表等)。
液压传动的基础知识 PPT课件

管路系统的压力损失和压力效率 :整个管路
li i i pi i i di 2 2 i 1 i 1 i k 1
系统的总压力损失是系统中所有直管的沿程压力损失和所有局部 压力损失之和 n 2 2 k n
使用条件:管路系统中两相邻局部压力损失之间距离足够大
(相连管径的10-20倍)
h
伯努利方程应用实例
液压泵吸油口处的真空度是油箱 液面压力与吸油口处压力p2之差。 液压泵吸油口处的真空度却不能 太大. 实践中一般要求液压泵的 吸油口的高度h不超过0.5米.
图2-10 液压泵从油箱吸油
1.4 管路系统流动分析
两种流动状态 定常管流的压力损失 通过小孔的流动 通过间隙的流动
运动粘度ν
定义:动力粘度μ 与密度ρ 之比
法定计量单位:m2/s 由于ν 的单位中只有运动学要素,故称为运 动粘度。液压油的粘度等级就是以其40º C 时运动粘度的某一平均值来表示,如LHM32液压油的粘度等级为32,则40º C时 其运动粘度的平均值为32mm2/s
粘温特性
定义:粘度随温度变化的特性
物理意义:静止液体具有两种能量形式,即压力能与位能。
这两种能量形式可以相互转换,但其总和对液体中的每一 点都保持不变为恒值,因此静压力基本方程从本质上反映 了静止液体中的能量守恒关系.
1.2.4 压力的计量单位
法定单位 :牛顿/米2(N/m2)即帕(Pa)
1 MPa=106Pa
单位换算:
1工程大气压(at)=1公斤力/厘米2(kgf/m2) ≈105帕 =0.1 MPa 1米水柱(mH20)=9.8×103Pa 1毫米汞柱(mmHg)=1.33×102Pa
液压传动基础知识

液压传动第一章绪论一部机器主要由动力装置、传动装置、操作或控制装置、工作和执行装置4部分构成。
动力装置的性能一般都不可能满足执行装置各种工矿的要求,这种矛盾就由传动装置来解决。
所谓传动就是指能量(动力)由动力装置项工作执行装置的传递,即通过某种传动方式,将动力装置的运动或动力以某种形式传递给执行装置,驱动执行装置对外做功。
一般工程技术中使用的动力传动方式由机械传动、电气传动、气压传动、液体传动以及由它们组合而成的复合运动。
以液体为工作介质进行能量(动力)传递的传动方式称为液体传动,液体传动分为液力传动和液压传动两种形式。
液力传动主要是利用液体的动能来传递能量;而液压传动是利用液体的压力能来传递能量。
液压传动利用液压泵,将原动机(马达)的机械能转变为液体的压力能,然后利用液压缸(或液压马达)将压力能转变为机械能,以驱动负载,并获得执行机构所需的运动速度。
液压传动的理论基础是液压流体力学。
一液压传动的工作原理及组成1,液压传动的工作原理液压传动系统是依靠液体在密封油腔容积变化中的压力能来实现运动和动力传递的。
液压传动装置从本质上讲是一种能量转换装置,他先将机械能转为便于输送的液压能,然后再将液压能转换为机械能做功。
2,液压传动系统的组成是液压传动系统主要由以下5部分组成:⑴动力组件。
主要指液压泵。
他的作用是把原动机(马达)的机械能转变成油液的压力能,给液压系统提供压力油,是液压系统的动力源。
⑵执行组件。
指各种类型的液压缸、液压马达。
其作用是将油液压力能转变成机械能,输出一定的力(或力矩)和速度,以驱动负载。
⑶控制调节组件。
主要指各种类型的液压控制阀,如溢流阀、节流阀、换向阀等。
它的作用是控制液压系统中油液的压力、流量和流动方向,从而保证执行组件能驱动负载,并按规定的方向运动,获得规定的运动速度。
⑷辅助装置。
指油箱、过滤器、油管、管接头、压力表等。
它们对保证液压系统可靠、稳定、持久的工作,具有重要作用。
液压传动的基础知识

第8页,共80页。
1、动力元件(序号8)—泵(机械能压力能)
把原动机的机械能转换成液体压力能的转换元件
2、执行元件(序号6)— 缸、马达(压力能机械能) 把液体的压力能转换成机械能的转换元件
3、控制元件(序号3、5、7)—阀(控制方向、压力及流
量) 对液压系统中油液的压力、流量或流动方向进行控制或 调节的元件
由于 G ,m所g以密度ρ和V 重度γ的关系是:
γρg 重度的单位为N/m3 液体的重度随温度和压力的变化而变化,但影响很小, 可以忽略。 液压油计算时取γ = 9×103 N/m3
第21页,共80页。
1.3 液体的压缩性
1.3.1 定义:液体的压缩性是指液体受压后其体积变 小的性能,压缩性的大小用体积压缩系数表示。
例如YA-N32中YA是普通液压油,N32表示50℃时 油的平均运动粘度为32 mm2/s。
第27页,共80页。
2.5 相对黏度(条件黏度)
相对黏度是根据特定测量条件制定的,故
200ml
又称条件黏度。我国采用的为恩式黏度,
即采用恩氏黏度计测定。
式中:t1
Et
t1 t2
– 油流出的时间
φ=2. 8mm 恩氏粘度计
式中:Ff —液体流动时,相邻液体层间的内摩擦力 ▪ μ—粘性系数,与液体的种类和温度有关
▪ A —液层接触面积
▪ △u /△y—速度梯度,即液层速度沿着平板间隔方向 的变化率。
▪ 静止液体 du=0 不呈现粘性
▪ 单位面积上的内摩擦力,即液层间的切应力τ
▪
▪
Ff du
— 牛顿内摩擦定律
A
dy
t2-20OC蒸馏水流出时间
液压传动 液压传动的基本知识

• 三、液压传动的特点和基本参数(图) • 力的传递遵循帕斯卡原理 p2=F2/A2 p1=p2=p=F2/A2 F1=p1A1=p2A1=F2· A1/A2 液压系统的工作压力取决于外负载。 • 运动的传递遵照容积变化相等的原则 s1A1=s2A2 q1=v1A1=v2A2=q2 v2=q2/A2 执行元件的运动速度取决于流量。 • 基于以上两个基本特点,常把液压传动叫做静压传动或容 积式液压传动。 • 压力和流量是液压传动中的两个最基本的参数。 • 系统压力:液压泵出口的液体压力。其大小取决于外负载, 但一般都由溢流阀调定。
液体静力学
• • • •
静压力及其特性 静压力基本方程式 帕斯卡原理 静压力对固体壁面的作用力
静压力及其特性
• 液体的静压力 – 静止液体在单位面积上所受的法向力称为静压 力。p=limΔF/ΔA (ΔA→0) – 若在液体的面积A上所受的作用力F为均匀分 布时,静压力可表示为 p = F / A – 液体静压力在物理学上称为压强,工程实际应 用中习惯称为压力。 • 液体静压力的特性 – 液体静压力垂直于承压面,方向为该面内法 线方向。 – 液体内任一点所受的静压力在各个方向上都相 等。
• 四、液压传动系统的组成
• • • • •
典型液压系统 能源装置(动力源元件)——将机械能转换为液体压力能 的装置,常称为液压泵。 执行元件——将液体的压力能转换为机械能的元件。液压 缸和液压马达,液称液动机。 控制元件——控制系统压力、流量、方 向的元件以及进 行信号转换、逻辑运算和放大等功能的信号控制元件。如 溢流阀、节流阀、方向阀等。 辅助元件——保证系统正常工作除上述三种元件外的装置。 如油箱、过滤器、蓄能器、油雾器、消声器、管件等。 工作介质 ——它是液压系统中必不可少的部分,既是转 换、传递能量的介质,也起着润滑运动零件和冷却传动系 统的作用。
液压传动知识点

液压传动知识点一、液压传动:以液压油作为工作介质,利用液体的压力能实现能量传递。
二液压传动的工作特性1)力的传递按照帕斯卡原理进行。
(2)液压传动中压力取决于负载。
(3)负载的运动速度取决于流量。
(4)液压传动中的能量参数:压力P流量Q1)力的传递按照帕斯卡原理进行。
小活塞底面单位面积上的压力为:P1=F/A1大活塞底面上的压力为:P1=W/A2根据流体力学中的帕斯卡原理,平衡液体内某一点的压力等值地传递到液体各点,因此有:P=P1=P1=F/A1=W/A22)液压传动中压力取决于负载只有大活塞上有了重物W(负载),小活塞上才能施加上作用力F,并使液体受到压力,所以负载是第一性的,压力是第二性的。
即有了负载,并且作用力足够大,液体才受到压力,压力的大小取决于负载。
3)负载的运动速度取决于流量液压传动中传递运动时,速度传递按照容积变化相等的原则进行。
A1·L1=A2·L2 V1=L1/t V2=L2/t A1·V1=A2·V2=QQ 为流量,负载(重物)的运动速度取决于进入大液压缸的流量Q 。
三,液压系统组成1、动力元件—泵(机械能——压力能)把原动机的机械能转换成液体压力能的转换元件2、执行元件—缸、马达(压力能——机械能)把液体的液压能转换成机械能的转换元件3、控制元件—阀(控制方向、压力及流量)对液压系统中油液的压力、流量或流动方向进行控制或调节的元件4、辅助元件—油箱、油管、滤油器、压力表在系统中起储存油液、连接、滤油、测量等作用四,液压传动的优缺点优点:1.在同等输出功率下,液压传动装置的体积小,重量轻,结构紧凑。
2.液压装置工作比较平稳。
3.液压装置能在大范围内实现无级调速(调速范围可达1:2000),且调速性能好。
4.液压传动容易实现自动化。
5.液压装置易于实现过载保护。
液压元件能自行润滑,寿命较长。
6.液压元件已实现标准化、系列化和通用化,所以液压系统的设计、制造和使用都比较方便。
液压与气动技术课件:液压传动基础知识

( 3 ) 了解液体的流动状态,掌握流动液体连续性方程
和伯努利方程的运用,了解流动液体动量方程。
( 4 ) 掌握液体流动时的压力损失计算及小孔和缝隙流
量的计算。
( 5 ) 理解液压冲击和气穴现象的概念、产生原因、危
害及防止措施。
液压传动基础知识
2. 1 液
压
油
液压油是液压传动系统中的传动介质,而且还对液压装
液压油的密度随压力的增加而增大,随温度升高而减小,
但一般情况下,这种变化很小,可以忽略不计。一般矿物油
的密度为 850~950kg / m3 ,通常计算中,一般都设液压油
的密度为 900kg / m3 。
液压传动基础知识
2. 可压缩性
液体受压力作用而发生体积变化的性质称为液体的可压
缩性。液体的可压缩性用体积压缩系数 k 来表示,其定义为:
擦力就大,油液就“稠”;反之就“稀”。黏度是液体最重
要的物理特征之一,是选择液压油的主要依据。
液压传动基础知识
常用的黏度表示方法有三种:绝对黏度(动力黏度)、运
动黏度和相对黏度。
1 )绝对黏度绝对黏度可由式(2. 5 )导出,即
绝对黏度的物理意义是,液体在单位速度梯度下流动时,
其单位面积上所产生的内摩擦力。绝对黏度的单位为 Pa ·s
能的影响不大,所以一般认为液是不可压缩的。在压力变化
较大或有动态特性要求的高压系统中,应考虑液体压缩性对
系统的影响。当液压油中混有空气时,其压缩性便显著增加,
将使液压传动系统的工作性能恶化。所以,在设计和使用中
应尽量防止空气进入油中。
液压传动基础知识
3. 黏性
液体在外力作用下流动时,液体分子间的内聚力阻碍液
液压传动基础知识

温度 ↓→ 分子间内聚力 ↑→ 油液粘度↑→压力损失↑。
并且变化十分敏感,说明温度对粘度的影响很大。 油液的粘温特性: 油液粘度随温度变化的特性称为油的粘温特性。
②压力:
压力↑→ 分子间距↓ →分子间内聚力 ↑→ 油液粘度有所↑。 a.当压力较低时,压力变化对粘度影响较小,一般不考虑。 b.当压力很高时,压力变化对粘度影响较大。
3.压力的单位
1 Pa(帕) = 1 N/m2
1MPa (兆帕)= 106 Pa
压力单位及其它非法定计量单位的换算关系: 1at(工程大气压)=1kgf/cm2=9.8×104 Pa 1mH2O(米水柱)=9.8×103 Pa 1mmHg(毫米汞柱)=1.33×102 Pa 1bar(巴) = 105 Pa≈1.02kgf/cm2
1、酸值:中和1克油液所需 KOH 的毫克数。
2、热稳定性:自身裂化、聚合 。
3、氧化稳定性:与空气及其它氧化物进行化学反应的能力 4、相容性:油液与系统中各种密封材料、涂料等非金属材 料相互接触时抵抗化学反应的能力。如不起作用或很少起 作用则相容性好。
5、抗乳化性:油液中混入水并搅动成乳化液后,水从其中 分离出来的能力。
点组成的 面称等压面,显然在重力场中静止液体的等压面
为水平面。
P0
P0
⒉静压力基本方程的物理意义
P = P0 + ρg h = P0 + ρg ( z0 - z ) = P0 + ρg z0-ρg z
h1
P0 A Z0
h
B
Z1
Z
P0 + ρg z0 = P + ρg z
0
X(基准水平面)
或
Z: 单位重量液体相对于基准平面的位能, ∴ Z 称为比位能 (位臵水头)
第1章 液压传动基础知识PPT课件

16
2)静压力基本方程物理意义
ppg=p+0+zρ=g(p zg0 0
-
+
z)
z0=C
Z:单位重量液体的位能,称位置水头
p :单位重量液体的压力能,称压力水头 g
物理意义:静止液体具有两种能量形式,即压力能与位 能。这两种能量形式可以相互转换,但其总和对液体中 的每一点都保持不变为恒值,因此静压力基本方程从本 质上反映了静止液体中的能量守恒关系.
17
3、压力的表示和单位
绝对压力:以绝对真空为基准来度量的压力 相对压力:以大气压为基准来度量的压力
相对压力(表压)= 绝对压力 - 大气压力
真空度 = 大气压力 - 绝对压力
压力单位:Pa (帕)或N/㎡(牛/米) 1MPa=103kPa=106Pa
18
4、 帕斯卡原理(静压传递原理)
1)密闭容器内,液体表面的压力可等值传递 到液体内部所有各点。 根据帕斯卡原理: p = F/A
8
2)运动粘度ν: 动力粘度μ与液体密度ρ之比值,即: ν= μ/ρ
物理意义:无(只是因为μ/ρ在流体力学中经常出 现,∴ 用ν代替(μ/ρ) )
单位:㎡/s,c㎡/s,m㎡/s ISO和我国标准规定,工作介质按其在一定下运动粘
度的平均值来标定粘度等级。
3)相对粘度(条件粘度):是采用特定的粘度计
液体的静压力的方向总是沿着作用面的内法线 方向 静止液体中任何一点所受到各个方向的压力都 相等
14
2、静压力基本方程 在外力作用下的静止液体,其受力见图2-3。
15
1)基本方程: p=p0+ρgh