PN结二极管的反向恢复及其原因

PN结二极管的反向恢复及其原因
PN结二极管的反向恢复及其原因

一、二极管从正向导通到截止有一个反向恢复过程

在上图所示的硅二极管电路中加入一个如下图所示的输入电压。在0―t1时间内,输入为+VF,二极管导通,电路中有电流流通。

设VD为二极管正向压降(硅管为0.7V左右),当VF远大于VD时,VD可略去不计,则

在t1时,V1突然从+VF变为-VR。在理想情况下,二极管将立刻转为截止,电路中应只有很小的反向电流。但实际情况是,二极管和一般开关的不同在于,“开”与“关”由所加电压的极性决定, 而且“开”态有微小的压降V f,“关”态有微小的电流i0。当电压由正向变为反向时, 电流并不立刻成为(- i0) , 而是在一段时间t s 内, 反向电流始终很大, 二极管并不关断。经过t s后, 反向电流才逐渐变小, 再经过t f 时间, 二极管的电流才成为(- i0) , t s 称为储存时间, t f 称为下降时间。t r= t s+ t f 称为反向恢复时间, 以上过程称为反向恢复过程。这实际上是由电荷存储效应引起的, 反向恢复时间就是存储电荷耗尽所需要的时间。该过程使二极管不能在快速连续脉冲下当做开关使用。如果反向脉冲的持续时间比t r 短, 则二极管在正、反向都可导通, 起不到开关作用。

二、产生反向恢复过程的原因——电荷存储效应

产生上述现象的原因是由于二极管外加正向电压VF时,载流子不断扩散而存储的结果。当外加正向电压时P区空穴向N区扩散,N区电子向P区扩散,这样,不仅使势垒区(耗尽区)变窄,而且使载流子有相当数量的存储,在P区内存储了电子,而在N区内存储了空穴,它们都是非平衡少数载流于,如下图所示。

空穴由P区扩散到N区后,并不是立即与N区中的电子复合而消失,而是在一定的路程LP (扩散长度)内,一方面继续扩散,一方面与电子复合消失,这样就会在LP范围内存储一定数量的空穴,并建立起一定空穴浓度分布,靠近结边缘的浓度最大,离结越远,浓度越小。正向电流越大,存储的空穴数目越多,浓度分布的梯度也越大。电子扩散到P区的情况也类似,下图为二极管中存储电荷的分布。

我们把正向导通时,非平衡少数载流子积累的现象叫做电荷存储效应。

当输入电压突然由+VF变为-VR时P区存储的电子和N区存储的空穴不会马上消失,但它们将通过下列两个途径逐渐减少:①在反向电场作用下,P区电子被拉回N区,N区空穴被拉回P区,形成反向漂移电流IR,如下图所示;

②与多数载流子复合。

在这些存储电荷消失之前,PN结仍处于正向偏置,即势垒区仍然很窄,PN结的电阻仍很小,与RL相比可以忽略,所以此时反向电流IR=(VR+VD)/RL。VD表示PN结两端的正向压降,一般 VR>>VD,即 IR=VR/RL。在这段期间,IR基本上保持不变,主要由VR 和RL所决定。经过时间ts后P区和N区所存储的电荷已显著减小,势垒区逐渐变宽,反向电流IR逐渐减小到正常反向饱和电流的数值,经过时间tt,二极管转为截止。

由上可知,二极管在开关转换过程中出现的反向恢复过程,实质上由于电荷存储效应引起的,反向恢复时间就是存储电荷消失所需要的时间。

抑制功率二极管反向恢复几种方案的比较

抑制功率二极管反向恢复几种方案的比较 0 引言 高频功率二极管在电力电子装置中的应用极其广泛。但PN结功率二极管在由导通变为截止状态过程中,存在反向恢复现象。这会引起二极管损耗增大,电路效率降低以及EMI增加等问题。这一问题在大功率电源中更加突出。常用RC吸收、串入饱和电抗器吸收、软开关电路等开关软化方法加以解决,但关于其效果对比的研究报道尚不多见。本文以Buck电路为例,对这几种方案进行了比较,通过实验及仿真得出有用的结论。 1 二极管反向恢复原理 以普通PN结二极管为例,PN结内载流子由于存在浓度梯度而具有扩散运动,同时由于电场作用存在漂移运动,两者平衡后在PN结形成空间电荷区。当二极管两端有正向偏压,空间电荷区缩小,当二极管两端有反向偏压,空间电荷区加宽。当二极管在导通状态下突加反向电压时,存储电荷在电场的作用下回到己方区域或者被复合,这样便产生一个反向电流。 2 解决功率二极管反向恢复的几种方法 为解决功率二极管反向恢复问题已经出现了很多种方案。一种思路是从器件本身出发,寻找新的材料力图从根本上解决这一问题,比如碳化硅二极管的出现带来了器件革命的曙光,它几乎不存在反向恢复的问题。另一种思路是从拓扑角度出发,通过增加某些器件或辅助电路来使功率二极管的反向恢复得到软化。目前,碳化硅二极管尚未大量进入实用,其较高的成本制约了普及应用,大量应用的是第二种思路下的软化电路。本文以一个36V输入、30V/30A输出、开关频率为62.5kHz电路(如图1所示)为例,比较了几种开关软化方法。 图1 Buck电路

2.1 RC吸收 这是解决功率二极管反向恢复问题的常用方法。在高频下工作的功率二极管,要考虑寄生参数。图2(a)为电路模型,其中D为理想二极管,Lp为引线电感,Cj为结电容,Rp为并联电阻(高阻值),Rs为引线电阻。RC吸收电路如图2(b)所示,将C1及R1串联后并联到功率二极管D0上。二极管反向关断时,寄生电感中的能量对寄生电容充电,同时还通过吸收电阻R1对吸收电容C1充电。在吸收同样能量的情况下,吸收电容越大,其上的电压就越小;当二极管快速正向导通时,C1通过R1放电,能量的大部分将消耗在R1上。 (a) 功率二极管电路模型(b) RC吸收电路 (c) 串联饱和电抗器(d) 二极管反向恢复软化电路 图2 解决功率二极管反向恢复问题的常用方案 2.2 串联饱和电抗器 这是解决这一问题的另一种常用方法,如图2(c)所示。一般铁氧体(Ferrite)磁环和非晶合金(Amorphous)材料的磁环都可以做饱和电抗器。根据文献[1],用饱和电抗器解决二极管反向恢复问题时,常用的锰锌铁氧体有效果,但是能量损失比非晶材料大。随着材料技术的进展,近年来非晶饱和磁性材料性能有了很大提高。本文选用了东芝公司的非晶材料的磁环(型号:MT12×8×4.5W)绕2匝作饱和电抗器。 对应图3(a)和图3(b),第Ⅰ阶段通过D0的电流很大,电抗器Ls饱和,电感值很小;第Ⅱ阶段当二极管电流开始下降时,Ls仍很小;第Ⅲ阶段二极管电流反向,反向恢复过程开始(trr为反向恢复时间),Ls

二极管的开关作用和反向恢复时间

二极管的开关作用和反向恢复时间 PN结二极管经常用来制作电开关。在正偏状态,即开态,很小的外加电压就能产生较大的电流,;在反偏状态,即关态,只有很小的电流存在于PN结内。我们最感兴趣的开关电路参数就是电路的开关速度。本节会定性地讨论二极管的开关瞬态以及电荷的存储效应。在不经任何数学推导的情况下,简单给出描述开关时间的表达式。 二极管的开关作用 利用二极管正、反向电流相差悬殊这一特性,可以把二极管作开关使用。 当开关K打向A时,二极管处于正向,电流很大,相当于接有负载的外回路与电源相连的开关闭合,回路处于接通状态(开态); 当开关K打向B时,二极管处于反向,反向电流很小,相当于外回路的开关断开,回路处于断开状态(关态)。 在关态时,流过负载的电流就是二极管的反向电流IR。二极管的反向恢复时间 假设外加脉冲的波形如图(a)所示,则流过二极管的电流就如图(b)所示。

外电路加以正脉冲时 导通过程中,二极管P区向N区输运大量空穴,N区向P区输运大量电子。 随着时间的延长,N区内空穴和P区内电子不断增加,直到稳态时停止。在稳态时,流入N区的空穴正好与N区内复合掉的空穴数目相等,流入P区的电子也正好与P区内复合掉的电子数目相等,达到动态平衡,流过P-N结的电流为一常数I1。 随着势垒区边界上的空穴和电子密度的增加,P-N结上的电压逐步上升,在稳态即为VJ。此时,二极管就工作在导通状态。 当某一时刻在外电路上加的正脉冲跳变为负脉冲时 正向时积累在各区的大量少子要被反向偏置电压拉回到原来的区域,开始时的瞬间,流过P-N结的反向电流很大,经过一段时间后,原本积累的载流子一部分通过复合,一部分被拉回原来的区域,反向电流才恢复到正常情况下的反向漏电流值IR。正向导通时少数载流子积累的现象称为电荷储存效应。二极管的反向恢复过程就是由于电荷储存所引起的。反向电流保持不变的这段时间就称为储存时间ts。在ts 之后,P-N结上的电流到达反向饱和电流IR,P-N结达到平衡。定义流过P-N结的反向电流由I2下降到0.1 I2时所需的时间为下降时间tf。储存时间和下降时间之和为(ts+tf)称为

大功率IGBT模块内建二极管反向恢复时间测试

大功率IGBT模块内建二极管反向恢复时间测试 ——SKM150GB123D (使用DI-100测试仪器)IGBT模块很贵,主要厂家为国外的厂家,我们不得不承认,这个模块还是被国外的厂家所垄断,中国自主的品牌没有呀! 即使是国外的管子,有的管子速度快、有的耐压高、有的电流大,型号各异,特性各异,有的时候,我们在设计大功率开关电源的时候,还需要关注IGBT模块的内建二极管,尤其是内建二极管的反向恢复时间,那就是恢复速度。 为了用buck电路来做一个100A的恒流源,我选择SKM150GB123D模块,它内部有两个IGBT单元,如果使用一个IGBT开关,另外一个模块只用它的内建二极管或者寄生二极管,用来作为BUCK电路的续流二极管,岂不美哉! 现在困扰我的是,这个内建二极管或者寄生二极管的速度如何,如果速度快,那就相当beauty了,但是如果速度慢,那就悲哀了,还需要外接一个大容量,高速的二极管,麻烦呀,官方给定的资料不够,看不出内建二极管的速度。于是我就用DI-100二极管反向恢复测试仪,测试这个IGBT的内建二极管速度。 测试结果给大家分享一下,如下图。 图1 二极管外形图2 示波器存储的波形

图3 二极管正向导通电流图4 二极管反向恢复电流 图5二极管反向恢复电流斜率图6 二极管反向恢复时间 为BUCK 电路的续流二极管,高兴中。。。。 再找找,发现手头上还有另外一个300A的IGBT模块,干脆一起测试一下,分享一下测试结果。测量FF300R12KT4 IGBT内建二极管反向恢复时间测试。 图1 二极管外形图2 示波器存储的波形

图3 二极管正向导通电流 图4 二极管反向恢复电流 图5二极管反向恢复电流斜率 图6 二极管反向恢复时间 综上 根据测试结果,发现这个IGBT 的内建二极管的速度快,但不是非常快,如果用来作为BUCK 电路的续流二极管,略微显得有点不足。。。。还需要考虑再三呀! 总结,如果知道IGBT 的内建二极管恢复时间,就可以对IGBT 模块的内建二极管进行充分的利用,优化设计,少走弯路。一个优秀的工程师,当然必须要有足够好的测试仪器才行呀,强烈推荐长春艾克思科技有限责任公司的二极管反向恢复测试仪DI-100,这个是强电大功率电源工程师、大功率电源生产厂家必备的仪器!

测试二极管反向恢复特性的分析仪

测试二极管反向恢复特性的分析仪 作者:Louis Vlemincq,Belgacom,Evere,Belgium 测试二极管的反向恢复特性一般都需要复杂的测试设备。必 须能够建立正向导通条件、正向闭锁状态、及两者间的过渡。还需要有一种从所得到的波形中提取特征的手段。总而言之,这并不是一项很简单的例行操作,应由专业人员来完成这项复杂的工作。这个事实说明了工程师们为什么通常都会依赖于公布的数据。 但如果测试比较简单,亲自动手来检查反向恢复时间是有好处的。这种设置可以让你在相同的条件和没有这种规范的测试设备下比较不同厂商的设备,如驱动集成电路的衬底二极 管,齐纳二极管及标准整流器等(由于测试参数有很多组合,直接比较数据不太现实)。切记,反向恢复时间不一定越短越好,速度较慢的二极管也很有用。速度较慢的二极管可以生成较短的停滞时间,提高转换器的效率,并提供其它一些优势(参考文献1)。 根据本设计实例我们研究了一种测试仪,它只用一些廉价的标准元件,可以检测反向恢复时间。为了简化测试,测试条件是固定的,可以将测试标准化,并提供了一个供比较的共同标准。这些条件能99%地满足将要测试的设备。测试的正向电流低到足以保证小开关二极管的安全工作, 高到足以克服较大设备中的电容性影响。 电路的核心有一个二极管与电阻器组成的逻辑与(AND)门,与门的二极管为DUT(被测设备,图1)。IC1缓冲触发器IC2A,后者可产生驱动与门的反相方波。R35将DUT的正向电流设为75mA左右。有了合适的二极管,与门的输出总保持较低,因为其输出之一总是较小。但真正的二极管在跃迁后保持导通,在R35两端生成一个正向脉冲。电路并未采用直接测试脉冲宽度的强制方法,而是使用一个精巧的方案。R19/C15网络对脉冲求出平均值,并将得出的电压放 图1,这种二极管恢复测试设置允许在完全相同的条件下比较不同厂商的设备。

二极管的反向恢复过程

二极管的反向恢复过程 一、二极管的反向恢复过程 二、在下图的电路中V上输入如下的电压波形:则二极管上的电流波形如下: 可以看到,当通入正向电压时,二极管导通,二极管上的电流为I1,当通入的电压突然反向时,二极管上的电流也瞬间反向了,随后才变小,进而进入反向截止状态。这个现象就叫二极管的反向恢复。反向电流保持不变的这段时间称为储存时间ts,反向电流由I2下降到0.1I2所需的时间称为下降时间tf。储存时间和下降时间之和(ts+tf)称为反向恢复时间。二极管反向截止后还存在的电流被称为二极管的反向漏电流IR。 二、二极管反向恢复现象的解释 在二极管的PN节上,当外加正向电压时,P区的空穴向N区扩散,N区的电子向P区扩散,这样,不仅使势垒区(耗尽区)变窄,而且使载流子有相当数量的存储,在P区内存储了电子,而在N区内存储了空穴,它们都是非平衡少数载流子,如下图所示。 空穴由P区扩散到N区后,并不是立即与N区中的电子复合而消失,而是在一定的路程LP(扩散长度)内,一方面继续扩散,一方面与电子复合消失,这样就会在LP范围内存储一定数量的空穴,并建立起一定空穴浓度分布,靠近

结边缘的浓度最大,离结越远,浓度越小。正向电流越大,存储的空穴数目越多,浓度分布的梯度也越大。电子扩散到P区的情况也类似,下图为二极管中存储电荷的分布。

我们把正向导通时,非平衡少数载流子积累的现象叫做电荷存储效应。 当输入电压突然由正向变为反向时P区存储的电子和N区存储的空穴不会马上消失,但它们将通过下列两个途径逐渐减少: ① 在反向电场作用下,P区电子被拉回N区,N区空穴被拉回P区,形成反向漂移电流IR,如下图所示; ②与多数载流子复合。 在这些存储电荷消失之前,PN结仍处于正向偏置,即势垒区仍然很窄,PN结的电阻仍很小,与电路中的负载电阻相比可以忽略,所以此时反向电流IR=(反向电压VR+VD)/负载电阻RL。VD表示PN结两端的正向压降,一般VR>>VD,即IR=VR/RL。在这段期间,IR基本上保持不变,主要由VR和RL所决定。 经过时间ts后P区和N区所存储的电荷已显著减小,势垒区逐渐变宽,反向电流IR逐渐减小到正常反向饱和电流的数值,经过时间tf,二极管转为截止。

高压二极管Trr反向恢复时间测试

HVM12 HVRT高压二极管 反向恢复时间测试 二极管和一般开关的不同在于,“开”与“关”由所加电压的极性决定,而且“开”态有微小的压降Vf,“关”态有微小的电流Io。当电压由正向变为反向时, 电流并不立刻成为(- Io) , 而是在一段时间ts 内,反向电流始终很大,二极管并不关断。经过ts后, 反向电流才逐渐变小,再经过tf 时间, 二极管的电流才成为(- Io),ts 称为储存时间,tf 称为下降时间。tr= ts+ tf 称为反向恢复时间,以上过程称为反向恢复过程。这实际上是由电荷存储效应引起的,反向恢复时间就是存储电荷耗尽所需要的时间。该过程使二极管不能在快速连续脉冲下当做开关使用。如果反向脉冲的持续时间比tr 短,则二极管在正、反向都可导通,起不到开关作用。 首先进行测试的高压二极管HVM12,其外形实物图如下图所示,使用DI-10mA进行测试,它可以测试高压快恢复二极管、高压整流二极管、倍压高压二极管。它可以测试二极管反向电流峰值50mA,二极管正向电流10mA ,测量精度5nS,测试的过程中不必担心二极管接反的问题。 图1 二极管实物及恢复特性

以上波形是DI-10mA把偏置电压设置到100V测试的结果,综上可以看出,二极管正向导通电流:4.8mA,二极管反向恢复电流:60mA,二极管反向恢复电流斜率:10mA/uS,二极管反向恢复时间:2.54uS。这个器件是一个工频整流器件,反向恢复时间非常长,不适合用于高频整流的场合,所测试的参数,基本上是满足器件要求的,应用时应该没有什么太大的问题。

接着使用DI-10mA测试另外一个高压二极管,二极管外形实物图如下图所示: 图7 高压二极管实物 以上波形是DI-10mA把偏置电压设置到100V测试的结果,综上可以看出,二极管正向导通电流:3.84mA,二极管反向恢复电流:7.68mA,二极管反向恢复电流斜率:6.6mA/uS,二极管反向恢复时间:144nS。这个器件是一个高频整流器件,可用于高频整流的场合。

肖特基二极管和快恢复二极管

肖特基二极管和快恢复二极管又什么区别 快恢复二极管是指反向恢复时间很短的二极管(5us以下),工艺上多采用掺金措施,结构上有采用PN结型结构,有的采用改进的PIN结构。其正向压降高于普通二极管(1-2V),反向耐压多在1200V以下。从性能上可分为快恢复和超快恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100纳秒以下。 肖特基二极管是以金属和半导体接触形成的势垒为基础的二极管,简称肖特基二极管(Schottky Barrier Diode),具有正向压降低(0.4--0.5V)、反向恢复时间很短(10-40纳秒),而且反向漏电流较大,耐压低,一般低于150V,多用于低电压场合。 这两种管子通常用于开关电源。 肖特基二极管和快恢复二极管区别:前者的恢复时间比后者小一百倍左右,前者的反向恢复时间大约为几纳秒~! 前者的优点还有低功耗,大电流,超高速~!电气特性当然都是二极管阿~! 快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做整流元件. 肖特基二极管:反向耐压值较低40V-50V,通态压降0.3-0.6V,小于10nS的反向恢复时间。它是具有肖特基特性的“金属半导体结”的二极管。其正向起始电压较低。其金属层除材料外,还可以采用金、钼、镍、钛等材料。其半导体材料采用硅或砷化镓,多为N型半导体。这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。其工作频率可达100GHz。并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。 快恢复二极管:有0.8-1.1V的正向导通压降,35-85nS的反向恢复时间,在导通和截止之间迅速转换,提高了器件的使用频率并改善了波形。快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做整流元件

FR307二极管反向恢复时间测试分析

FR307二极管反向恢复时间测试分析 二极管和一般开关的不同在于,“开”与“关”由所加电压的极性决定, 而且“开”态有微小的压降V f,“关”态有微小的电流i0。当电压由正向变为反向时, 电流并不立刻成为(- i0) , 而是在一段时间ts 内, 反向电流始终很大, 二极管并不关断。经过ts 后, 反向电流才逐渐变小, 再经过tf 时间, 二极管的电流才成为(- i0) , ts 称为储存时间, tf 称为下降时间。tr= ts+ tf 称为反向恢复时间, 以上过程称为反向恢复过程。这实际上是由电荷存储效应引起的, 反向恢复时间就是存储电荷耗尽所需要的时间。该过程使二极管不能在快速连续脉冲下当做开关使用。如果反向脉冲的持续时间比tr 短, 则二极管在正、反向都可导通, 起不到开关作用。 首先进行测试的是FR307GW 二极管,其外形实物图如下图所示,使用DI-100进行测试,它可以测试快恢复二极管、场效应管(Mosfet )内建二极管、IGBT 基内建二极管。它可以测试二极管反向电流峰值100A ,二极管正向电流30A ,测量精度10nS ,测试的过程中不必担心二极管接反的问题。 图1 二极管实物及恢复特性 图2 二极管正向导通电流 图3 二极管反向恢复电流

图4二极管反向恢复电流斜率图5 二极管反向恢复时间以上波形是DI-100把偏置电压设置到150V测试的结果,综上可以看出,二极管正向导通电流:3.52A,二极管反向恢复电流:6.64A,二极管反向恢复电流斜率:7.76A/uS,二极管反向恢复时间:550nS。这个器件的参数,基本上是满足说明书要求的,应用时应该没有什么太大的问题。 接着使用DI-100测试FR307ZG二极管,二极管外形实物图如下图所示: 图1 二极管实物

二极管的反向恢复过程

二极管的反向恢复过程 The Standardization Office was revised on the afternoon of December 13, 2020

二极管的反向恢复过程 一、二极管的反向恢复过程 二、在下图的电路中V上输入如下的电压波形:则二极管上的电流波形如下: 可以看到,当通入正向电压时,二极管导通,二极管上的电流为I1,当通入的电压突然反向时,二极管上的电流也瞬间反向了,随后才变小,进而进入反向截止状态。这个现象就叫二极管的反向恢复。反向电流保持不变的这段时间称为储存时间ts,反向电流由I2下降到0.1I2所需的时间称为下降时间tf。储存时间和下降时间之和(ts+tf)称为反向恢复时间。二极管反向截止后还存在的电流被称为二极管的反向漏电流IR。 二、二极管反向恢复现象的解释 在二极管的PN节上,当外加正向电压时,P区的空穴向N区扩散,N区的电子向P区扩散,这样,不仅使势垒区(耗尽区)变窄,而且使载流子有相当数量的存储,在P区内存储了电子,而在N区内存储了空穴,它们都是非平衡少数载流子,如下图所示。 空穴由P区扩散到N区后,并不是立即与N区中的电子复合而消失,而是在一定的路程LP(扩散长度)内,一方面继续扩散,一方面与电子复合消失,这样就会在LP范围内存储一定数量的空穴,并建

立起一定空穴浓度分布,靠近结边缘的浓度最大,离结越远,浓度越小。正向电流越大,存储的空穴数目越多,浓度分布的梯度也越大。电子扩散到P区的情况也类似,下图为二极管中存储电荷的分布。 我们把正向导通时,非平衡少数载流子积累的现象叫做电荷存储效应。 当输入电压突然由正向变为反向时P区存储的电子和N区存储的空穴不会马上消失,但它们将通过下列两个途径逐渐减少: ①在反向电场作用下,P区电子被拉回N区,N区空穴被拉回P区,形成反向漂移电流IR,如下图所示; ②与多数载流子复合。 在这些存储电荷消失之前,PN结仍处于正向偏置,即势垒区仍然很窄,PN结的电阻仍很小,与电路中的负载电阻相比可以忽略,所以此时反向电流IR=(反向电压VR+VD)/负载电阻RL。VD表

二极管反向恢复时间测试仪

二极管反向恢复时间测试仪 满足国家标准:GB/T 8024-2010,使用矩形波法测试反向恢复时间。 一:主要特点 A :测量多种二极管 B :二极管反向电流峰值100A (定制) C :二极管正向电流30A (定制) D :测量精度10nS E :二极管接反、短路开路保护 F :示波器图形显示 G :EMI/RFI 屏蔽密封 H :同步触发端 二:应用范围 A :快恢复二极管 B :场效应管(Mosfet )内建二极管 C :IGBT 基内建二极管 D :其他二极管 三:DI-200外观介绍 DI-200二极管反向恢复时间测试仪面板介绍如图1所示,包括电源开关、电源指示灯、触发开关、触发指示灯、接反指示灯、正向电流调节、反向电压调节、恢复电流斜率调节、示波器信号端、示波器同步信号端。 图1 DI-200外观介绍图

四:DI-200测试仪参数 类 型 数 值 单 位 备 注 反向恢复电流 100 A 峰值 反向电压 10至300 V 分档 正向电流 30 A 峰值 按下频率 0.5 Hz 手动按下 0 Hz 短路情况,无法测量 电源输入 220 V AC 功耗小于10W 五:操作步骤 图2为DI-200和示波器之间的连接示意图,DI-200的两个通道分别和示波器的第一通道和外触发通道连接,然后把二极管接入DI-200。 图2 DI-200测试仪器和示波器连接示意图 5.1举例测试1N4007二极管的反向恢复时间步骤 第一步:将1n4007二极管接入红色和黑色夹子; 第二步:DI-200在侧面连接电源线,此时不要打开仪器电源,如果打开,请关闭电源。 数字示波器 DI-200测试仪 1通道 外触发

二极管反向恢复时间测试

DI-1000型二极管反向恢复时间测试仪 一:主要特点 A :测量多种二极管 B :二极管反向电流峰值100A (定制) C :二极管正向电流30A (定制) D :测量精度5nS E :二极管接反、短路开路保护 F :示波器图形显示 G :EMI/RFI 屏蔽密封 H :同步触发端 二:应用范围 A :快恢复二极管 B :场效应管(Mosfet )内建二极管 C :IGBT 基内建二极管 D :其他二极管 三:DI-1000外观介绍 DI-1000二极管反向恢复时间测试仪面板介绍如图1所示,包括电源开关、电源指示灯、触发开关、触发指示灯、接反指示灯、正向电流调节、反向电压调节、恢复电流斜率调节、示波器信号端、示波器同步信号端。 图1 DI-1000外观介绍图

四:DI-1000测试仪参数 类 型 数 值 单 位 备 注 反向恢复电流 100 A 峰值 反向电压 50至1000 V 分档 正向电流 30 A 峰值 按下频率 0.5 Hz 手动按下 0 Hz 短路情况,无法测量 电源输入 220 V AC 功耗小于10W 五:操作步骤 图2为DI-1000和示波器之间的连接示意图,DI-1000的两个通道分别和示波器的第一通道和外触发通道连接,然后把二极管接入DI-1000。 图2 DI-1000测试仪器和示波器连接示意图 5.1举例测试1N4007二极管的反向恢复时间步骤 第一步:将1n4007二极管接入红色和黑色夹子; 第二步:DI-1000在侧面连接电源线,此时不要打开仪器电源,如果打开,请关闭电源。第三步:调节电压旋钮选择器件反向耐压,将电压设置到300V 。在测试时,红色夹子和黑色夹子同输入交流电市电无隔离,请勿冒险将示波器探头和夹子连接; 数字示波器 DI-1000测试仪 1通道 外触发

二极管反向恢复过程

一、二极管从正向导通到截止有一个反向恢复过程 在上图所示的硅二极管电路中加入一个如下图所示的输入电压。在0―t1时间内,输入为+VF,二极管导通,电路中有电流流通。 设VD为二极管正向压降(硅管为0.7V左右),当VF远大于VD时,VD可略去不计,则 在t1时,V1突然从+VF变为-VR。在理想情况下,二极管将立刻转为截止,电路中应只有很小的反向电流。但实际情况是,二极管并不立刻截止,而是先由正向的IF变到一个很大的反向电流IR=VR/RL,这个电流维持一段时间tS后才开始逐渐下降,再经过tt后,下降到一个很小的数值0.1IR,这时二极管才进人反向截止状态,如下图所示。

通常把二极管从正向导通转为反向截止所经过的转换过程称为反向恢复过程。其中tS 称为存储时间,tt称为渡越时间,tre=ts+tt称为反向恢复时间。由于反向恢复时间的存在,使二极管的开关速度受到限制。 二、产生反向恢复过程的原因——电荷存储效应 产生上述现象的原因是由于二极管外加正向电压VF时,载流子不断扩散而存储的结果。当外加正向电压时P区空穴向N区扩散,N区电子向P区扩散,这样,不仅使势垒区(耗尽区)变窄,而且使载流子有相当数量的存储,在P区内存储了电子,而在N区内存储了空穴,它们都是非平衡少数载流于,如下图所示。 空穴由P区扩散到N区后,并不是立即与N区中的电子复合而消失,而是在一定的路程LP (扩散长度)内,一方面继续扩散,一方面与电子复合消失,这样就会在LP范围内存储一定数量的空穴,并建立起一定空穴浓度分布,靠近结边缘的浓度最大,离结越远,浓度越小。正向电流越大,存储的空穴数目越多,浓度分布的梯度也越大。电子扩散到P区的情况也类似,下图为二极管中存储电荷的分布。 我们把正向导通时,非平衡少数载流子积累的现象叫做电荷存储效应。 当输入电压突然由+VF变为-VR时P区存储的电子和N区存储的空穴不会马上消失,但它们将通过下列两个途径逐渐减少:①在反向电场作用下,P区电子被拉回N区,N区空穴被拉回P区,形成反向漂移电流IR,如下图所示; ②与多数载流子复合。

晶体管PN结原理解释

PN结的定义: 在一块本征半导体中,掺以不同的杂质,使其一边成为P型,另一边成为N型,在P区和N区的交界面处就形成了一个PN结。 PN结的形成 (1)当P型半导体和N型半导体结合在一起时,由于交界面处存在载流子浓度的差异,这样电子和空穴都要从浓度高的地方向浓度低的地方扩散。但是,电子和空穴都是带电的,它们扩散的结果就使P区和N区中原来的电中性条件破坏了。P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。这些不能移动的带电粒子通常称为空间电荷,它们集中在P区和N区交界面附近,形成了一个很薄的空间电荷区,这就是我们所说的PN结,如图1所示。 (2)在这个区域内,多数载流子或已扩散到对方,或被对方扩散过来的多数载流子(到了本区域后即成为少数载流子了)复合掉了,即多数载流子被消耗尽了,所以又称此区域为耗 尽层,它的电阻率很高,为高电阻区。 (3)P区一侧呈现负电荷,N区一侧呈现正电荷,因此空间电荷区出现了方向由N区指向P区的电场,由于这个电场是载流子扩散运动形成的,而不是外加电压形成的,故称为内 电场,如图2所示。

(4)内电场是由多子的扩散运动引起的,伴随着它的建立将带来两种影响:一是内电场将阻碍多子的扩散,二是P区和N区的少子一旦靠近PN结,便在内电场的作用下漂移到 对方,使空间电荷区变窄。 (5)因此,扩散运动使空间电荷区加宽,内电场增强,有利于少子的漂移而不利于多子的扩散;而漂移运动使空间电荷区变窄,内电场减弱,有利于多子的扩散而不利于少子的漂移。当扩散运动和漂移运动达到动态平衡时,交界面形成稳定的空间电荷区,即PN结处于 动态平衡。PN结的宽度一般为0.5um。 PN结的单向导电性 PN结在未加外加电压时,扩散运动与漂移运动处于动态平衡,通过PN结的电流为零。 (1)外加正向电压(正偏) 当电源正极接P区,负极接N区时,称为给pN结加正向电压或正向偏置,如图3所示。由于PN结是高阻区,而P区和N区的电阻很小,所以正向电压几乎全部加在PN结两端。在PN结上产生一个外电场,其方向与内电场相反,在它的推动下,N区的电子要向左边扩散,并与原来空间电荷区的正离子中和,使空间电荷区变窄。同样,P区的空穴也要向右边扩散,并与原来空间电荷区的负离子中和,使空间电荷区变窄。结果使内电场减弱,破坏了PN结原有的动态平衡。于是扩散运动超过了漂移运动,扩散又继续进行。与此同时,电源不断向P区补充正电荷,向N区补充负电荷,结果在电路中形成了较大的正向电流IF。而 且IF随着正向电压的增大而增大。

二极管反向恢复时间

二极管反向恢复时间 满足国家标准:GB/T 8024-2010,使用矩形波法测试反向恢复时间。 一:主要特点 A :测量多种二极管 B :二极管反向电流峰值100A (定制) C :二极管正向电流30A (定制) D :测量精度10nS E :二极管接反、短路开路保护 F :示波器图形显示 G :EMI/RFI 屏蔽密封 H :同步触发端 二:应用范围 A :快恢复二极管 B :场效应管(Mosfet )内建二极管 C :IGBT 基内建二极管 D :其他二极管 三:DI-200外观介绍 DI-200二极管反向恢复时间测试仪面板介绍如图1所示,包括电源开关、电源指示灯、触发开关、触发指示灯、接反指示灯、正向电流调节、反向电压调节、恢复电流斜率调节、示波器信号端、示波器同步信号端。 图1 DI-200外观介绍图

四:DI-200测试仪参数 类 型 数 值 单 位 备 注 反向恢复电流 100 A 峰值 反向电压 10至300 V 分档 正向电流 30 A 峰值 按下频率 0.5 Hz 手动按下 0 Hz 短路情况,无法测量 电源输入 220 V AC 功耗小于10W 五:操作步骤 图2为DI-200和示波器之间的连接示意图,DI-200的两个通道分别和示波器的第一通道和外触发通道连接,然后把二极管接入DI-200。 图2 DI-200测试仪器和示波器连接示意图 5.1举例测试1N4007二极管的反向恢复时间步骤 第一步:将1n4007二极管接入红色和黑色夹子; 第二步:DI-200在侧面连接电源线,此时不要打开仪器电源,如果打开,请关闭电源。 数字示波器 DI-200测试仪 1通道 外触发

一个PN结构成晶体二极管的原理

一个PN结构成晶体二极管的原理 一个PN结构成晶体二极管的原理 P性半导体和N型半导体----前面讲过,在纯净的半导体中加入一定类型的微量杂质,能使半导体的导电能力成百万倍的增加。加入了杂质的半导体可以分为两种类型:一种杂质加到半导体中去后,在半导体中会产生大量的带负电荷的自由电子,这种半导体叫做“N型半导体”(也叫“电子型半导体”);另一种杂质加到半导体中后,会产生大量带正电荷的“空穴”,这种半导体叫“P型半导体”(也叫“空穴型半导体”)。例如,在纯净的半导体锗中,加入微量的杂质锑,就能形成N型半导体。同样,如果在纯净的锗中,加入微量的杂质铟,就形成P型半导体。 一个PN结构成晶体二极管----设法把P型半导体(有大量的带正电荷的空穴)和N型半导体(有大量的带负电荷的自由电子)结合在一起,见图1所示。 图1 在P型半导体的N型半导体相结合的地方,就会形成一个特殊的薄层,这个特殊的薄层就叫“PN结”。晶体二极管实际上就是由一个PN结构成的(见图1)。 例如,收音机中应用的晶体二极管,其触丝(即触针)部分相当于P型半导体,N型锗片就是N型半导体,他们之间的接触面就是PN结。P端(或P端引出线)叫晶体二极管的正端(也称正极)。N端(或N端引出线)叫晶体二极管的负端(也称负极)。 如果像图2那样,把正端连接电池的正极,把负端接电池的负极,这是PN结的电阻值就小到只有几百欧姆了。因此,通过PN结的电流(I=U/R)就很大。这样的连接方法(图2a)叫“正向连接”。正向连接时,晶体管二极管(或PN结)两端承受的电压叫“正向电压”;处在正向电压下,二极管(或PN结)的电阻叫“正向电阻”,在正向电压下,通过二极管(或PN结)的电流叫“正向电流”。很明显,因为晶体二极管的正向电阻很小(几百欧姆),在一定正向电压下,正向电流(I=U/R)就会很大----这表明在正向电压下,二极管(或PN 结)具有像导体一样的导电本领。

快恢复二极管的作用与肖特基二极管的区别

快恢复二极管的作用 答1: 一般地说用于较高频率的整流和续流。 至于电源模块的输入部份,好像频率不高,不必用快恢复二极管,用普通二极管即可。 答2: .对于二极管来说,加在其两端的电压由正向变到反向时,响应时间一般很短,而相反的由反向变正向时其时间相对较长,此即为反向恢复时间,当二极管用做高频整流等时,要求反向恢复时间很短,此时就需要快恢复二极管(FRD),更高的超快恢复二极管(SRD),开关二极管,最快的是肖特基管(其原理不同于以上几个二极管) 快恢复二极管(简称FRD)是一种具有开关特性好、反向恢复时间短特点的半导体二极管,主要应用于开关电源、PWM脉宽调制器、变频器等电子电路中,作为高频整流二极管、续流二极管或阻尼二极管使用。 快恢复二极管的内部结构与普通PN结二极管不同,它属于PIN结型二极管,即在P型硅材料与N型硅材料中间增加了基区I,构成PIN硅片。因基区很薄,反向恢复电荷很小,所以快恢复二极管的反向恢复时间较短,正向压降较低,反向击穿电压(耐压值)较高。 通常,5~20A的快恢复二极管管采用TO–220FP塑料封装,20A以上的大功率快恢复二极管采用顶部带金属散热片的TO–3P塑料封装,5A以下的快恢复二极管则采用DO–41、D O–15或DO–27等规格塑料封装。 肖特基二极管和快恢复二极管有什么区别 快恢复二极管是指反向恢复时间很短的二极管(5us以下),工艺上多采用掺金措施,结构上有采用 PN结型结构,有的采用改进的PIN结构。其正向压降高于普通二极管(0.5-2V),反向耐压多在1200V以 下。从性能上可分为快恢复和超快恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100 ns(纳秒)以下。 肖特基二极管是以金属和半导体接触形成的势垒为基础的二极管,简称肖特基二极管(Schottky Barrier Diode),具有正向压降低(0.4--1.0V)、反向恢复时间很短(2-10ns纳秒),而且反向漏电

(完整)二极管反向恢复过程

(完整)二极管反向恢复过程 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)二极管反向恢复过程)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)二极管反向恢复过程的全部内容。

一、二极管从正向导通到截止有一个反向恢复过程 在上图所示的硅二极管电路中加入一个如下图所示的输入电压。在0―t1时间内,输入为+VF,二极管导通,电路中有电流流通。 设VD为二极管正向压降(硅管为0。7V左右),当VF远大于VD时,VD可略去不计,则 在t1时,V1突然从+VF变为-VR。在理想情况下,二极管将立刻转为截止,电路中应只有很小的反向电流.但实际情况是,二极管并不立刻截止,而是先由正向的IF变到一个很大的反向电流IR=VR/RL,这个电流维持一段时间tS后才开始逐渐下降,再经过tt后,下降到一个很小的数值0.1IR,这时二极管才进人反向截止状态,如下图所示. 通常把二极管从正向导通转为反向截止所经过的转换过程称为反向恢复过程。其中tS称为存储时间,tt称为渡越时间,tre=ts+tt称为反向恢复时间. 由于反向恢复时间的存在,使二极管的开关速度受到限制。

二、产生反向恢复过程的原因—-电荷存储效应 产生上述现象的原因是由于二极管外加正向电压VF时,载流子不断扩散而存储的结果。当外加正向电压时P区空穴向N区扩散,N区电子向P区扩散,这样,不仅使势垒区(耗尽区)变窄,而且使载流子有相当数量的存储,在P区内存储了电子,而在N区内存储了空穴,它们都是非平衡少数载流于,如下图所示. 空穴由P区扩散到N区后,并不是立即与N区中的电子复合而消失,而是在一定的路程LP (扩散长度)内,一方面继续扩散,一方面与电子复合消失,这样就会在LP范围内存储一定数量的空穴,并建立起一定空穴浓度分布,靠近结边缘的浓度最大,离结越远,浓度越小。正向电流越大,存储的空穴数目越多,浓度分布的梯度也越大。电子扩散到P区的情况也类似,下图为二极管中存储电荷的分布. 我们把正向导通时,非平衡少数载流子积累的现象叫做电荷存储效应。 当输入电压突然由+VF变为-VR时P区存储的电子和N区存储的空穴不会马上消失,但它们将通过下列两个途径逐渐减少:①在反向电场作用下,P区电子被拉回N区,N区空穴被拉回P区,形成反向漂移电流IR,如下图所示; ②与多数载流子复合。 在这些存储电荷消失之前,PN结仍处于正向偏置,即势垒区仍然很窄,PN结的电阻仍很小,与RL相比可以忽略,所以此时反向电流IR=(VR+VD)/RL。VD表示PN结两端的正向压降,一般VR>>VD,即IR=VR/RL。在这段期间,IR基本上保持不变,主要由VR和RL所决定.经过时间ts后P区和N区所存储的电荷已显著减小,势垒区逐渐变宽,反向电流IR逐渐减小到正常反向饱和电流的数值,经过时间tt,二极管转为截止. 由上可知,二极管在开关转换过程中出现的反向恢复过程,实质上由于电荷存储效应引起的,反向恢复时间就是存储电荷消失所需要的时间。

抑制功二极管反向恢复几种方案的比

抑制功率二极管反向恢复几种方案的比较 引言 高频功率二极管在电力电子装置中的应用极其广泛。但PN结功率二极管在由导通变为截止状态过程中,存在反向恢复现象。这会引起二极管损耗增大,电路效率降低以及EMI 增加等问题。这一问题在大功率电源中更加突出。常用RC吸收、串入饱和电抗器吸收、软开关电路等开关软化方法加以解决,但关于其效果对比的研究报道尚不多见。本文以Buck 电路为例,对这几种方案进行了比较,通过实验及仿真得出有用的结论。 1 二极管反向恢复原理 以普通PN结二极管为例,PN结内载流子由于存在浓度梯度而具有扩散运动,同时由于电场作用存在漂移运动,两者平衡后在PN结形成空间电荷区。当二极管两端有正向偏压,空间电荷区缩小,当二极管两端有反向偏压,空间电荷区加宽。当二极管在导通状态下突加反向电压时,存储电荷在电场的作用下回到己方区域或者被复合,这样便产生一个反向电流。 2 解决功率二极管反向恢复的几种方法 为解决功率二极管反向恢复问题已经出现了很多种方案。一种思路是从器件本身出发,寻找新的材料力图从根本上解决这一问题,比如碳化硅二极管的出现带来了器件革命的曙光,它几乎不存在反向恢复的问题。另一种思路是从拓扑角度出发,通过增加某些器件或辅助电路来使功率二极管的反向恢复得到软化。目前,碳化硅二极管尚未大量进入实用,其较高的成本制约了普及应用,大量应用的是第二种思路下的软化电路。本文以一个36V输入、30V/30A输出、开关频率为62.5kHz电路(如图1所示)为例,比较了几种开关软化方法。

2.1 RC吸收 这是解决功率二极管反向恢复问题的常用方法。在高频下工作的功率二极管,要考虑寄生参数。图2(a)为电路模型,其中D为理想二极管,Lp为引线电感,Cj为结电容,Rp 为并联电阻(高阻值),Rs为引线电阻。RC吸收电路如图2(b)所示,将C1及R1串联后并联到功率二极管D0上。二极管反向关断时,寄生电感中的能量对寄生电容充电,同时还通过吸收电阻R1对吸收电容C1充电。在吸收同样能量的情况下,吸收电容越大,其上的电压就越小;当二极管快速正向导通时,C1通过R1放电,能量的大部分将消耗在R1上。 2.2 串联饱和电抗器 这是解决这一问题的另一种常用方法,如图2(c)所示。一般铁氧体(Ferrite)磁环和非晶合金(Amorphous)材料的磁环都可以做饱和电抗器。根据文献[1],用饱和电抗器解决二极管反向恢复问题时,常用的锰锌铁氧体有效果,但是能量损失比非晶材料大。随着材料技术的进展,近年来非晶饱和磁性材料性能有了很大提高。本文选用了东芝公司的非晶材料的磁环(型号:MT12×8×4.5W)绕2匝作饱和电抗器。 对应图3(a)和图3(b),第Ⅰ阶段通过D0的电流很大,电抗器Ls饱和,电感值很小;第Ⅱ阶段当二极管电流开始下降时,Ls仍很小;第Ⅲ阶段二极管电流反向,反向恢复过程开始(trr为反向恢复时间),Ls值很快增大,抑制了反向恢复电流的增大,这样就使电流变成di/dt较小的软恢复,使二极管的损耗减小,同时抑制了一个重要的噪声源;第Ⅳ阶 段二极管反向恢复结束;第Ⅴ阶段二极管再次导通,由于电流增大,Ls很快饱和。

二极管的反向恢复过程讲课教案

二极管的反向恢复过 程

二极管的反向恢复过程 一、二极管的反向恢复过程 二、在下图的电路中V上输入如下的电压波形:则二极管上的电流波形如下: 可以看到,当通入正向电压时,二极管导通,二极管上的电流为I1,当通入的电压突然反向时,二极管上的电流也瞬间反向了,随后才变小,进而进入反向截止状态。这个现象就叫二极管的反向恢复。反向电流保持不变的这段时间称为储存时间ts,反向电流由I2下降到0.1I2所需的时间称为下降时间tf。储存时间和下降时间之和(ts+tf)称为反向恢复时间。二极管反向截止后还存在的电流被称为二极管的反向漏电流IR。 二、二极管反向恢复现象的解释 在二极管的PN节上,当外加正向电压时,P区的空穴向N区扩散,N区的电子向P区扩散,这样,不仅使势垒区(耗尽区)变窄,而且使载流子有相当数量的存储,在P区内存储了电子,而在N区内存储了空穴,它们都是非平衡少数载流子,如下图所示。

空穴由P区扩散到N区后,并不是立即与N区中的电子复合而消失,而是在一定的路程LP(扩散长度)内,一方面继续扩散,一方面与电子复合消失,这样就会在LP范围内存储一定数量的空穴,并建立起一定空穴浓度分布,靠近结边缘的浓度最大,离结越远,浓度越小。正向电流越大,存储的空穴数目越多,浓度分布的梯度也越大。电子扩散到P区的情况也类似,下图为二极管中存储电荷的分布。 我们把正向导通时,非平衡少数载流子积累的现象叫做电荷存储效应。 当输入电压突然由正向变为反向时P区存储的电子和N区存储的空穴不会马上消失,但它们将通过下列两个途径逐渐减少: ①在反向电场作用下,P区电子被拉回N区,N区空穴被拉回P区,形成反向漂移电流IR,如下图所示;

高压二极管反向恢复时间测试

高压二极管反向恢复时间测试仪 满足国家标准:GB/T 4023-1997,使用矩形波法测试反向恢复时间。一:主要特点 A:测量多种高速高压二极管 B:二极管反向电流峰值50mA(定制)C:二极管正向电流5~25mA(定制)D:反向恢复电流速度优于5nS E:二极管接反、开路保护F:示波器图形显示 G:EMI/RFI屏蔽密封H:同步触发端 二:应用范围 A:快恢复高压二极管B:其他硅离子二极管三:DI-HV外观介绍 DI-HV高压二极管反向恢复时间测试仪面板介绍如图1所示,包括电源开关、电源指示灯、触发指示灯、接反指示灯、正向电流调节、反向电压调节、示波器信号端、示波器同步信号端、测试板。

图1 DI-HV外观介绍图 输出开关:输出时,二极管有正向电流流过,操作过程注意电击危险;不输出时,断开正向电流,操作安全。 接入错误:当高压二极管接反或者开路时,该指示灯亮起,提醒操作人员。 测试板:如图2所示。 图2 高压二极管测试板 测试板具有分布参数小,测试精度高的特点。使用时,将器件焊接到测试板上,然后再进行恢复时间测试。 反向电流调节电位器:DI-HV的反向电流调节有两个,一个为 DI-HV面板上的反向电路调节,另外一个就是测试板上的电流调节电位器。当使用简捷测试板时,DI-HV面板上的反向恢复电流电位器起作用;当使用精确测试板时,测试板上的反向恢复电流电位器起作用。

四:DI-HV 测试仪参数 类 型 数 值 单 位 备 注 反向恢复电流 50 mA 峰值 正向电流 5~25 mA 连续可调 反向恢复电流速度 5 nS 测试频率 >15 Hz 短路情况,无法测量 电源输入 220 V AC 功耗小于20W 五:操作步骤 图3为DI-HV 和示波器之间的连接示意图,DI-HV 的两个通道分别和示波器的第一通道和外触发通道连接,然后把二极管接入DI-HV 。 图3 DI-HV 测试仪器和示波器连接示意图 5.1 举例测试高压二极管的反向恢复时间步骤 第一步:将高压二极管的测试板固定到DI-HV 电源上,在没有打开电源的情况下,将高压二极管焊接到上测试板。 数字示波器 DI-HV 测试仪 1通道 外触发

相关文档
最新文档