高中《等差数列前n项和公式》教学案例
等差数列的前n项和教案
等差数列的前n项和教案一、教学目标:1. 让学生理解等差数列的概念,掌握等差数列的前n项和的公式。
2. 培养学生运用等差数列的前n项和公式解决实际问题的能力。
3. 培养学生的逻辑思维能力和团队合作能力。
二、教学内容:1. 等差数列的概念及通项公式。
2. 等差数列的前n项和公式。
3. 等差数列的前n项和的性质。
三、教学重点与难点:1. 教学重点:等差数列的概念,等差数列的前n项和公式。
2. 教学难点:等差数列的前n项和的性质。
四、教学方法:1. 采用问题驱动法,引导学生探究等差数列的前n项和公式。
2. 运用案例分析法,让学生通过解决实际问题,巩固等差数列的前n项和公式。
3. 采用小组讨论法,培养学生的团队合作能力和逻辑思维能力。
五、教学过程:1. 导入:引导学生回顾等差数列的概念及通项公式。
2. 新课:讲解等差数列的前n项和公式,并通过案例分析让学生理解并掌握公式。
3. 练习:布置练习题,让学生运用前n项和公式解决问题。
4. 拓展:讲解等差数列的前n项和的性质,引导学生进行思考。
5. 总结:对本节课的内容进行总结,强调重点知识点。
6. 作业布置:布置课后作业,巩固所学内容。
六、教学活动:1. 课堂讨论:让学生举例说明在生活中哪些问题可以用等差数列的前n项和公式解决,促进学生对知识的理解和应用。
2. 小组合作:学生分组,每组选择一个实际问题,运用等差数列的前n项和公式进行解决,并展示解题过程和结果。
七、教学评价:1. 课堂提问:通过提问了解学生对等差数列的前n项和公式的掌握情况。
2. 课后作业:布置有关等差数列前n项和的练习题,评估学生对知识的吸收和运用能力。
3. 小组报告:评估学生在小组合作中的表现,包括问题选择、解题过程、结果展示等方面。
八、教学资源:1. PPT课件:制作包含等差数列前n项和公式的PPT课件,辅助教学。
2. 实际问题案例:收集一些生活中的实际问题,用于引导学生应用所学知识解决实际问题。
《等差数列的前n项和》教学设计(精选五篇)
《等差数列的前n项和》教学设计(精选五篇)第一篇:《等差数列的前n项和》教学设计:等差数列的前n项和是人教实验版必修5第二章第3节的内容,是学生学习了等差数列的定义、通项公式后,对数列知识的进一步学习。
学情分析:学生通过对等差数列基本概念和通项公式的学习,对等差数列有了一定的了解。
但是由于学生是第一次接触到数列的求和,缺乏相关经验,因此,需要借助几何直观学习和理解。
教学目标:1、情感态度与价值观(1)获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。
(2)注重在学习过程中师生情感交流,鼓励学生自主发现,激发学生的学习热情,培养学生的探索精神与创新意识。
2、过程与方法(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力;(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。
3、情感态度与价值观(1)获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。
(2)注重在学习过程中师生情感交流,鼓励学生自主发现,激发学生的学习热情,培养学生的探索精神与创新意识。
教学重点、难点:1、等差数列前n项和公式是重点。
2、获得等差数列前n项和公式推导的思路是难点。
设计理念:在教学中通过生动具体的现实问题,激发学生探究的兴趣和欲望,由浅入深,层层深入,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功。
教学资源:现代教育多媒体技术教学过程:(一)创设问题情境故事引入:德国伟大的数学家高斯“神述求和”的故事。
高斯在上小学四年级时,老师出了这样一道题“1+2+3……+99+100”高斯稍微想了想就得出了答案。
高斯到底用了什么巧妙的方法呢?下面给同学们一点时间来挑战高斯。
高斯的方法:首项与末项的和:1+100=101 第2项与倒数第2项的和:2+99=101 第3项与倒数第3项的和:3+98=101 ……第50项与倒数第50项的和:50+51=101 ∴前100个正整数的和为:101×50=50502.故事引入:泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,成为世界七大奇迹之一。
《等差数列前n项和的公式》教案
《等差数列前n项和的公式》教案一、教学目标1、知识与技能目标学生能够理解并掌握等差数列前 n 项和的公式。
能够熟练运用公式解决与等差数列前 n 项和相关的问题。
2、过程与方法目标通过推导等差数列前 n 项和公式的过程,培养学生的逻辑推理能力和数学思维能力。
让学生经历从特殊到一般,再从一般到特殊的研究过程,体会数学中的转化思想。
3、情感态度与价值观目标激发学生学习数学的兴趣,培养学生勇于探索、敢于创新的精神。
让学生在解决问题的过程中,体验成功的喜悦,增强学习数学的自信心。
二、教学重难点1、教学重点等差数列前 n 项和公式的推导和理解。
公式的熟练运用。
2、教学难点等差数列前 n 项和公式的推导过程中数学思想的渗透。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课回顾等差数列的定义和通项公式。
提出问题:如何求等差数列的前 n 项和?2、公式推导以等差数列:1,2,3,4,5,,n 为例,引导学生思考求和的方法。
方法一:依次相加。
方法二:倒序相加。
设等差数列\(a_n\)的首项为\(a_1\),公差为\(d\),前\(n\)项和为\(S_n\)。
\(S_n = a_1 + a_2 + a_3 ++ a_{n-1} + a_n\)①\(S_n = a_n + a_{n-1} + a_{n-2} ++ a_2 + a_1\)②①+②得:\\begin{align}2S_n&=(a_1 + a_n) +(a_2 + a_{n-1})++(a_{n-1} + a_2) +(a_n + a_1)\\2S_n&=n(a_1 + a_n)\\S_n&=\frac{n(a_1 + a_n)}{2}\end{align}\又因为\(a_n = a_1 +(n 1)d\),所以\(S_n =\frac{n(a_1 +a_1 +(n 1)d)}{2} = na_1 +\frac{n(n 1)d}{2}\)3、公式理解分析公式中各项的含义。
等差数列的前n项和教学案例
等差数列的前n项和一、教学内容分析本节课教学内容是《普通高中课程标准实验教科书•数学(5)》(人教A版)中笫二章的第三节“等差数列的前n项和”(第一课时)•本节课主要研究如何应用倒序相加法求等差数列的前n项和以及该求和公式的应用•等差数列在现实生活中比较常见,因此等差数列求和就成为我们在实际生活中经常遇到的一类问题•同时,求数列前n项和也是数列研究的基本问题,通过对公式推导,可以让学生进一步掌握从特殊到一般的研究问题方法.二、学生学习情况分析在本节课之询学生已经学习了等差数列的通项公式及基本性质,也对高斯算法有所了解,这都为倒序相加法的教学提供了基础;同时学生己有了函数知识,因此在教学中可适当渗透函数思想•高斯的算法与一般的等差数列求和还有一定的距离,如何从首尾配对法引出倒序相加法,这是学生学习的障碍.三、设计思想建构主义学习理论认为,学习是学生积极主动地建构知识的过程,因此,应该让学生在具体的问题情境中经历知识的形成和发展,让学生利用自己的原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构•在教学过程中, 根据教学内容,从介绍高斯的算法开始,探究这种方法如何推广到一般等差数列的前n项和的求法•通过设计一些从简单到复杂,从特殊到一般的问题,层层铺垫,组织和启发学生获得公式的推导思路,并且充分引导学生展开自主•合作、探究学习,通过生生互动和师生互动等形式,让学生在问题解决中学会思考、学会学习•同时根据我校的特点,为了促进成绩优秀学生的发展,还设计了选做题和探索题,进一步培养优秀生用函数观点分析、解决问题的能力,达到了分层教学的目的.四、教学目标1.理解等差数列前n项和公式的推导过程;掌握并能熟练运用等差数列前n项和公式;了解倒序相加法的原理;2.通过公式的推导过程,体验从特殊到一般的研究方法,渗透函数思想与方程(组)思想,培养学生观察、归纳、反思的能力;通过小组讨论学习,培养学生合作交流、独立思考等良好的个性品质.五、教学重点和难点本节教学重点是探索并掌握等差数列前n项和公式,学会用公式解决一些实际问题;难点是等差数列前n项和公式推导思路的获得.六、教学过程设计.V(一)创设情景,唤起学生知识经验的感悟和体验世界七大奇迹之一的泰姬陵坐落于印度古都阿格,传说陵寝中有一个三角形图案,以相同大小的圆宝••: •: •: •: •: •: •: •: •: ?石镶饰而成,共有100 层,你知道这个图案一共花了多少宝石吗?体展示三角形图案)[设计意图]情境学习理论认为:数学学习总是与一定的知识背景,即“情境”相联系・从实际问题入手,图中蕴含算数,能激发学生学习新知识的兴趣,并且可引导学生共同探讨高斯算法更一般的应用,为新课的讲解作铺垫.[知识链接]高斯,徳国著名数学家,被誉为“数学王子S 200多年前,高斯的算术教师提出了下面的问题:1+2 + 3 + ・・• +100二?据说,当其他同学忙于把100个数逐项相加时,10岁的高斯却用下面的方-法迅速算出了正确答案:(1 + 100) + (2+99) + ......................... + (50+51) =101X50=5050・[学情预设]高斯的算法蕴涵着求等差数列前n项和一般的规律性•教学时,应给学生提供充裕的时间和空间,让学生自己去观察、探索发现这种数列的内在规律•学生对高斯的算法是熟悉的,知道采用首尾配对的方法来求和,但估计他们对这种方法的认识可能处于记:J::::::::::::::::::::忆阶段,为了促进学生对这种算法的进一步理解,设计了以下三::::::::::::::::::::::道由易到难的问题■(-) 由易到难,在自主探工酒出X与合作中学习:::::::::::曲::: 问题 1 图案中,第 1 层到::::::::::::::::::::::第51层一共有多少颗宝石?该题组织学生分组讨论,在合作中学习,并把小组发现的方法一一呈现.[学情预设]学生可能出现以下求法方法1:原式二(1+2 + 3 + ............... + 50) +51方法2:原式二0+1+2 + ............... + 50+51方法3:原式二(1+2 +・・・+ 25+27—+ 51) +26以上方法实际上是用了“化归思想”,将奇数个项问题转化为偶数个项求解,教师应进行充分肯定与表扬.[设计意国]这是求奇数个项和的问题,若简单地墓仿高斯算法,将出现不能全部配对的问题,借此渗透化归思想.问题2:求图案中从第1层到第n层(Kn <100, fN*)共有多少颗宝石?[学情预设]学生通过激烈的讨论后,发现n为奇数时不能配对,可能会分n为奇数、偶数的情况分别求解,教师如何引导学生避免讨论成为该环节的关键.[设计意图]从求确定的前n个正整数之和到求一般项数的前n个正整数之和,让学生领会从特殊到一般的研究方法,旨在让学生对“首尾配对求和”这一算法的改进.启发:(多媒体演示)如右图,在三角形图案右侧倒放一个全等的三角形与原图补成平行四边形.[设计意图]借助儿何图形的直观性,能启迪思路,唤醒学生记忆深处的东西,并为倒序相加法的出现提供了一个直接的模型.通过以上启发学生再自主探究,相信容易得出解法:1 +2 +3+ …(n一1) + nn +(n- 1)+ (n —2)+・・・+ 2 + 1(n+l) +(n+1)+ (n+1)+・・・+(n+l) + (n+1)(刃+1)(三)设置典例,促进学生对公式的应用对于以上两个公式,初学的学生在解决一些问题时,往往不知道该如何选取•教师应通过适当的例子引导学生对这两个公式进行分析,根据公式各自的特点,帮助学生恰当地选择合适的公式.例1为了参加冬季运动会的5000m长跑比赛,某同学给自己制定了7天的训练计划(单位:m)如下表:问这个同学7天一共将跑多长的距离?[设计意图]该例题是将课本P53习题2.3A组第3题改编成表格形式,可以锻炼学生处理数据信息的能力和选用公式的能力。
等差数列前n项和教案
等差数列前n项和优秀教案一、教学目标知识与技能:1. 理解等差数列的定义及其性质;2. 掌握等差数列前n项和的公式;3. 会运用等差数列前n项和公式解决实际问题。
过程与方法:1. 通过探究等差数列的性质,引导学生发现等差数列前n项和的规律;2. 利用公式法、图象法、列举法等多种方法求解等差数列前n项和;3. 培养学生的数学思维能力和解决问题的能力。
情感态度与价值观:1. 培养学生对数学的兴趣和自信心;2. 培养学生勇于探索、积极思考的精神;3. 培养学生运用数学知识解决实际问题的能力。
二、教学重点与难点重点:1. 等差数列前n项和的公式;2. 运用等差数列前n项和公式解决实际问题。
难点:1. 等差数列前n项和的公式的推导;2. 灵活运用等差数列前n项和公式解决复杂问题。
三、教学准备教师准备:1. 等差数列的相关知识;2. 等差数列前n项和的公式;3. 教学案例和练习题。
学生准备:1. 掌握等差数列的基本知识;2. 具备一定的数学思维能力;3. 准备笔记本,做好笔记。
四、教学过程1. 导入:通过复习等差数列的基本知识,引导学生回忆等差数列的性质,为新课的学习做好铺垫。
2. 探究等差数列前n项和的公式:引导学生发现等差数列前n项和的规律,引导学生利用已知的等差数列性质推导出前n项和的公式。
3. 讲解等差数列前n项和的公式:讲解公式的含义、推导过程及其应用,让学生理解并掌握公式的运用。
4. 运用公式法、图象法、列举法等多种方法求解等差数列前n项和:通过具体案例,让学生学会运用不同的方法求解等差数列前n项和,培养学生的数学思维能力和解决问题的能力。
5. 练习与巩固:布置一些练习题,让学生运用所学知识解决问题,巩固所学内容。
五、课后反思教师在课后要对教案进行反思,分析教学过程中的优点与不足,针对性地调整教学方法,以提高教学效果。
关注学生的学习情况,了解学生在学习等差数列前n项和过程中遇到的问题,及时给予解答和指导。
等差数列前n项和教案(共5篇)
等差数列前n项和教案(共5篇)第一篇:等差数列前n项和教案等差数列前n项和(第一课时)教案【课题】等差数列前n项和第一课时【教学内容】等差数列前n项和的公式推导和练习【教学目的】(1)探索等差数列的前项和公式的推导方法;(2)掌握等差数列的前项和公式;(3)能运用公式解决一些简单问题【教学方法】启发引导法,结合所学知识,引导学生在解决实际问题的过程中发现新知识,从而理解并掌握.【重点】等差数列前项和公式及其应用。
【难点】等差数列前项和公式的推导思路的获得【教具】实物投影仪,多媒体软件,电脑【教学过程】1.复习回顾 a1 + a2 + a3 +......+ an=sna1 + an=a2 + an-1 =a3 + an-2 2.情景自学问题一:一个堆放铅笔的V形架的最下面一层放1 支铅笔,往上每一层都比它下面一层多放一支,最上面一层放 100支,这个V 形架上共放着多少支铅笔?思考:(1)问题转化求什么能用最短时间算出来吗?(2)阅读课本后回答,高斯是如何快速求和的?他抓住了问题的什么特征?(3)如果换成1+2+3+…+200=?我们能否快速求和?,(4)根据高斯的启示,如何计算18+21+24+27+…+624=?3..合作互学(小组讨论,总结方法)问题二:Sn = 1 + 2 + 3 + … + n = ?倒序相加法探究:能把以上问题的解法推广到求一般等差数列的前n 项和吗?问题三:已知等差数列{an }中,首项a1,公差为d,第n项为an , 如何求前n项和Sn ?等差数列前项和公式: n(a1 + an)=2Sn问题四:比较以上两个公式的结构特征,类比于问题一,你能给出它们的几何解释吗?n(a1 + a n)=2Sn公式记忆——类比梯形面积公式记忆n(a1 + a n)=2S 问题五:两个求和公式有何异同点?能够解决什么问题?展示激学应用公式例1.等差数列-10,-6,-2,2的前多少项的和为-16 例2.已知一个等差数列的前10项和是310,前20项的和是1220,由这些条件能确定这个等差数列的前n项和的公式吗?【思考问题】如果一个数列{an }的前n项和Sn = pn2 + qn + r,(其中p,q,r为常数,且p ≠ 0),那么这个数列一定是等差数列吗?若是,说明理由,若不是,说明Sn必须满足的条件。
等差数列前n项和公式教案
《等差数列前n项和公式》教学案例一、教材分析“等差数列前n项和公式”这节课是人教版高中数学(必修)第一册(上)中的第三章第三节第一课时的内容,是上一节“等差数列”的后继内容。
主要内容:等差数列前n项和公式的推导及运用。
(一)地位及作用数列是高中代数的主要内容,它与数学课程的其它内容(函数、三角、不等式等)有着密切的联系,又是今后学习高等数学的基础,所以在高考中占有重要地位。
数列是培养学生数学能力的良好题材。
学习数列,要经常观察、分析、归纳、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有助于学生数学能力的提高。
(二)教学目标根据“等差数列前n项和公式”这一节的教学大纲及它在高中数学中的地位和作用,确定了如下教学目标:1、知识与技能:① 掌握等差数列前n项和公式的推导方法和公式的简单运用。
② 通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。
2、过程与方法:经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思,进一步培养学生灵活运用公式的能力。
3、情感、态度价值观:① 公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。
② 通过生动具体的现实问题,令人着迷的历史素材和数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。
(三)教学重点与难点:重点:等差数列前n项和的公式;依据:公式是解题的工具。
难点:获得推导等差数列前n项和公式的思路及公式的灵活运用。
依据:公式探究过程中蕴含着重要的数学思想方法,由于学生认识水平的限制,第一次接触到这些公式,往往意识不到其作用,即使教师给予揭示,学生也多半拿着公式而无用武之地,因此我把它作为这一节的难点。
二、学生情况本届学生是实行课程改革后升入高一年,课堂比较活跃,乐于表现自已,表达能力强。
本节是学生已经掌握了等差数列的通项公式、有关性质等知识后进一步学习的,但初中是新课程下的实验教材,现高一年是旧教材,存在知识脱节,学生的运算能力和逻辑思维能力比较低。
等差数列前n项和公式教案
等差数列前n项和公式教案教学目标:1. 知识目标:让学生掌握等差数列前n项和公式的推导方法,并能够准确运用公式。
2. 能力目标:* 通过公式的探索、发现,培养学生的观察、联想、归纳、分析、综合和逻辑推理能力。
* 让学生学会利用以退求进的思维策略,遵循从特殊到一般的认知规律,通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生的类比思维能力。
* 通过对公式从不同角度、不同侧面的剖析,培养学生的思维灵活性,提高学生分析问题和解决问题的能力。
3. 情感目标:* 通过公式的发现,让学生感受到普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。
* 通过公式的运用,帮助学生树立“大众教学”的思想意识。
* 通过生动具体的现实问题、令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。
教学内容:1. 等差数列的前n项和定义:一般地,我们称a1 + a2 + a3 + ... + an为数列an的前n项和,用Sn表示。
记法:Sn = a1 + a2 + a3 + ... + an。
2. 等差数列的前n项和公式:Sn = n/2 * (a1 + an)。
3. 公式的推导方法:倒序相加法。
4. 公式的运用。
教学步骤:1. 导入:介绍等差数列的概念和前n项和的定义。
2. 探索与发现:通过倒序相加法,引导学生探索等差数列前n项和公式的推导过程。
3. 讲解公式:详细解释公式的意义、来源和应用方法。
4. 练习与巩固:给出一些例题,让学生运用公式进行求解,以加深对公式的理解和掌握。
5. 总结与反思:对本节课内容进行总结,并引导学生反思学习过程中的收获和不足之处。
等差数列的前n项和公式 高二年级上学期同步教学设计
4.2.2等差数列的前n项和公式一、教学目标1、通过经历等差数列求和公式的发现、探究过程,理解这些法则推导的依据,掌握等差数列前n项和公式的推导;2、让学生经历探究、推导的过程,体验发现的乐趣。
在应用公式的过程中,让学生归纳总结3、通过本节课的学习让学生感受到数学来源于生活,引导学生善于观察生活,从生活中发现问题,增加学习的信心,增强学习的积极性。
二、教学重难点【教学重点】掌握等差数列前n项和公式;能用多种方法解决等差数列求和的问题【教学难点】深刻理解等差数列求和公式,并能灵活运用三、学情分析和教材分析【教材分析】等差数列求和史学史在学习等差数列的定义,通项公式后,对数列知识的进一步学习。
数列在生活中的应用范围很广,而且是培养学生发现,认识,分析综合能力的题材,同时也是学生学习高等数学的必备知识。
【学情分析】学生在初中阶段学习知识的运用,很少关注知识的发现和探索过程,这可能在思维层面会有一点的限制,在进入高一阶段的学习,有一定的观察分析能力和归纳推理能力。
但他们的思维的条理性和严谨性尚弱,所以教师在与学生进行探究需进行合理的铺垫,设置相应的问题梯度。
四、教学过程教学环节教师活动学生活动设计意图一、情景导入情景1:古希腊毕达哥拉斯学派的数学家经常在沙滩画点或用小石子表示数。
他们研究过三角形数:1,3,6,10,15,。
,如图所示,这个图案有n层积极思考,主动解决问题。
展现数学知识生成过程的文化背景,使学生了解数学文化,感受数学文化的魅力,体会其中蕴含的思想方法。
二、问题1:如果图中的石子有100层,师生共同分析研究重温高斯算法,让学生自新知探索那么从第1层到第100层一共有多少粒石子?据说200多年前,高斯的算数老师也提出过这样一个问题:1+2+3+⋯+99+100=(1)高斯采用的是什么算法?(2)高斯算法的巧妙之处在哪里?(3)高斯求和法的实质是什么?问题2:如果图中的石子有101层,那么从第1层到第101层一共有多少粒石子?1+2+3+⋯+100+101=?问题3:如果图中的石子有n层,那么从第1层到第n层一共有多少粒石子?1+2+3+⋯+n=?问题4能否借助梯形面积公式的推到方法研究“石子堆”问题?问题5上述方法有什么妙处呢?你能推广到求等差数列{}n a的前n项和吗?{}6.na例已知数列是等差数列学生在通过小组合作学习、讨论,形成以下不同的解题思路.学生仿照问题2的解法,从奇偶分析法入手教师引导学生观察,归纳,猜想己去观察、发现、提炼高斯算法的精髓——将“不同数的求和”转化为“相同数的求和”,体会转化与化归的数学思想方法,为推导等差数列的前n项和做铺垫。
“等差数列的前n_项和公式”教学设计
相加求和 法”的 发 现 更 加 自 然 合 理,尽 管 笔 者 做 出 了
很大的努力,但是从问题 3 到 问 题 4 的 过 渡 还 不 是 很
自然 .
这是课后需要继续思考的问题 .
Z
(上接第 10 页)
问题 4 回 忆 梯 形 面 积 公 式 的 推 导 过 程,回 答 下
列问题:
(
1)梯形面积公式的推导体现了什么研究策略?
(
2)能否借助这样的策略研究“石子堆”问题?
础上介绍高斯的算法 .
利用首尾 配 对 相 加 求 和 法 解 决 项 数 为 偶 数 时 的
求和问题很 方 便,但 是 如 果 求 和 项 数 是 奇 数,那 又 该
导等差数列前 n 项 和 公 式 的 两 个 关 键 点 .
在公式的推
导过程中,学 生 最 大 的 疑 惑 是 “你 是 怎 样 想 到 倒 序 相
加求和法的?”因此,怎样 让 求 和 公 式 的 推 导 过 程 显 得
自然合理是本节课 的 关 键 .
笔者以毕达哥拉斯学派研
究的“三 角 形”为 学 习 情 境,设 计 了 一 条 探 究 路 径,让
怎么办呢? 于是设计了第二个问题 .
问 题 2 如果图 1 中的石子有 101 层,那么从第 1
层到第 101 层一共用了多少粒石子?
学生经过合 作 学 习,相 互 讨 论,形 成 以 下 两 种 求
解思路:
(
可以先拿出中 间 项,
1)先拿出一项,再首尾配对 .
图2
在学生借助几何图形(如图 2)发现倒 序 相 加 求 和
欲 证 g(
x)<1,去 分 母 整 理,即 证 x + (
1-x)
《等差数列的前n项和》教学设计
《等差数列的前n项和》教学设计【篇一】教学准备教学目标掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的性质解决有关等差(比)数列的综合性问题.教学重难点掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的性质解决有关等差(比)数列的综合性问题.教学过程【示范举例】基准1:数列就是首项为23,公差为整数,且前6项为正,从第7项开始为负的等差数列(1)谋此数列的公差d;(2)设前n项和为sn,求sn的值;(3)当sn为正数时,谋n的值.【篇二】教学准备工作教学目标数列议和的综合应用领域教学重难点数列议和的综合应用领域教学过程典例分析3.数列{an}的前n项和sn=n2-7n-8,(1)谋{an}的通项公式(2)求{|an|}的前n项和tn4.等差数列{an}的公差为,s=,则a1+a3+a5+…+a99=5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=6.数列{an}就是等差数列,且a1=2,a1+a2+a3=12(1)求{an}的通项公式(2)令bn=anxn,谋数列{bn}前n项和公式7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数8.在等差数列{an}中,a1=20,前n项和为sn,且s10=s15,求当n为何值时,sn有值,并算出它的值.已知数列{an},an∈n,sn=(an+2)2(1)澄清{an}就是等差数列(2)若bn=an-30,求数列{bn}前n项的最小值0.未知f(x)=x2-2(n+1)x+n2+5n-7(n∈n)(1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列(2设f(x)的图象的顶点至x轴的距离形成数列{dn},谋数列{dn}的前n项和sn.11.购买一件售价为元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)12.某商品在最近天内的价格f(t)与时间t的函数关系式是f(t)=销售量g(t)与时间t的函数关系就是g(t)=-t/3+/3(0≤t≤)谋这种商品的日销售额的值注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的值,应分别求出函数在各段中的值,通过比较,确定值。
《等差数列前n项和》教案
《等差数列前n项和》教案一、教学目标1. 让学生理解等差数列前n项和的定义及公式。
2. 培养学生运用等差数列前n项和公式解决实际问题的能力。
3. 引导学生通过探究等差数列前n项和的性质,提高其数学思维能力。
二、教学内容1. 等差数列前n项和的定义。
2. 等差数列前n项和的公式。
3. 等差数列前n项和的性质。
三、教学重点与难点1. 重点:等差数列前n项和的定义、公式及性质。
2. 难点:等差数列前n项和的公式的推导及应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究等差数列前n项和的定义及公式。
2. 利用案例分析法,让学生通过解决实际问题,掌握等差数列前n项和的性质。
3. 采用小组讨论法,培养学生的合作意识及数学交流能力。
五、教学过程1. 导入:回顾等差数列的基本概念,引导学生思考等差数列前n项和的定义。
2. 新课:讲解等差数列前n项和的定义,推导出等差数列前n项和的公式。
3. 案例分析:运用等差数列前n项和公式解决实际问题,引导学生发现等差数列前n项和的性质。
4. 课堂练习:布置练习题,让学生巩固等差数列前n项和的公式及性质。
5. 总结:对本节课的内容进行总结,强调等差数列前n项和的重要性质。
6. 作业布置:布置课后作业,巩固所学知识。
六、教学评估1. 课堂问答:通过提问等方式了解学生对等差数列前n项和定义及公式的理解程度。
2. 练习题:分析学生完成练习题的情况,评估学生对等差数列前n项和的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,了解学生对等差数列前n项和性质的理解。
七、教学拓展1. 等差数列前n项和的公式在实际问题中的应用,如计算工资、奖金等。
2. 引导学生探究等差数列前n项和的公式的推导过程,提高学生的数学思维能力。
八、教学反思1. 反思教学方法的有效性,根据学生的反馈调整教学策略。
2. 分析学生的学习情况,针对性地进行辅导,提高学生的学习效果。
九、课后作业1. 巩固等差数列前n项和的公式及性质。
等差数列的前n项和公式(第一课时)(教案)高二数学(人教A版2019选择性必修第二册)
等差数列的前n项和公式第一课时1.课时教学内容等差数列前n项和公式2.课时学习目标(1)会推导等差数列前n项和公式;(2)会用等差数列的前n项和公式解决简单问题。
3.教学重点与难点重点∶等差数列的前n项和的应用。
难点∶等差数列前n项和公式的推导方法。
4.教学过程设计环节一情景引入200多年前,高斯的算术老师提出了下面的问题:1+2+3+…+100=?你准备怎么算呢?高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一。
他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献。
问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释。
高斯的算法:(1+100)+(2+99)+…+(50+51)=101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,…前100项的和问题。
等差数列中,下标和相等的两项和相等。
设a n=n,则a1=1,a2=2,a3=3,…如果数列{a n}是等差数列,p,q,s,t∈N∗且 p +q =s +t,则a p +a q =a s +a t可得:a 1+a 100=a 2+a 99=⋯=a 50+a 51问题2:你能用上述方法计算1+2+3+… +101吗? 解:原式=(1+101)+(2+100)+⋯+(50+52)+52 =102×50+51 =5151解法2:原式=(1+2+⋯+100)+101=[(1+100)+(2+99)+⋯+(50+51)]+101=101×50+101 =5151解法3:原式=0+1+2+⋯+100+101=(0+101)+(1+100)+⋯+(50+51)=101×51 =5151问题3:你能计算1+2+3+… +n 吗? 需要对项数的奇偶进行分类讨论.当n 为偶数时, S n =(1+n )+[(2+(n −1)]+⋯+[(n2+(n2−1)] =(1+n )+(1+n )…+(1+n ) =n2(1+n ) =n(1+n)2当n 为奇数数时, n -1为偶数S n =(1+n )+[(2+(n −1)]+⋯+[(n +12−1)+(n +12+1)]+ n +12=(1+n )+(1+n )…+(1+n )+ n+12=n−12(1+n )+n+12=n(1+n)2对于任意正整数n ,都有1+2+3+… +n =n(1+n)2问题4:不分类讨论能否得到最终的结论呢? S n = 1+ 2 + 3 +⋯+nS n = n +(n −1)+(n −2)+⋯+1 将上述两式相加,得2S n=(n+1)+[(n−1)2]+[(n−2)+3]+⋯+(1+n)=(1+n)+(1+n)+⋯+(1+n)=n(1+n)所以S n=1+2+3+⋯+n=n(1+n)2问题5:上述方法的妙处在哪里?倒序求和法S n=a1+a2+a3+⋯+a n−2+a n−1+a nS n=a n+a n−2+a n−1+⋯+a3+a2+a1 2S n=(a1+a n)+(a2+a n−1)+⋯+(a n+a1)因为:a1+a n=a2+a n−1=…=a n+a1所以:2S n=(a1+a n)+(a1+a n)+⋯+(a1+a n)=n(a1+a n)即:S n=n(1+n)2问题6:这种方法能够推广到求等差数列{a n}的前n项和吗?S n=a1+a2+a3+⋯+a n−2+a n−1+a n,S n=a n+a n−2+a n−1+⋯+a3+a2+a1.2S n=(a1+a n)+(a2+a n−1)+⋯+(a n+a1)因为:a1+a n=a2+a n−1=…=a n+a1所以:2S n=(a1+a n)+(a1+a n)+⋯+(a1+a n)=n(a1+a n)所以S n=n( a1+a n)2得到等差数列前n项和公式:S n=n( a1+a n)2追问1:你能用文字语言表达这个公式吗?首项加末项乘以项数除以2.追问2:这个公式还有什么含义?等式两边同除以n,S nn =(a1+a n)2,即a1+a2+a3+⋯+a nn =(a1+a n)2前n项平均数等于首项与第n项的平均数问题7:能不能用a1和d来表示S n呢?将a n=a1+(n−1)d代入公式整理得S n =na1+n(n−1)2d追问:如果不利用前面结论,你还有其他方法得到上述公式吗?S n=a1+a2+a3+⋯+a n,=a1+(a1+d)+(a1+2d)+⋯+[a1+(n−1)d]=na1+[1+2+3+(n−1)d]=na1+n(n−1)2d等差数列的前n项和公式公式S n=n(a1+a n)2功能1:已知a1,a n,n 求S n功能2:已知S n a1,a n,n中任意3个,求第4个。
等差数列前n项和教案
等差数列前n项和优秀教案第一章:等差数列的概念1.1 引入等差数列的概念利用日常生活中的实例引入等差数列的概念,如连续的自然数、等差增加的工资等。
引导学生思考等差数列的特点和性质。
1.2 等差数列的定义给出等差数列的定义:一个数列从第二项起,每一项与它前一项的差都是一个常数,这个常数叫做这个数列的公差,这个数列叫做等差数列。
解释等差数列的公差的概念,并引导学生理解公差的意义。
1.3 等差数列的表示方法介绍等差数列的通项公式:an = a1 + (n-1)d解释等差数列的首项、末项、项数等概念。
第二章:等差数列的性质2.1 等差数列的性质引导学生探究等差数列的性质,如相邻两项的差是常数、等差数列的任意一项都可以用首项和公差表示等。
2.2 等差数列的求和公式引导学生推导等差数列的前n项和公式:Sn = n/2 (a1 + an)解释等差数列的前n项和的意义。
第三章:等差数列的求和公式的应用3.1 求等差数列的前n项和引导学生运用等差数列的求和公式求解等差数列的前n项和。
举例讲解求和公式的应用。
3.2 等差数列的项数与前n项和的关系引导学生探究等差数列的项数与前n项和的关系,如项数增加时前n项和的变化趋势等。
第四章:等差数列前n项和的性质4.1 等差数列前n项和的性质引导学生探究等差数列前n项和的性质,如前n项和随着项数的增加而增加、前n项和的公式中的系数等。
4.2 等差数列前n项和的运用引导学生运用等差数列前n项和的性质解决实际问题,如计算等差数列的前n 项和等。
第五章:等差数列前n项和的拓展5.1 等差数列前n项和的拓展引导学生思考等差数列前n项和的拓展问题,如等差数列的前n项和的最大值、最小值等。
5.2 等差数列前n项和的应用实例举例讲解等差数列前n项和的应用实例,如计算等差数列的前n项和的最大值、最小值等。
第六章:等差数列前n项和的图解法6.1 等差数列前n项和的图解法引入利用图形直观展示等差数列前n项和的变化规律。
等差数列的前n项和教案
等差数列的前n项和教案一、教学目标1. 理解等差数列的概念及其性质。
2. 掌握等差数列的前n项和的计算方法。
3. 能够运用等差数列的前n项和解决实际问题。
二、教学重点1. 等差数列的概念及其性质。
2. 等差数列的前n项和的计算方法。
三、教学难点1. 等差数列的性质的理解与应用。
2. 等差数列的前n项和的计算方法的推导与理解。
四、教学准备1. 教师准备PPT或黑板,展示等差数列的定义、性质和前n项和的计算方法。
2. 教师准备一些实际问题,用于引导学生运用等差数列的前n项和解决实际问题。
五、教学过程1. 引入:教师通过PPT或黑板,展示一些数列的例子,引导学生思考数列的规律。
2. 讲解:教师讲解等差数列的定义、性质和前n项和的计算方法,通过示例进行解释和说明。
3. 练习:教师给出一些等差数列的问题,让学生独立解决,并给出答案和解析。
4. 应用:教师给出一些实际问题,引导学生运用等差数列的前n项和解决实际问题,并提供解答和解析。
5. 总结:教师对本节课的内容进行总结,强调等差数列的概念、性质和前n项和的计算方法的重要性和应用价值。
六、教学拓展1. 引导学生思考等差数列的前n项和的性质,如奇数项和偶数项的和是否相等。
2. 引导学生探索等差数列的前n项和的公式推导过程。
七、课堂小结1. 回顾本节课学习的等差数列的概念、性质和前n项和的计算方法。
2. 强调等差数列的前n项和在实际问题中的应用价值。
八、作业布置1. 完成教材或练习册上的相关习题,巩固等差数列的概念、性质和前n项和的计算方法。
2. 选取一道实际问题,运用等差数列的前n项和解决,并将解题过程和答案写下来。
九、课后反思1. 教师对本节课的教学效果进行反思,观察学生对等差数列的概念、性质和前n 项和的计算方法的掌握程度。
2. 针对学生的掌握情况,调整教学方法和解题策略,为下一节课的教学做好准备。
十、教学评价1. 学生完成作业的情况,判断学生对等差数列的概念、性质和前n项和的计算方法的掌握程度。
高中等差数列前n项和公式教案优秀
高中等差数列前n项和公式教案优秀一、教学目标1.理解等差数列的定义及其性质。
2.掌握等差数列前n项和的公式。
3.能够运用等差数列前n项和公式解决实际问题。
二、教学内容1.等差数列的定义及其性质。
2.等差数列前n项和的公式。
3.等差数列前n项和公式的运用。
三、教学过程第一步:导入1.引导学生回顾等差数列的定义及其性质。
2.提问:等差数列前n项和有什么特点?第二步:新课讲解1.讲解等差数列前n项和的公式。
公式:等差数列前n项和=(首项+末项)项数/22.解释公式的推导过程。
3.通过例题讲解公式运用。
第三步:课堂练习1.布置练习题,让学生运用公式计算等差数列前n项和。
2.引导学生互相讨论,解答疑难问题。
第四步:拓展提高1.引导学生思考:等差数列前n项和公式在实际问题中的应用。
2.举例讲解等差数列前n项和公式在实际问题中的应用。
第五步:课堂小结2.强调等差数列前n项和公式的重点、难点。
四、课后作业1.巩固等差数列前n项和公式的记忆。
2.提高运用等差数列前n项和公式解决实际问题的能力。
五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以便更好地引导学生掌握等差数列前n项和公式,提高学生的数学素养。
六、教学评价1.学生对等差数列定义及其性质的掌握程度。
2.学生对等差数列前n项和公式的理解与应用能力。
3.学生在实际问题中运用等差数列前n项和公式的灵活性。
重难点补充:1.等差数列的定义及其性质。
2.等差数列前n项和的公式的推导过程及运用。
教学过程:第一步:导入教师:同学们,我们之前学习了数列,今天我们要学习数列的一个重要概念——等差数列。
请问大家还记得等差数列的定义吗?学生1:等差数列是指数列中每一项与它前一项的差都相等的数列。
教师:很好,还有同学能补充一下等差数列的性质吗?学生2:等差数列的性质有:数列中任意一项都可以表示为首项加上差值的倍数;数列中任意一项的差值都相等。
教师:非常好,那么等差数列前n项和有什么特点呢?今天我们就要学习这个知识点。
等差数列前n项和公式教案
等差数列前n项和公式教案
主题:等差数列前n项和公式教案
1. 教学目标:
- 理解等差数列的概念和性质。
- 掌握求等差数列前n项和的公式。
- 能够运用公式解决实际问题。
2. 教学准备:
- 教师准备黑板、粉笔。
- 学生准备笔和纸。
3. 教学内容和步骤:
步骤一:引入概念
- 教师向学生介绍等差数列的概念,即连续两项之间的差值相等。
- 示例:2,5,8,11,14,...
步骤二:求等差数列前n项和的公式
- 提出问题:如何求等差数列前n项和?
- 引导学生思考,当n为几时,前n项和容易求得。
- 让学生观察并找规律,求出前n项和公式的一般形式。
- 讲解:前n项和公式为Sn = n(a1 + an) / 2,其中Sn表示前n项和,a1表示首项,an表示末项。
- 示例:对于等差数列2,5,8,11,14,当n = 4时,前n 项和为(4(2 + 14)) / 2 = 32。
步骤三:应用解决实际问题
- 找一些实际问题,让学生运用前n项和公式解决。
例如:小明连续7天每天花费5元,求这7天的总花费。
- 讲解解题步骤,并引导学生进行解答。
4. 总结与拓展:
- 教师对本节课的要点进行总结,并强调等差数列前n项和公式的重要性和应用。
- 课后布置拓展练习,巩固所学知识。
5. 教学反思:
此教案标题与要求不同,已修改。
说课—《等差数列前n项和的公式》
说课—《等差数列前n项和的公式》等差数列的前n项和公式教案篇一2.3等差数列的前n项和公式(教案)一.教学目标:1、知识与技能目标了解等差数列前n项和公式,理解等差数列前n项和公式的几何意义,并且能够灵活运用其求和。
2.过程与方法目标学生经历公式的推导过程,体验从特殊到一般的研究方法。
3、情感态度与价值观目标学生获得发现的成就感,优化思维品质,提高代数的推导能力。
二.教学重难点:1、重点:等差数列前n项和公式的推导,掌握及灵活运用。
2.难点:诱导学生用“倒序相加法”求等差数列前n项和。
三.教法与学法分析:1、教法分析:采用“诱导启发,自主探究式”学法为主,讲练结合为辅的教学方法。
2、学法分析:采用“自主探究式学习法”和“主动学习法”。
四.课时安排:1个课时五.教学过程(一)导入我们已经学过等差数列的定义an+1-an=d(n属于正整数),等差数列的通项公式an=a1+(n-1)d,等差数列的等差中项2an=an-1+an+1,还有:若m+n=p+q,则am+an=ap+aq.我们应该怎样求a1+a2+…+an,其中{an}为等差数列,记Sn=a1+a2+…+an我们知道200多年前高斯的老师给他们出了一道题目,让他们计算1+2+就算出来了…+100=?当时10岁的高斯很快。
高斯是怎样做出来的呢?他使用了什么简单高明的方法?1+2+…+100=(1+100)+(2+99)+…+(50+51)=50*101,所以1+2+…+100=5050,这就是著名的高斯算法,到后来,人们就从高斯算法中得到启发,求出了等差数列1+2+…+n的前n项和的算法(二)探究新知,发现规律从高斯算法中,人们怎样求出首项为1,公差为1的等差数列1+2+3+…+n的和?首先1+2+…+n(1)n+(n-1)+…+1(2)2Sn=(n+1)+(n+1)+…+(n+1)(n个(n+1))所以1+2+…+n=n*(n+1)/2 我们把上面的方法称为“倒序相加法”,也就是说高斯当时用的就是“倒序相加法”算出了1+2+…+100的和然而这个方法可以推广到等差数列的前n项和定义:一般地,我们把a1+a2+…+an叫做等差数列的前n项和,用Sn表示即Sn=a1+a2+…+an从高斯算法中得到的启示,对于一般的等差数列,其中a1是首项,d是公差,我们可以用两种方法来表示Sn=a1+a2+…+an=a1+(a1+d)+…++[ a1+(n-1)d](3)Sn=an+ an-1+…+a1=an+(an-d)+…+[an-(n-1)d](4)两式相加得2Sn=(a1+an)+(a1+an)+…+(a1+an),有n个(a1+an)所以Sn=n(a1+an)/2(5)将an=a1+(n-1)d带入Sn=n(a1+an)/2中即可得到Sn=na1+n(n-1)d/2(6)(5)与(6)区别:第一个公式反映了等差数列的首项与末项之和跟第n项与倒数第n项之和是相等的;第二个公式反映了等差数列的首项与公差d之间的关系,而且是关于n的“二次函数”,可以与二次函数作比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中《等差数列前n项和公式》教学案例
一、教学设计理念
教学是师生共同参与的活动过程,在这个过程中,教师是活动的主导,学生是活动的主体,教师的主导要为学生主体达到学习目标服务,也就是就教师在使用讲授法的同时,必须辅之以指导学生亲自探究、发现、应用等活动,为学生思维指路搭桥。
通过学生自主的尝试活动,使他们在感知的基础上有效地揭示知识的内在联系,从而使学生获取知识,提高能力,本堂课的设计正是以这个原则为主旨的。
二、学生情况与教材分析
1.学生通过上一节的学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点。
2.几何能直观地启迪思路,帮助理解,特别是对于职中类学生,他们对知识的理解还是处于模糊阶段,因此,借助几何直观学习来理解数学,是数学学习中的重要方面。
3.本课要求学生通过自主地观察、讨论、归纳、反思来参与学习,认识和理解数学知识,学会发现问题并尝试解决问题,在学习活动中进一步提升自己的能力。
三、教学目标
1.知识目标
(1)了解等差数列前n项和的定义,了解逆项相加的原理,理解等差数列前n项和公式推导的过程,记忆公式的两种形式。
(2)用方程思想认识等差数列前n项和的公式,利用公式求和;等差数列通项公式与前n项和的公式两套公式涉及五个字母,已知其中三个量求另两个值。
(3)会利用等差数列通项公式与前n项和的公式研究前n项和的最值。
2.能力目标
(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。
(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比的思维能力。
(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。
3.情感目标
(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。
(2)通过公式的运用,树立学生“大众教学”的思想意识。
(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好
数学的心理体验,产生热爱数学的情感。
四、教学重点、难点
重点:等差数列前n项和公式。
难点:获得等差数列前n项和公式推导的思路。
五、教学方法
启发引导、交流讨论、合作探究。
六、教具准备
现代教育多媒体技术。
七、教学流程图
八、教学过程
1.引入新课
(1)复习
师:上一节课中,我们学习了等差数列的定义及通项公式,知道了“公差d=______,通项公式an=______”(见黑板)生1:(回答黑板上的问题)
(2)故事引入
师:那等差数列的前n项和怎样求?今天,我们主要探讨等差数列的前n项和公式。
说起数列求和,我由地想起德国伟大的数学家高斯“神述求和”的故事。
高斯在上小学四年级时,老师出了这样一道题“1+2+3…+99+100”高斯稍微想了想就得出了答案。
下面给同学们一点时间来挑战高斯。
生2:5050
师:看来我们班还是有不少高斯的。
继续努力,说不定将来也成了数学家。
下面请这位同学说一说是怎样算出来的。
生3:(说明如何进行首尾配对进行求和的。
)
师:根据等差数列的特点,首尾配对求和的确是一种巧妙的方法。
不过,对于以下的题,“例:求等差数列8、5、2…的前20项的和(见课件)”这种方法可就没那么方便了。
因此我们非常迫切地需要推导出等差数列的前n项和公式。
2.合作学习,探求新知
师:下面我们从一个稍稍简单一点的等差数列来推导探讨等差数列的前n项和公式。
(学生观察幻灯片上以等差数列逐层排列的一堆钢管。
)
师:如何求?
生4:利用刚才的方法.(略)
师:想一想,除了刚才的首尾配对求和的方法外,还有没有其他的方法呢?
(课件演示:引导学生设想,如果将钢管倒置,能得到什么启示)
生5:每一层都和上一层是一样多的。
一共有8层,所以为8×(4+11),但一共有两堆,所以为s8=
师:那如果如下图所示共有n层,第一层为a1,第n层为an,请大家来猜想一下这个呈等差数列排列的钢管的总和sn等于多少?
生6:sn=
解:钢管的数量为:s8=
等差数列前n项求和公式:sn=
师:这个猜想对不对呢?下面我们用所学过的知识一起来证明一下。
板书:sn=a1+a2+a3+…+an
即sn=a1+(a1+d)+(a1+2d)+…+[a1+(n-1)d]
把上式的次序反过来又可以写成:
sn=an+(an-d)+(an-2d)+…+[an+(n-1)d]
两式相加:
2sn=(a1+an)+(a1+an)+…(a1+an)=n(a1+an)
所以sn=
看来,我们的猜想是正确的。
下面我们做几道练习来熟悉一下公式。
3.合作学习,巩固并探求新知
学生练习一:(1)在等差数列{an}中,已知a1=1,a10=8,求s10.
(2)求正整数列是前1000个数的和;
学生小组合作练习,分组进行交流。
师:看来,大家对公式的掌握还是不错的。
下面,我们再来看一道练习。
学生练习二:在等差数列{an}中,a1=1,d=-2已知a1=1,d=-2,
求s10;
学生思考,并讨论解答。
学生讲解如何进行求解这题。
师:刚才那道题给出了a1,d和n=10,a10没有给出,但我们一样可以将s10求出,
那我们能不能直接由a1,d和n,得到an呢?
学生根据求和公式一和通项公式导出公式二:sn=na1+d
学生练习三:求正整数中前500个偶数的和(用多种方法求解)。
学生讨论解答此题,并请学生上台讲解。
4.总结
师:今天,大家学得不错。
下面我们再来回顾一下本堂课的内容。
今天我们主要倒序相加的方法推导了等差数列前n项和公式一,并结合等差数列通项公式二推导出等差数列前n项和公式二,希望同学们在今后的解题要灵活运用这两个公式。
5.教学反思
本节课是通过介绍高斯的算法,探究这种方法如何推广到一般等差数列的求和.该方法反映了等差数列的本质,可以进一步促进学生对等差数列性质的理解,而且该推导过程体现了人类研究、解决问题的一般思路。
为了突破这一难点,从特殊问题的解决中提炼方法,再试图运用这一方法解决一般问题。
通过教师的层层引导、学生的合作探究,“倒序相加法”的获得就水到渠成了。