焦炉荒煤气余热回收技术概述

焦炉荒煤气余热回收技术概述
焦炉荒煤气余热回收技术概述

莱钢科技2011年2月

作者简介:孙业新(1972-),男,2005年毕业于鞍山科技大学化学工业专业,硕士。工程师,首席研究员,主要从事焦化工业技术研究工作。

焦炉荒煤气余热回收技术概述

孙业新(技术中心)

摘 要:详细介绍了几种焦炉上升管荒煤气余热回收技术,通过分析对比认为分离式热管换热技术是最合理的技术,值得推广和应用。关键词:荒煤气 余热回收 热管

0 前言

焦炉炼焦所耗热量约70%被成熟焦炭和高温干馏产生的荒煤气带走,随着国内外干熄焦(CDQ)技术的发展和普及,红热焦炭所含余热已有了成熟的回收途径,但荒煤气热能回收技术目前尚处于探索阶段,除不回收化产品的热回收焦炉外,其它形式的焦炉荒煤气携带的热能大部分至今未得到有效回收利用。

从焦炉炭化室经上升管逸出的650~750e 荒煤气带出的热量占炼焦耗热总量的32%左右。常规工艺下为冷却高温荒煤气必须在连接上升管与集气管的桥管处喷洒大量70~75e 的循环氨水,而且最终还要在初冷器中利用大量循环水冷却。长期以来,针对荒煤气余热利用,国内外研究人员均作了大量工作,形成了多项技术。

1 上升管汽化冷却技术

上升管汽化冷却技术(简称JSQ ),为中国首创技术,于上世纪70年代初首先在首钢、太钢的71孔、65孔单集气管焦炉上使用,后经历了近30年发展、提高、停滞及坚持的过程,并在武钢、马钢、鞍钢、涟钢、北京焦化厂、沈阳煤气二厂、本钢一铁、平顶山焦化厂等多家企业得到应用,但大多数企业因种种原因在运行一段时间后就拆除了,据悉国内运行时间最长的本钢一铁也由于2008年4米3焦炉的拆除而中止了该技术的使用。上升管汽化冷却技术为:在于上升管外壁上焊接一环形夹套,在夹套下部通入软水,在夹套内水

与热荒煤气换热,煤气温度降到450~500e ,水则吸热变成汽水混合物,在夹套上部排出并通过管道送至汽包,汽包内经过汽水分离后,低压饱和蒸汽(一般为014~017M Pa )外供,而饱和水通过管道自流送入上升管夹套下部循环使用,并按实际情况向汽包内补充水和排污。

汽化上升管先后经历了四种形式,如图1所

示。

图1 各种汽化上升管结构示意

技术优点:投资少,运行费用低。技术缺点:

1)回收的热量仅为荒煤气部分余热,且在上升管根部由于煤气聚冷易造成焦油析出,最终引起结石墨严重。

2)尽管国内对该技术进行了不断完善,可靠性已较高,但仍存在极大的管理风险,易发生如上升管夹套内压过大或漏水等突发情况,均会对焦炉造成很大的危害。

3)若不采用新的工艺技术匹配,回收热量产生的低压饱和蒸汽利用途径受到极大限制。

2 导热油夹套技术

日本新日铁公司于1982年开发了利用导热油(联苯醚)回收焦炉荒煤气余热的技术,并利用回收的热量用于炼焦煤的干燥,形成了第一代炼焦煤调湿技术,在日本大分厂投入使用,上升管夹套结构与我国的汽化上升管相似,区别在于吸收上升管

5

孙业新:焦炉荒煤气余热回收技术概述

第1期(总第151期)

荒煤气余热的介质是导热油而不是水,导热油通过泵送循环使用。

2006年,济钢和济南冶金设备公司在济钢6m 焦炉的5个上升管上进行了导热油回收荒煤气热量的生产试验,利用新型结构的绕带式换热器,以导热油为热介质,回收上升管中荒煤气的热量,取得了较好的效果,为我国导热油回收荒煤气热量的技术开发迈出了开创性的第一步。回收荒煤气热量的上升管结构如图2

所示。

1-夹套外层;2-夹套内层;3-进油口;4-出油口;

5-泄油管;6-换热绕带

图2 济钢导热油回收荒煤气余热上升管结构

技术优点:安全性高,回收热量可在一定范围内精确调整,上升管结石墨现象较汽化冷却方式为轻。

技术缺点:

1)导热油在使用过程中难免会发生热变质现象,从而影响系统的操作运行;

2)导热油的循环需要消耗一定电能,因此会使收益降低。

3)导热油泄漏会造成较严重的污染。4)投资和运行费用较高。

3 热管式换热技术

2008年,南京圣诺热管有限公司开发出了利用分离式热管回收上升管荒煤气热量的技术,并在上海梅山钢铁股份有限公司的4米3焦炉的一个上升管上进行了连续性试验。其技术流程如图3所示,上联箱和下联箱分别将排列于上升管耐火层内壁上的一组分离式热管的吸热端的上、下两端汇集,并分别通过耐压管路与分离式热管放热端相联,构成了一密闭的循环通道,热管内抽真空注入一定数量的水作为传热介质,液态水在热管吸热端吸收荒煤气热量后变成蒸汽,沿管路上升送入汽包内的分离式热管放热端,与汽包内的水进行间接换热,使汽包产生蒸汽,可根据需要设定排汽压力,产生的饱和蒸汽压力可调节高至116MPa 以上,热管放热端内的蒸汽与汽包内的水换热后凝结成水,送回下联箱,分配给各根热管吸热端循环,根据实

际情况向汽包内补充水。

1-上升管;2-分离式热管吸热端;3-上联箱;4-下联箱;5-汽包;6-分离式热管放热端;7-出汽管;

8-补水管;

9-安全阀;

10-上长管外壳;

11-耐火砖层

图3 南京圣诺热管回收荒煤气余热流程示意

技术优点:

1)安全性高,即使热管破损,流出的水只有分离式热管内注的水,其量很小,因而避免了汽化

冷却工艺汽包内的水进入炭化室损坏焦炉的现象发生。

2)汽包相当于锅炉,外供蒸汽压力可调,当为116M Pa 时,热管内压力不到2M Pa ,而普通材质的热管就可轻易实现耐压10MPa 的要求,因此调整范围宽且安全。

3)结石墨现象得到有效缓解,当外供蒸汽压力为116M Pa 时,回热管吸热端的水温超过200e ,因而可避免汽化冷却工艺中荒煤气的聚冷现象,南京圣诺在梅钢的工业小试表明,当吸收500e 以上荒煤气余热时,上升管内的结石墨现象

6

莱钢科技2011年2月

轻微,结石墨周期长且石墨疏松易清除。

4荒煤气直接热裂解技术

上世纪90年代和本世纪初,德国和日本分别开展了利用高温荒煤气热能将荒煤气中煤焦油、粗苯、氨、萘等热裂解成以CO和H2为主要成分的合成气的研究工作,分别形成了催化热裂解和无催化氧化重整两种技术路线,并完成了实验研究工作,为荒煤气的热能利用开辟了一条直接而且彻底的利用途径。

技术优点:可充分回收荒煤气的余热,甚至潜热也得以利用。

技术缺点:荒煤气内所含宝贵的化产品如苯和焦油被分解掉了,造成了资源的极大浪费,若要人工合成同样的物质,其消耗必定要远远大于回收热量的价值。

5结语

综合以上技术介绍与分析,在回收焦炉上升管荒煤气余热方面,热管技术由于其经济可靠性最值得推荐,若结合化产回收工序初冷器一段循环冷却水热量的回收利用,如冬季采暖、热泵回收、焦炉煤气脱硫换热等,上升管荒煤气余热回收利用率将会得到极大的提升,焦化工序的节能降耗之路必将迎来新的篇章。

参考文献

[1]王振环等.上升管汽化冷却的应用及发展前景.燃料

化工,2000,31(4).

Overvie w on Techno l o gy ofW aste H eat Recovery

of Raw G as of t he Coke O ven

Sun Yex in

(The Techno l o gy Cen ter)

Abst ract:This paper intr oduces several techno log ies o f sensible heat recovery o f ra w gas i n uprising pipe of t h e coke oven.Through the co m parative analysis,it is consi d ered that the separati o n-type heat trans-fer techno logy for hea-t pi p e is the m ost reasonable techno logy and worths popu larizi n g and apply i n g.

K ey w ords:ra w gas;w aste heatrecovery;hea-t pipe

型钢炼钢厂品种钢生产比例创历史最好水平

型钢炼钢厂积极调整产品结构,加大品种钢生产和研发力度,2011年1~2月份,共生产23个品种钢,产量达36176万,t品种钢比例由去年的3213%提高到62182%,品种钢兑现率达到100%。

为提升品种钢比重,炼钢厂按照公司/做特、做优、做强、做专0的定位,分析市场需求并结合自身工艺流程特点,制定了5品种结构调整落实方案6。2010年,炼钢厂成功冶炼了冷轧用钢、深冲用钢、汽车用钢、船板用钢、桥梁用钢、压力容器用钢、管线钢和高强结构钢等8大系列54个新钢种。

2011年以来,针对品种钢对磷、硫含量要求严格的情况,成立了深脱磷、深脱硫、深脱碳等8个攻关组,跟踪试验,不断调整工艺参数,目前已能够批量生产磷含量不高于01012%、硫含量不高于01002%的品种钢,轧材性能均满足用户要求,其中最高级别的F级船板钢于近日冶炼成功。针对S t14等深冲钢系列钢种对碳含量要求严格,钢中三氧化二铝夹杂不易去除等问题,炼钢厂对比试验不同的改质方法来获得合理的渣系。经多次试验,采用转炉加适量小颗粒石灰和适量改质剂,RH精炼炉出站时再加适量改质剂和适量铝粒进一步对炉渣进行改质,炉渣可以较好地吸附夹杂物,起到了较好的净化钢水的目的。代表钢铁产品最高水平的X70、X80管线钢生产技术日渐成熟,顺利实现批量生产。

为确保品种钢兑现率,在品种钢生产时形成了以保证品种钢生产为核心的专线化生产路线,铁水预处理、行车吊运、精炼炉等工序,全力以赴为品种钢生产服务,保证连铸机拉速、液面、温度始终恒定。

(炼钢厂马永熙韩继刚)

7

烟气余热回收技术方案样本

烟气余热回收技术 方案

烟气余热回收利用改造项目 技术方案 ***节能科技有限公司 二O一二年

一、运行现状 锅炉房配备2.1MW锅炉2台(一用一备),供热面积5万m2;**炉配备2.1MW锅炉2台(一用一备),供热面积4.5万m2。经监测,**锅炉房2台锅炉正常运行排烟温度在150--170℃,平均热效率在89%,**锅炉房2台锅炉正常运行排烟温度在160-180℃,平均热效率在88%,(标准应不高于160℃)。锅炉系统运行进出水温差较小,排烟热损失较大,同时影响锅炉热效率的提高,回收利用潜力明显。 二、技术介绍 烟气冷凝回收利用技术是国家第一批特种设备节能技术推荐目录中的成熟技术。有着显著的节能效益。主要原理:1m3天然气燃烧后会放出9450kcal的热量,其中显热为8500kcal,水蒸气含有的热量(潜热)为950kcal。对于传统燃气锅炉可利用的热能就是8500kcal的显热,供热行业中常规计算天然气热值一般以8500kcal/nm3为基础计算。这样,天然气的实际总发热量9450kcal与天然气的显热8500kcal比例关系以百分数表示就为:111%,其中显热部分占100%,潜热部分占11%,因此对于传统燃气锅炉来说还是有很多热量白白浪费掉。 普通天然气锅炉的排烟温度一般在120--250℃,这些烟气含有8%--15%的显热和11%的水蒸气潜热。加装烟气冷凝器的主要

目的就是经过冷凝器把烟气中的水蒸气变成凝结水,最大限度地回收烟气中含有的潜热和显热,使回收热量后排烟温度可降至100℃左右,同时烟气冷却后产生的凝结水得到及时有效地排出(1 nm3天然气完全燃烧后,可产生1.66kg水),而且大大减少了co2、co、nox等有害物质向大气的排放,起到了明显的节能、降耗、减排及保护锅炉设备的作用。从而达到节能增效的目的。 三、改造方案 3.1、设备选型 烟气余热回收器选用瑞典爱瑞科(AIREC)板式烟气热回收器。 瑞典AIREC公司是世界上唯一一家 钎焊式模块化非对称流量板式换热器的 专业生产制造商,凭借独到的设计理 念,雄厚的产品开发能力和多年行业丰 富的实践经验使AIREC成为在非对称流量换热领域的真正领导者。 irCross21由多块板片重叠冲压在一起,在真空和高温的环境下,板片用铜或镍焊接在一起,具有很高的机械强度,更大的传热面积,更高的效率,更轻便小巧。AIREC经过继承CBE(钎焊式换热器)的技术特点,独特的换热器设计板纹,气体/液体应用

[焦炉,余热,纳米]纳米导热材料在焦炉上升管余热利用中的应用研究

纳米导热材料在焦炉上升管余热利用中的应用研究 焦化厂焦炉上升管荒煤气显热的余热回收利用作为一项全新的科研课题,各大焦炉设计院和各大焦化厂都先后投入了巨大的人力物力,也先后研发出了多种类型的上升管换热器型式和技术,国家发改委也投入了巨大的资金用于开发此项技术,主要集中在导热油夹套管、热管、锅炉和半导体温差发电等技术,来回收荒煤气带出热。到目前为止,大部分的研发都未能取得令人满意的进展。 我公司经过多年的研发,先后开发出五种类型的上升管换热器,并用于焦炉实际工况下的试验,在经过多次失败之后,终于取得了突破性进展。成功开发出可以用于焦炉生产运行的上升管换热器产品,并且进入了工业化生产。 1 焦炉上升管荒煤气余热回收技术的实现 1.1 荒煤气高导热、耐蚀、长寿命的上升管内衬材料开发研究 上升管内衬材料是提高荒煤气余热回收利用效率的关键技术之一。原工艺装备上升管采用普通碳钢材料,内壁衬耐火砖,更换用余热回收装置后,内壁不能再衬耐火砖,否则热传导效率极低。这样导致装置内壁直接与高温(650℃~900℃)荒煤气接触,而荒煤气中含有氧气、一氧化碳、二氧化碳、硫化氢、氧化氮、氢气、甲烷、水汽及芳香烃类化合物等,普通碳钢在此温度及环境下,高温烧蚀严重,不能满足工况要求。若提高内筒材质,则只有采用耐高温腐蚀的特殊合金钢,如哈氏120级别以上钢材,但其价格就急剧上升。 常规要求控制荒煤气温度不低于500℃,以避免上升管内壁过快长石墨,本项目可控制在400℃以上,石墨生长速度低于原常规生产模式。 1.2 稳定、可靠、高效的导热材料研究及选择 荒煤气热量通过钢质内筒内壁导出到外壁后,需要良好的导热介质将外壁上的热量快速导出,提供给水进行汽化。由于上升管可有效利用的高度仅2~3m左右,荒煤气在内筒以较快速度通过,因此,整个热传导过程必须快速,才能最大限度回收荒煤气余热。由于钢铁的导热系数为80W/mK,因此导热介质的导热系数必须大于80W/mK,而且越大越好。同时,导热材料在900℃高温环境必须稳定,不能有物理、化学的质变,同时对钢铁不能有渗透性腐蚀破坏。高温下在水、氧气环境下稳定,即满足以下要求:(1)高导热率,导热系数大于100W/m(2)高温下的稳定、安全;(3)高温下对钢铁无腐蚀。 1.3 低热应力的换热系统结构研究 导热材料快速吸收荒煤气热量后,需要尽快将热量通过换热装置,传递给水进行汽化吸热,由于换热装置也是钢铁材质,其导热系数与内筒一样,就必须增加其换热面积,只有其换热面积大于内筒外壁导热面积,热量才能快速有效地传导。要在直径400~500mm的圆形环腔内布置下较大的换热面积的换热装置,其结构必须十分密排、紧凑。又由于装置内外温差大,温度区间从常温到900余℃,产生蒸汽压力将达1MPa,并存在汽液相之间的热量交换,热膨胀及热应力必将对换热系统及整个余热利用系统造成严重的影响。因此,换热系统的结

焦炉烟气余热回收项目

焦碳焦炉烟气余热回收项目 煤在炭化室干馏过程中产生的荒煤气汇集到炭化室顶部空间,经过上升管、桥管进入集气管。约700℃左右的荒煤气在桥管内被氨水喷洒冷却至90℃左右。荒煤气中的焦油等同时被冷凝下来。煤气和冷凝下来的焦油等同氨水一起经过吸煤气管送入煤气净化车间。 焦炉加热用的焦炉煤气,由外部管道架空引入。焦炉煤气经预热后送到焦炉地下室,通过下喷管把煤气送入燃烧室立火道底部与由废气交换开闭器进入的空气汇合燃烧。燃烧后的废气经过立火道顶部跨越孔进入下降气流的立火道,再经蓄热室,又格子砖把废气的部分显热回收后,经过小烟道、废气交换开闭器、分烟道、总烟道、烟囱排入大气。 对于其中经总烟道进入烟囱热烟气的仍有较大的余热回收价值。该方案就是为回收这一部分烟气的余热而设计。 1、烟气流程:在地下主烟道翻板阀前开孔,将主烟道路热烟气从地下主烟道路引出,经余热回收系统换热降温后,将热烟气降至约160℃,经锅炉引风机再排入主烟道翻阀后的地下烟道,经烟囱排空。 2、余热回收系统的组成:该系统由软化水处理装置、除氧器、水箱、除氧给水泵、锅炉给水泵、中温热管蒸气发生器、软水预热器、低温热管蒸气发生器、汽包、上升管、下降管、外连管路和控制仪表、锅炉引风机等组成,并且互相独立。 3、汽水流程 工业软化水经过软水泵进入热力除氧器除氧,除氧水一部分由给水泵输入热管软水预热器预热到后进入汽包,水通过下降管进入中温热管蒸汽发生器,水吸收热量变成饱和水,饱和水再经上升管进入汽包,在汽包里进行水汽分离,形成0.6MPa的饱和蒸汽,送至蒸汽总管或用户;除氧水另一部分由给水泵输入低温热管蒸发器,经加热后进入低压汽包,在汽包内进行汽水分离,形成0.3MPa的饱和蒸汽,送至除氧器除氧或给用户。 4、余热回收的主要原理: (1)蒸汽发生器的原理为:热流体的热量由热管传给放热端水套管内的水(水由下降管输入),并使其汽化,所产汽、水混合物经蒸汽上升管到达汽包,经集中分离以后再经蒸汽主控阀输出。这样由于热管不断将热量输入水套管内的水,并通过外部汽—水管道的上升及下降完成基本的汽—水循环,达到将热流体降温,并转化为蒸汽的目的。 (2)省煤器的工作原理为:热流体的热量由翅片热管传给放热端水套管内的水,水吸收热量,使热流体降温,使套管内的水由欠饱和态达到相应压力下的饱和态,再进入汽包内参与自然循环过程。 (3)低温蒸汽发生器的工作原理为:热流体的热量由热管传给水套管内的水(水由下降管输入),并使其汽化,所产汽、水混合物经蒸汽上升

发电厂烟气余热利用热经济性分析与计算

发电厂烟气余热利用热经济性分析与计算摘要面对我国能源和水资源紧缺等状况,在电厂设计中,优化系统设计,合理地利用电厂的烟气余热,提高机组效率,节约用水,减少煤耗,是节能的重要措施之一。本文针对我院某投标工程,对烟气余热利用的可行性及收益情况进行了分析。 关键词优化设计;烟气余热利用;投资;收益 the analysis and calculation of heat recovery from exhaust gas of power plant hua xiu-feng ,li xiao-ming (states nuclear electric power planning design & research institute, beijing 100094, china) abstract: according to the shortage of the energy sources and water in our country, when we design the power plant, optimum design is adopted, the heat from the exhaust gas is used. the efficiency of the power plant is increased, water and coal is saved. this is a good method to save the resource. in this article, based on a power plant our company bid for, the feasibility and income of the heat recovery from exhaust gas of power plant is analyzed. key words: optimum design; heat recovery from exhaust gas; investment; income 在火力发电厂中,锅炉的排烟余热问题即锅炉的排烟温度高一

浅谈焦化上升管余热回收技术的发展历程和应用情况(初稿框架)

浅谈焦化上升管余热回收技术的发展历程和应用情况焦化上升管余热回收技术或设备,自六七十年代以来各大焦化生产企业,分别作了研究和尝试,包括夹套式、盘管式、导热油式等几大流派。但在实际生产中总出现这样或那样的问题,导致相关技术研究一度被搁置。自2014年新一代水夹套式上升管换热器在福建三钢试验成功以来,上升管余热回收技术再次走进各焦化企业的视线。诸如武钢、邯钢、安钢等各大国有企业先后做了技术引进的尝试。同时焦化上升管余热回收节能项目也进入了国家十三五节能规划推广目录。 市场一度沸腾,也激发了各行技术人员的热情。导致各种技术再次成为技术人员讨论话题和试验对象,瞬间盘管式、导热油式等技术也再次涌现,并进行工业化试验,市场上再次出现五花八门技术组合、各夸各好声音,导致有的企业也分不清哪种技术更先进,哪种技术更安全。 本文通过对各家技术调研整理分析,得出如下结论。 1、没有绝对安全、万无一失的设备和技术。 2、特殊情况下及时采取措施,保证系统安全和减小损失。 3、设备是整个工艺技术的一方面,整个工艺的完整性高、流畅性、可调节性,也是整套工艺技术是否成熟可靠的重要方面。 4、作为企业自身,应先企业的地理位置、工艺要求等实际情况,确定选取的余热回 收采取的技术路线,比如确定所需蒸汽参数等。 5、选定技术路线后,考虑完善技术方案保证系统安全稳定运行,如采用双汽包、水 力平衡、调节、断水断电应急等。 通过对焦炉上升管余热回收技术的长期关注与研究发现,之所以在一定领域内取得突破性进步,主要源自于近年来制造水平的提升和新材料的出现。但技术难点依然存在。一是上升管数量多,系统庞大;二是工况恶劣,成分复杂,温度变化范围大;三是焦炉生产365天时刻不停,不易检修;四是空间跨度大,管路长,阻力不均;五是每个单体设备都要具备单独切换(断水、断气及排水、排气),确保应急情况或单体解列、更换能够顺利进行;

完整版钢铁行业余热回收

烧结线余热 烧结生产线有两部分余热,一是冷却机产生的热风,二是烧结机尾的高温烟气。用余热锅炉将这两部分余热来产生蒸汽,再通过汽轮机发电。据经验数据,每10m2的烧结面积可产生 1.5t/h 的蒸汽,可发电300kW,折合标煤120kg/h 。 转炉余热 转炉汽化冷却烟道间歇产生的蒸汽,通过蓄能器变为连续的饱和蒸汽,采用我公司的专利——机内除湿再热的多级冲动式汽轮机发电。每炼1t 钢,可产生80kg 饱和蒸汽,每吨饱和蒸汽大约可发电150kWh,折合标煤60kg。 转炉煤气经过汽化冷却烟道冷却后温度仍高达800?900 C,采用我公司的干 法煤气显热回收技术,通过下降管烟道、急冷换热器回收显热生产蒸汽,经蓄能器调节后发电。 电炉余热 电炉冶炼过程中产生200?1000 C的高温含尘废气,采用余热锅炉将其回收, 电炉烟气属于周期波动热源,因此余热锅炉产生的蒸汽需要经过蓄能器调节后方可进入汽轮机发电。 加热炉余热 加热炉有两处余热可以利用:一处是炉内支撑梁的汽化冷却系统,另一处是 烟道高温烟气。根据炉型不同,加热炉的烟气量在7000?300000Nm3/h,若用来发电,以烟气量10万Nm3烟气温度400 C计算,发电量约2000kWh,折合标煤0.8t ; 汽化冷却系统可生产 0.4~1.0Mpa的饱和蒸汽,每吨蒸汽(0.5Mpa)可发电120kWh,折合标煤48kg。 高炉冲渣水 用高速水流冲击炉渣使之充分急冷、粒化的过程中,会产生大量的冲渣热水。每吨铁排出约0.3t渣,每吨渣可产生80?95 °C,5?10t的冲渣水,将这部分热水 减压产生低压蒸汽,再进入饱和蒸汽凝汽式汽轮机发电。每吨90 C热水可发电 1.5kWh,折标煤0.6kg,80 C热水可发电1kWh,折标煤0.4kg 。

600万大卡导热油炉烟气余热回收方案讲解

实益长丰纺织有限公司 600万大卡导热油炉-余热回收装置 项 目 说 明 书 目录

1.摘要 (1) 2.公司营业执照和资质证书复印件 (1) 3.授权委托书 (2) 4.用户供热系统分析、节能分析及节能计算 (3) 5. 热量回收计算表 (4) 6.热管技术介绍 (5) 7.国内常用余热回收方式对比分析 (9) 8.热管余热回收解决方案 (10) 9. 施工方案 (12) 10. 工程报价及付款方式 (13) 11.售后服务 (14) 12.公司部分实体图片 (15) 13.公司简介 (16)

摘要 本文详细介绍了英德市实益长丰纺织有限公司供热系统余热回收工程方案,分析英德市实益长丰纺织有限公司供热系统并对余热回收技术做了系统的描述,根据工作需求及工作背景做出技术解决方案、施工方案、工程报价、节能分析、售后服务,对超导热管技术做了较为具体的描述。本文还对国内各种常用余热回收方式做了系统比较。

2 供热系统分析 英德市实益长丰纺织有限公司目前1台600万大卡燃煤导热油炉,在能源日趋紧张的背景下,同时企业的经营成本不断上升。排烟温度在280℃以上,造成很大的资源浪费。 备注:根据现有锅炉情况,排烟温度为280℃以上,其节能有很大的空间,因为其烟气量较大,热焓高。 节能分析 英德市实益长丰纺织有限公司导热油炉可以改进节能设备: 在导热油炉与引风机之间加装热管余热回收器,烟气温度由300℃降到130℃左右,每小时可产生173度的蒸汽1.15吨,回收74万大卡的热量,为企业带来可观的经济效益。 节能计算 每小时回收74万大卡热量,按煤燃烧值5000大卡、锅炉效率80%计算,每小时可省煤 74万大卡÷5000小时÷80%=185公斤/小时 185公斤/小时×24/天×320天=1420800公斤/每年 1420800公斤÷1000=1402.8吨 1402.8吨×0.7143=1001tce(每年可节省) 按煤价650元/吨,每小时节省费用 185公斤/小时×0.65元/公斤=120元/小时 每年锅炉运行时间按7200小时计,则每年可节约 120元/小时×7200小时=86万元 设备总投资约16万,则设备的回报周期为: 16万/(86万/12月)=2.23个月,保守估计3个月收回全部投资。

【CN209940900U】一种焦炉上升管余热利用装置【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920608323.7 (22)申请日 2019.04.29 (73)专利权人 潍坊业兴新型建材有限公司 地址 261000 山东省潍坊市钢厂工业园潍 钢东路 (72)发明人 张洪峰 张寿臣 张善伟  (51)Int.Cl. C10B 27/00(2006.01) F28D 1/047(2006.01) F28F 19/04(2006.01) (54)实用新型名称一种焦炉上升管余热利用装置(57)摘要本实用新型公开了一种焦炉上升管余热利用装置,包括上升管本体,上升管本体的进气和出气端均固定连接有用于外部连接的法兰盘,上升管本体的左侧内壁上贯穿设有换热件,上升管本体是由多种材料复合组成。本实用新型通过紧贴于耐蚀合金层设置的由聚氨酯泡沫塑料组成的绝热层,能够有效的对上升管本体进行隔热,防止上升管本体内外温差过大导致管体内壁出现开裂,通过设置的由聚四氟乙烯组成的耐腐蚀层和涂覆的耐蚀陶瓷涂料,能够有效提升上升管本体的耐腐蚀性,防止上升管本体的内壁因荒煤气长期冲刷而腐蚀开裂,延长上升管本体的使用寿命,通过设置的螺旋状的换热管,有效增加荒煤气和换热管之间的换热面积, 提升换热效率。权利要求书1页 说明书3页 附图2页CN 209940900 U 2020.01.14 C N 209940900 U

权 利 要 求 书1/1页CN 209940900 U 1.一种焦炉上升管余热利用装置,包括上升管本体(1),所述上升管本体(1)的进气和出气端均固定连接有用于外部连接的法兰盘(2),其特征在于,所述上升管本体(1)的左侧内壁上贯穿设有换热件(3),所述上升管本体(1)是由多种材料复合组成。 2.根据权利要求1所述的一种焦炉上升管余热利用装置,其特征在于,所述换热件(3)包括设置于上升管本体(1)内的换热管(4),所述换热管(4)呈螺旋状设置,所述换热管(4)靠近上下两端的右端侧壁上均固定连接有用于固定换热管(4)的连接块(5),两块所述连接块(5)远离换热管(4)的一端侧壁与上升管本体(1)的环形内壁固定连接。 3.根据权利要求1所述的一种焦炉上升管余热利用装置,其特征在于,所述上升管本体(1)的最内层为耐蚀合金层(6),所述耐蚀合金层(6)的材质为镍基合金。 4.根据权利要求3所述的一种焦炉上升管余热利用装置,其特征在于,所述上升管本体(1)的中间层为绝热层(7),所述绝热层(7)紧贴于耐蚀合金层(6)设置,所述绝热层(7)的材质为聚氨酯泡沫塑料。 5.根据权利要求4所述的一种焦炉上升管余热利用装置,其特征在于,所述上升管本体(1)紧贴左侧绝热层(7)的最外层为耐腐蚀层(8),所述耐腐蚀层(8)的材质为聚四氟乙烯。 6.根据权利要求5所述的一种焦炉上升管余热利用装置,其特征在于,所述耐腐蚀层(8)上还涂覆由耐蚀涂层(9),所述耐蚀涂层(9)的材质为耐蚀陶瓷涂料。 7.根据权利要求4所述的一种焦炉上升管余热利用装置,其特征在于,所述上升管本体(1)紧贴右侧绝热层(7)的最外层为耐磨层(10),所述耐磨层(10)的材质为金刚砂。 2

夹套式焦炉上升管荒煤气余热回收工艺技术的改进与完善

夹套式焦炉上升管荒煤气余热回收工艺技术的改进与完善 发表时间:2019-08-27T11:37:26.887Z 来源:《工程管理前沿》2019年第12期作者:左国辉韩雷雷[导读] 阐述了焦炉荒煤气余热回收运行过程中的常见问题及难点。河北汉尧环保工程有限公司河北石家庄 050031 摘要:本文阐述了焦炉荒煤气余热回收运行过程中的常见问题及难点,通过对工艺装置进行技术改进和完善,有效解决易腐蚀、易析碳 结、换热效率低、水利分布不均、冒黑烟等问题,实现了装置安全、稳定、高效运行,效益明显,对同类项目实施具有一定的参考和借鉴意义。 关键词:余热回收荒煤气上升管 概述 2018年9月底,由我公司设计、实施、调试的宣钢5#、6#焦炉荒煤气显热回收利用改造工程正式完工投运,实现了产生0.5~0.8公斤饱和蒸汽12t/h以上的良好节能效果。经过历时10个月的生产跟踪和调试改进,掌握和完善了一系列施工和调试过程中的技术提升和工艺优化,在安全生产、环境保护、节能效果等方面得到进一步保障,为今后同类项目设计实施提供了技术积累和经验借鉴。实施方案及组成 焦化厂2×50孔6米焦炉年产焦炭100万吨,建于2008年,从炭化室经上升管逸出的750℃~850℃荒煤气通过喷洒大量70℃~75℃循环氨水将高温荒煤气冷却至82℃~85℃,再经初冷器冷却到22℃~35℃,荒煤气带出的热量被白白浪费。针对这一现状,公司通对焦炉及荒煤气参数进行计算,设计一套由补水泵、缓冲水箱、加药装置、给水泵、汽包、强制循环泵、上升管换热器、调节阀组、管网及相关附属设施构成余热回收系统。整个方案从设计到施工到投运计划总工期5个月,在保证不影响焦化正常生产的情况下进行节能改造。工艺流程 工艺过程是除盐水通过补水泵进入缓冲水箱,再经给水泵至汽包。然后水从汽包通过下降管经强制循环泵至上升管换热器,吸热后的汽水混合物再经上升管至汽包,经汽水分离后,饱和蒸汽供入蒸汽管网,未汽化的水重新进入下一个循环。换热器另一侧从炭化室逸出的750℃~850℃荒煤气经过本换热装置温度降至450℃~500℃后,经桥管、集气管进入化产车间。工艺流程图如下: 运行期间出现的问题和解决方案 (1)当停电或强制循环泵停运后,二次恢复供水过程中,在管道末端上升管换热器易出现过热干烧和气阻现象。分析:末端换热器从给水角度讲位置处于最远端,水克服管道阻力损失,因此末端换热器进口压力Pn进低于其它换热器进口压力;从汽水混合物角度讲位置也是处于最远端,汽水混合物要流回汽包也要克服沿途管道阻力损失,因此末端换热器出口压力Pn出要高于其它换热器出口压力;这样就造成末端换热器介质流动性很差,在流动状态被破坏之后易形成气阻,造成设备过热干烧。解决方法:①.短时间出现过热和气阻现象,可以短期提高强制循环泵出力,使系统建立新的平衡;②.长时间出现过热和气阻现象,需先对过热换热器进行蒸汽冷却,在提高强制循环泵出力,建立新平衡;③.总之系统庞大,重在优化单体设备的自动化和调控水平。效果:不良现象消除,系统运行稳定,总产气量指标有所提升。(2)近汽包端个别上升管底部有结焦现象,开盖有冒黑烟现象。分析:①.近端换热器水量过大,取热过多,造成上升管直管段荒煤气温降过大,出现析碳结焦现象,进而开盖有黑烟冒出。②.各企业操作过程控制碳化室顶部温度不一,总体780±20℃,再加上单孔碳化室结焦过程荒煤气温度类似正弦曲线波动,结焦末期开盖本身荒煤气正处于温度偏低阶段。 解决办法:①.轻微现象可以通过及时清理换热器内壁和短时间开盖焚烧处理。②.严重现象需控制近端换热器进水量,控制出汽口蒸汽的饱和度。③.经过调整摸索和精确计算对近端换热器进口增加节流孔板精准控制单体设备进水量,同时强制内循环系统增加精确插入式流量测量装置,精准调节内系统循环流量。 设计改进及施工优化 经过整个项目从设计到实施到调试到运营全流程跟踪和试验,并结合实际实施效果和生产数据对比得出如下结论: 1.设计方面优化提升 ①.采用树状网络布管技术(见下图), 通过强制循环泵变频、大流量高扬程、分段的管网布局、节流调节等手段保证每个上升管换热器的进水相对均匀,保证整个系统各单体设备水量均匀。

溴化锂直燃机烟气余热利用计算方法

烟气余热回收热量计算方法 一.烟气余热回收热量Q的计算 1.烟气的平均比热:Cp 烟气的入口温度T1时的比热C1 烟气的出口温度T2时的比热C2 烟气的平均比热Cp=(C1+C2)/2 2.烟气的质量流量:Vm(kg/h) 烟气入口温度T时的密度P 烟气的质量流量Vm= P*V 3.烟气换热量(显热):Q烟气 烟气换热量Q=Cp×Vm×△T=Cp×Vm×(T1-T2) 4.水蒸汽的凝结热量(潜热):Q凝水 天然气密度:0.642kg/m3;甲烷纯度为:90% 1kg甲烷燃烧产生2kg水蒸汽,1kg水蒸汽冷凝成水释放539kcal热量。 Q凝水=天然气量(m3/h)×0.642×90%×2×539 5. 烟气余热回收热量:Q=Q凝水+Q烟气 二.计算实例 例:某用户采用100万大卡直燃机组,额定制冷时排气温度为160℃。利用一台烟气板交对烟气余热进行回收利用将卫生热水由25℃加热至55℃,烟气通过烟气板交后排气温度降至75℃。 1.计算烟气换热量:Q烟气 烟气换热量Q烟气=Cp×Vm×△T=Cp×Vm×(T1-T2) 1万大卡燃料热值充分燃烧排气量为18m3; 100万大卡机组额定天然气用量为84.5m3/h,排气量V(m3/h)为:84.5×8600÷10000×18=1308 排气温度为160℃时,烟气质量流量Vm(kg/h): Vm=P×V=0.829×1308 =1084 烟气的平均比热Cp: 烟气入口温度为160℃时的比热C1:0.2590 烟气出口温度为75℃时的比热C2:0.2520 Cp=(C1+C2)/2=(0.2590+0.2523)/2=0.2555 烟气换热量Q烟气=Cp×Vm×△T =Cp×Vm×(T1-T2) =0.2555×1084×(160-75) =23541kcal 2. 计算水蒸汽凝水热量:Q凝水 Q凝水=84.5×0.642×90%×2×539=52632kcal 烟气余热回收热量: Q=Q烟气+Q凝水=23541+52632=76173kcal 3. 余热回收效率:76173÷(8 4.5×8600)×100%=10.4%三.烟气温度、密度、比热关系

烟气余热回收利用装置

钻井柴油机烟气余热回收利用装置 申请号/专利号:200920139896 本实用新型公开了一种钻井柴油机烟气余热回收利用装置,包括水罐以及盘管热交换器,盘管热交换器具有进气端与出气端,进气端与柴油机的排气管相连通;盘管热交换器还具有进水口与出水口,进水口与出水口之间连接着装有循环泵的循环水管路,循环水管路从油罐中穿过,水罐连接在循环水管路上。本实用新型结构简单,易于制造,利用柴油机排出的烟气余热加热油罐中的存油,达到了在冬季用0#柴油替代-35#柴油、节能减排的目的,同时提高了井队冬季开钻工作效率,降低了井队运行成本。 申请日:2009年02月24日 公开日: 授权公告日:2010年01月06日 申请人/专利权人:新疆塔林石油科技有限公司 申请人地址:新疆维吾尔自治区克拉玛依市白碱滩区门户路100号 发明设计人:杜其江;何龙;李树新;田成建;林宣义;吕伟;姚庆元;尚玉龙;李建华;马伟;王琪 专利代理机构:乌鲁木齐新科联专利代理事务所有限公司 代理人:李振中 专利类型:实用新型专利 分类号:F02M31/16;F02G5/02;F01N5/02 点此查看跟该专利相关的主附图\公开说明书\授权说明书 烟气余热回收装置的利用 2010年第10期沿海企业与科技一一NO.10.2010l堂箜12堇塑!£Q△曼坠坠量烈!垦!丛:墅墨竖趔坠錾!量丛堡E鱼匹垦丛丛Q!!E蔓羔!垡丛婴坚!坐i!曼!!塑Q:12主!烟气余热回收装置的利用梁著文〔摘要〕文章主要介绍锅炉排烟余热回收的必奏巨和利用方向。当今国内外烟气回收蓑王的应用情况。从设计角度提出设置

烟气余热回收装王(烟气冷却器)需要考虑的问题。并列举工程设计方案及其预期的节能效果。〔关键词〕烟气余热回收;低温腐蚀;节能〔作者简介】粱著文,广东省电力设计研究院,广东广州。510000〔中圈分类号〕TM621.2〔文献标识码〕A〔文章编号〕1007-7723(2010)10-0111-0003一、引言2.利用烟气余热干燥褐煤。其核心设备(干燥机滚筒)是稍微倾斜并可回转的圆筒体,湿物料从一端上部加入,干物料在另一端下部进行收集。约150。C的热烟气由迸料端或出料端进入,从另一端的上部排出,热烟气和物料以逆流或顺流的方式接触,出口烟气温度约降至120℃左右。3.安装防腐蚀管式换热器,用来加热厂房或是厂区的水暖系统热网循环水,以替代或部分替代常规的热网加热器,从而节省了热网加热器的加热蒸汽量,增加了发电量。4.利用烟气的余热加热凝结水,用来提高全厂的热效率,降低煤耗,增加电厂发电量。加热的方式主要有两个:一是直接加热方式,即安装烟气回热加热器,使烟气与凝结水直接进行热交换;二是间接加热方式,即安装烟气回热加热器及水水换热器,使烟气在闭式水和烟气回热加热器内进行热交换;吸收烟气余热后的闭式水进入水水换热器内与凝结水进行热交换,然后再将热量带入主凝结水系统,图l为系统流程图。在火电厂的运行中,煤炭燃烧及各种用能设备、热能换热设备产生了大量的余热,然而这些能量多数都被浪费了。近些年来,在国家大力倡导“节能减排”能源利用政策的大环境下,国内某些电厂成功地设计安装了余热回收利用装置,给电厂带来很好的经济效益。对火力发电厂讲,锅炉热损失中最大的是排烟热损失。对小型锅炉,燃用高硫分煤时,排烟温度比较高,可以达到180—2200C左右;中型锅炉排烟温度在110—180℃。一般来说,排烟温度每升高15.20。C,锅炉热效率大约降低1.o%。因此,锅炉排烟是—个潜力很大的余热资源。二、烟气余热的利用方向烟气余热的利用方向主要可分为预热并干燥燃料、预热助燃空气、加热热网水、凝结水等。1.用水水换热的暖风器替代常规蒸汽暖风器,即以一次循环水为热媒,将在烟气侧吸收的热量释放给一、二次冷风。将进人预热器前的冷风预加热。以减少常规蒸汽暖风器辅助蒸汽用量。硝装置电功tn水牟龠圈1系统流程万方数据三、烟气余热回收装置在国内外的应用情况1.德国黑泵(Schwa眺Pumpe)电厂2×800MW褐煤发电机组在静电除尘器和烟气脱硫塔之间加装了烟气冷却器,利用烟气加热锅炉凝结水。2.德国科隆Nidemusseml000MW级褐煤发电机组采用分隔烟道系统充分降低排烟温度,把低温省煤器加装在空气预热器的旁通烟道中,在烟气热量足够的前提下引入部分烟气到旁通烟道内加热锅炉给水。3.日本的常陆那珂电厂采用了水媒方式的管式GGH。烟气放热段的GGH布置在电除尘器上游,烟气被冷却后进人低温除尘器(烟气温度在90—100℃左右)。4.外高桥电厂三期2×1000MW机组进行了低温省煤器改造,低温省煤器布置在引风机后脱硫吸收塔前,根据性能考核报告,其节能效果明显。目前国内较多应用。器传热管的金属安全壁温Ta。由于以上烟气酸露点的计算采用的是经验公式,但实际煤质及具体的运行情况会通常偏差较大,按锅炉厂的常规经验设计,一般会加5~lO℃的温度裕量作为金属安全壁温。如果在实际运行中通过取样检测能够获得较准确的烟气露点温度,可以相应调整烟气冷却器的金属安全壁温ta。(三)传热管的堵灰问题低温受热面的积灰不仅会污染传热管表面,影响传热效率,严重时还会堵塞烟气流动通道,增加烟气流动阻力,甚至影响锅炉安全运行,而导致不得不停炉清灰。为保证烟气余热回收装置不发生堵塞,应保持传热管的积灰为干灰状态。因此,在电站锅炉烟气余热回收装置运行过程中,保证传热管金属温度高于烟气水蒸汽露点温度、传热管上不会造成水蒸汽结露至关重要。对于干灰的清理,可采取以下几方面的措施:1.烟道内烟气流动顺畅,在结构设计上不出现大量积灰源,同时保证吹灰器能吹到所有的管束,不留吹灰死角。2.烟气流动速度均匀,设计烟气流速高于lOm/s,使烟气在流动中具有一定的自清灰功能。3.采用成熟可

焦炉荒煤气上升管余热利用方案比较

焦炉荒煤气上升管余热利用方案比较 焦炉是焦化企业生产的关键设备和能量聚集点。焦炉的支出热主要由三部分组成:一是焦炉炭化室出焦时所推出的红焦带出的高温余热,约占37%;二是焦炉上升管排出的高温荒煤气带出的中温余热,约占33%;三是焦炉烟道排出的废气带出的低温余热,约占17%。 焦炉荒煤气是焦煤在结焦过程中挥发份逸出而形成,通常温度为600—800℃左右,其显热占焦炉热支出的约33%左右。为降低焦炉荒煤气温度便于后续焦化工艺处理,传统工艺采用喷氨水急冷的工艺冷却高温荒煤气,使荒煤气急剧降温至80-85℃。该工艺流程不仅浪费了大量的荒煤气显热,而且消耗大量的氨水、又浪费了大量的水资源和电力,增加污水排放。 其中,红焦带出的高温余热目前已通过干熄焦技术予以回收并发电;烟道气排出的低温余热也已采用煤调湿、煤干燥、热管技术予以回收;但对于焦炉顶部上升管排出的800℃荒煤气,其带出的热量在焦炉输出显热中位居第二,该项中温余热是焦炉余热余能回收利用的最后一道亟待攻破的技术难关。 目前关于荒煤气显热利用已经研究了近30年,有水套式、热管式、风媒式、荒煤气引出式、介质浴式等等方法。 水套式。这种方式试验最早,是在原上升管外面包覆一层水套,形式有若干种,利用荒煤气的部分热量产生热水或蒸汽。以6m焦炉为例,每根上升管产0.5MPa蒸汽约 79kg/h,荒煤气从692℃降低到606℃,100根上升管可产蒸汽约7.9t/h,强制循环泵功率约30KW,设备总投资约1000~2000多万元。水套式的优点是设备体积较小,不结焦,对焦炉原有工艺没有太大影响,但是焦炉的上升管变成一个压力容器,存在运行时起停不易的限制和泄漏隐患。 风媒式。这种方式是在原上升管外面制造一个风冷却套,其形式也有若干种,将荒煤气的一部分热量吸收产生热风,再将热风引到地面的余热锅炉中产生蒸汽,热风放热后再通过风机循环回上升管中。还是以6m焦炉为例,荒煤气从692℃降低到637℃,100根上升管可产蒸汽约4.5t/h,循环风机电耗约179KW,设备总投资约600~1000万元。风媒的优点是也是对焦炉原有工艺没有太大影响,不结焦,控制方便、安全,但是蒸汽产量比水套式的少约40%。

焦炉烟气脱硫脱硝及余热回收方法手册

精心整理山西焦化股份有限公司 焦炉烟气脱硫脱硝项目二期工程 方案书 1#焦炉烟气脱硫脱硝及余热回收 2017年03月02日

一、设计方案 1、工程概述 山西焦化股份有限公司焦炉烟气脱硫脱硝项目工程二期,共有3台50孔焦炉,每台产能50万吨/年。由于现有生产工艺并未配备相应的烟气净化处理装置及设施,生产过程中产生的烟气(含SO2和NOx)通过地下烟道引至烟囱直接排放。随着环保形式的日益严峻,个别地区机械焦炉烟囱已经开始执行《炼焦化学工业污染物排放标准》(GB16171-2012)中的特别排放限值要求:SO2≤30mg/Nm3(干基),NOx≤150mg/Nm3(干基),颗粒物 ≤15mg/Nm3(干基)。为积极响应国家环保部关于焦炉生产污染物排放指标的控制,峰煤焦化厂相关领导拟对焦炉烟气进行脱硫脱硝净化处理,以达到污染物排放指标。 2、基础参数及条件 2.1、焦炉烟气参数 在正常生产过程中,1#、4#、5#焦炉各有一个烟囱,每个烟囱排放的烟气量和烟气成分基本相同,详细参数见下表: 序号名称单位数值 1 烟气量Nm3/h 90000-120000 2 烟气温度℃230-290 3 SO2浓度mg/Nm3 ≤200 4 NOx浓度mg/Nm3 ≤1200 5 粉尘浓度mg/Nm3 ≤30 6 含O2量% 7-11% 2.2、设计原则及标准 《焦化安全规程》GB12710—2008 《炼焦化学工业污染物排放标准》GB16171-2012 《火电厂烟气脱硝工程技术规范-选择性催化还原法》HJ562-2010 《工艺金属管道设计规范》GB50316-2000 《工业企业厂界噪声标准Ⅲ类标准》GB12348-90 《工业企业设计卫生标准》GBZ1-2002 《工业金属管道工程施工及验收规范》GB50235-97 《自动化仪表施工及验收规范》GB50093-2002 《机械设备安装工程施工及验收规范》GB50231-98

焦炉烟气余热回方案

焦化厂节能减排项目 -----热管式余热锅炉应用的可行性 项 目 方 案 书 上海蕲黄节能环保设备有限公司山西办事处 二○一一年一月

上海蕲黄节能环保设备有限公司成立于2009年,是在上海蕲黄节能设备有限公司(2004年)无法满足市场需求的基础上成立的,是国内较早开展余热回收的厂家之一,2010年被选为上海市节能协会服务产业委员会委员,并于2011 年获批国家第三批节能服务公司。通过近 几年的发展,经我公司成功改造的锅炉、工业窑炉已有1000多台,公司在锅炉及工业窑炉的余热回收利用及节能改造、纺织印染定型机的余热回收利用及 节能改造、废气净化处理等领域处于国内先进水平。公司坐落在璀璨的东方明珠——上海浦东新区,公司现有锅炉节能高级专家10名,产品研发工程师人员30多名,公司拥有国内先进生产、检测设备,拥有专业的运输、安装、售后服务队伍。公司是集锅炉余热回收、环保设备研发、设计、制造、配套、安装、调试及售后服务于一体的多元化高科技环保企业。

多年来,公司自主研发的波形给煤节能装置(国家专利号:ZL 3120.9)、热管余热蒸汽发生器(国家专利号:ZL 7839.9)在纺织印染、石油化工、金属冶炼等行业广泛运用,尤其在锅炉、玻璃窑炉、陶瓷窑炉、焦化炉、矿热炉、石灰窑炉、水泥窑炉、烧结炉、退火炉、定型机等高能耗领域,为用户创造了巨大的经济效益。由我公司承担的上海重型机械厂、上海华峰集团、上海五四助剂厂的锅炉余热回收节能改造项目被列入《2009年上海市重点节能技术改造项目汇编》。另外公司在流化床锅炉改造、冷凝水回收、余热发电、锅炉富氧燃烧改造、烟气脱硫脱硝、除尘工程等方面也处于国内领先水平。 公司以“服务于企业,贡献于社会”为宗旨,长期致力于“电力、冶炼化工、纺织印染、造纸食品、电子电器、农业”等行业的节能降耗、锅炉余热回收、定型机余热回收、废气净化、烘干干燥等工业、农业领域的集成化治理工作,并全面开展合同能源管理(EMC)项目的节能改造工程。 蕲黄人不断加大技术创新投入,始终采用国内领先的生产设备、生产工艺和科学管理方法,一如既往的以优质产品服务广大客户。在发展的道路上,我们始终奉行“一切为了节能、一切为了客户”的宗旨,为客户提供节能产品、节能诊断改造、节能规划与设计服务及合同能源管理项目服务,以实现企业节能增效、互惠互利、共获双赢的目标,与新老朋友携手共创辉煌的明天! 我公司将以严谨的科技作风,良好的信誉,合理的价格,竭诚为广大公司做好服务,共创辉煌。

工业烟气余热回收利用方案优化分析

龙源期刊网 https://www.360docs.net/doc/d112204253.html, 工业烟气余热回收利用方案优化分析 作者:罗先辉 来源:《科技与创新》2015年第14期 当前,我国资源、能源问题日益严峻,引起了国家与各地政府的高度关注。在节能减排的背景下,为了节约资源,实现社会经济的可持续发展,对工业烟气余热进行回收利用成为了大势所趋。在工业生产中,对烟气余热进行回收利用不仅节约了能源,保护了生态环境,还能为我国经济社会的建设与发展提供强大动力支持。 1;;工业余热回收利用现状 工业余热主要是指在工作生产过程中使用的热能转换设备和相关机械设备中未被利用的能量。总体来看,我国余热资源较为丰富。相关研究资料显示,我国余热资源数量平均高达 4.0×107;t标准煤。 工业部门的余热资源平均率为7.3%,但是回收利用率却只为34.9%.我国余热资源之所以回收利用率较低,主要原因是过多的余热量以各种形式浪费掉。在工业未来发展中,可以看出余热资源存在巨大的回收利用潜力。随着科学技术的发展,通过有效的管理、设备改造升级、节能操作等手段,可以使余热资源得到有效利用,余热资源利用回收率将会大幅提高。在现代工业发展中,充分利用余热资源,对提高资源平均利用率具有重要意义,同时这也是工业发展中亟需解决的问题。 2;;利用烟气余热的原则 3;;设计工业烟气余热回收利用优化方案 烟气回收工作中使用的主要设备是余热回收换热器,它是工业生产中的主要节能设备,在提高工业烟气热效率的同时,还能够大幅提升能量的有效能效率。因而在设计工业烟气余热回收利用优化方案时,就需要对换热器进行优化。 3.1;;确定优化目标 余热回收换热器最优方案受到多种因素的影响,包括能源价格、原材料价格、安装费用、贷款方式和利率等。另外,技术因素也会对其产生影响,例如换热器性能和使用寿命。 当前比较明显的优化目标方案主要有换热器回收预热年净收益最大目标函数、基于相对费用参数的换热器优化目标函数、最小投资回收年限目标函数等。这些目标函数的取法各有利弊,利用追求年净收益最大和相对费用参数的目标函数对预热回收效果进行了定量研究,但是能量、质量没有得到准确反映;而换热器优化目标函数虽然对能量的考虑更全面,但在投资经济效果方面存在欠缺。

焦炉上升管荒煤气余热利用技术

焦炉上升管荒煤气余热利用技术 文章介绍了焦炉上升管荒煤气余热利用技术的发展历程,提出了一种新型的利用技术,并就具体应用工程进行了工艺流程、主要设备、投资等介绍。希望通过文章的分析,能够对相关工作提供参考。 标签:焦炉上升管;荒煤气;余热利用 炼焦生产是典型的能源再加工和热能的再回收利用过程,焦炭和炼焦煤气是其主要的能源产品。表1为炼焦过程中热量损失分布及相应的主要回收利用技术。 随着干熄焦和焦炉烟道废气余热锅炉技术的成熟,煤在干馏过程中产生的高温荒煤气的余热回收与利用就成为历来是焦化行业节能关注的焦点。 理论计算和各种试验装置的试验数据均表明,每生产1吨红焦焦炉上升管段的高温荒煤气余热回收后至少能产生0.8MPa蒸汽0.1吨,2015年我国生产焦炭4.48亿吨,如其荒煤气余热全部得到回收利用,则至少可回收4480万吨0.8MPa 蒸汽,折合标煤约424万吨,年可减排二氧化碳量1102万吨,二氧化硫量10.2万吨,氮氧化物量3.0万吨,节能减排潜力巨大。 1 我国焦炉上升管荒煤气余热利用的进程 目前世界焦化行业传统的方法是喷洒大量70℃~75℃的循环氨水,循环氨水吸热而大量蒸发,使荒煤气温度得以降低,进入后序煤化工产品回收加工工段。这样的结果是,荒煤气带出的热量被白白浪费掉,既流失了荒煤气热能,还增加了水资源的消耗。 早在上世纪70年代,首钢、太钢采用夹套上升管,夹套内冷却水吸收荒煤气所携带的热量而汽化,产生蒸汽,实现热能的回收利用,简称为“焦炉上升管汽化冷却装置”,并相继在武钢、马钢、鞍钢、涟钢、北京焦化厂、沈阳煤气二厂、本钢一铁和平顶山焦化厂等多家企业得到应用。北京焦化在上升管体卷边结构、焊接方法方面进行了多项改进,仍不能完全解决上升管的筒体焊缝拉裂、漏水、漏汽等问题,运行几年后终因系统安全稳定性、运行成本等方面原因纷纷停用。据悉国内运行时间最长的本钢一铁也由于2008年4.3m焦炉的拆除而中止了该技术的使用。焦炉上升管汽化冷却装置在我国的应用经历了发展、停滞、再研发、再停滞的过程。研究的技术主要集中在导热油夹套管、热管、锅炉和半导体温差发电等技术。但这些技术均不能满足现场工况要求,效率低、寿命短、易结焦积碳。 2 一种新的焦炉上升管换煤气余热利用技术 江南电力集团2009年组织有关单位及科技人员进行上升管荒煤气余热利用

60万吨焦炉余热锅炉使用说明及操作规程及安全操作规程

60万吨焦炉余热锅炉使用说明及操作规程 及安全操作规程 xx年4月1日 目录 1、概述 2、余热锅炉设计参数 3、工艺流程及设备介绍 4、余热回收系统的操作 一、概述本使用说明是针对焦炉烟道气余热利用系统而编制的专用版本,同时也考虑到了焦炉运行的安全性。 二、余热回收系统工艺流程及主要辅机 3、1系统工艺流程 3、1、1、烟气流程:供余热回收的高温烟气从总烟道引出后为了调节焦炉吸力,控制进入余热回收装置的烟气量,两条引出管道各安装一台电动调节阀,两条地下烟道取出的烟气汇总后进入余热换热装置,换热后的低温烟气经引风机进入脱硫塔脱硫处理,脱硫后的烟气直接进入烟囱。为保证余热系统的单独运行,烟气出引风机后引一路旁路管道送至脱硫塔出口管道上,在旁路管道上安装电动截断阀一台。 3、1、2 水、汽流程工业水作为系统的补充水进入软化水处理装置,处理完成后的软化水进入软化水箱,经软化水泵进入低温省煤器预热后进入热力除氧器,热力除氧器内的水和汽包出来的部分蒸汽混合后除掉水中的氧,然后进入锅炉水泵,锅炉水泵将除氧水打入二级省煤器,被加热至150℃左右,然后进入中压汽包,中压汽包内的饱和水通过各自的下降管分别进入两组中压蒸发器,吸收烟气的热量,产生汽水混合物,通过各自的上升管进入中压汽包的水空间,由汽

水分离装置分离出其中的饱和蒸汽175℃左右,提供给各个蒸汽用户或并入蒸汽管网。在蒸汽聚集器内蒸汽与水分离产生0、8MPa饱和蒸汽并入管网。工艺流程图如下: 3、2、余热回收系统组成焦炉烟气余热回收系统主要由:蒸汽聚集器,蒸发器、省煤器、设备外壳、热力除氧器、软化水泵、锅炉水泵、软化水处理器、上升下降循环管路、汽水管路、排污管路、烟气管道、烟道阀门、钢结构平台扶梯、引风机、吹灰器、控制系统等单元设备组成。 3、2、1蒸发器蒸发器为螺旋翅片管受热面结构,分为三组,受热面立式布置。蒸发器的集箱管均设置了定期排污管道阀门。蒸发器为全疏水结构。蒸发器置于烟气出口的高温烟道内。 3、2、2省煤器省煤器为螺旋翅片管受热面结构,分为两组,一级省煤器和二级省煤器在一台设备内,受热面立式布置。省煤器的集箱管均设置了定期排污管道阀门。省煤器为全疏水结构。省煤器置于蒸发器后的烟道内。 3、2、3蒸汽聚集器(汽包)汽包直段长度约为4000mm,两端相配椭球形封头,并设有人孔装置。筒体和封头的材料均为Q235B。该汽包通过两个支座(一个活动支座,一个固定支座)搁置在钢架梁上。由省煤器来的水从汽包前部进入分配管,包内的汽水分离元件为均汽孔板和丝网捕沫器,布置在汽包顶部。汽包正常水位在汽包中心线以下50mm处,正常水位范围为50mm。汽包内设有磷酸盐加药管、连续排污管、紧急放水管、再循环管。底部为集中下降管。在汽包上还设有双色水位计、压力表和安全阀(2个)等装置,以供锅炉运行时监督、控制用。(1)蒸汽聚集器满足系统使用,方便汽水分离,在启动、停炉和瞬态条件时能调节水位。(2)正常水位(运行水位)在汽包中心线以下。 3、2、4水泵系统给水配两台电动给水泵(一开一备),水泵扬程除满足系统压力外,还要克服水柱爬升高度及沿程阻力,系统配备两台立式锅炉给水泵。系统除氧器供水配置两台除氧水泵(一开一备),软化水经过除氧水泵作用,先进入省煤器,然后进入热力除氧器除氧,水泵扬程除满足系统压力外,还要克服水柱爬升高度及沿程阻力,型号为立式锅炉软化水泵锅炉水泵参数:流量16m3/h,

相关文档
最新文档