主流的深度学习模型有哪些_光环大数据培训

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主流的深度学习模型有哪些_光环大数据培训

0. 前言

深度学习大热以后各种模型层出不穷,很多朋友都在问到底什么是DNN、CNN 和RNN,这么多个网络到底有什么不同,作用各是什么?

趁着回答:深度学习的主要分类是什么呀?这些网络cnn dbn dnm rnn是怎样的关系?这个问题的机会,我也想介绍一下主流的神经网络模型。因为格式问题和传播原因,我把原回答内容在这篇文章中再次向大家介绍。

在更详细的介绍各种网络前,首先说明:

大部分神经网络都可以用深度(depth)和连接结构(connection)来定义,下面会具体情况具体分析。

笼统的说,神经网络也可以分为有监督的神经网络和无/半监督学习,但其实往往是你中有我我中有你,不必死抠字眼。

有鉴于篇幅,只能粗略的科普一下这些非常相似的网络以及应用场景,具体的细节无法展开详谈,有机会在专栏中深入解析。

文章中介绍的网络包括:

1. 有监督的神经网络(Supervised Neural Networks)

1.1. 神经网络(Artificial Neural Networks)和深度神经网络(Deep Neural Networks)

追根溯源的话,神经网络的基础模型是感知机(Perceptron),因此神经网络也可以叫做多层感知机(Multi-layer Perceptron),简称MLP。单层感知机叫做感知机,多层感知机(MLP) 人工神经网络(ANN)。

那么多层到底是几层?一般来说有1-2个隐藏层的神经网络就可以叫做多层,准确的说是(浅层)神经网络(Shallow Neural Networks)。随着隐藏层的增多,更深的神经网络(一般来说超过5层)就都叫做深度学习(DNN)。然而,“深度”只是一个商业概念,很多时候工业界把3层隐藏层也叫做“深度学习”,所以不要在层数上太较真。在机器学习领域的约定俗成是,名字中有深度(Deep)的网络仅代表其有超过5-7层的隐藏层。

神经网络的结构指的是“神经元”之间如何连接,它可以是任意深度。以下图的3种不同结构为例,我们可以看到连接结构是非常灵活多样的。

图片来源:10 Misconceptions about Neural Networks

需要特别指出的是,卷积网络(CNN)和循环网络(RNN)一般不加Deep在名字中的原因是:它们的结构一般都较深,因此不需要特别指明深度。想对比的,自编码器(Auto Encoder)可以是很浅的网络,也可以很深。所以你会看到人们用Deep Auto Encoder来特别指明其深度。

应用场景:全连接的前馈深度神经网络(Fully Connected Feed Forward Neural Networks),也就是DNN适用于大部分分类(Classification)任务,比如数字识别等。但一般的现实场景中我们很少有那么大的数据量来支持DNN,所以纯粹的全连接网络应用性并不是很强。

1. 2. 循环神经网络(Recurrent Neural Networks)和递归神经网络(Recursive Neural Networks)

虽然很多时候我们把这两种网络都叫做RNN,但事实上这两种网路的结构事实上是不同的。而我们常常把两个网络放在一起的原因是:它们都可以处理有序列的问题,比如时间序列等。

举个最简单的例子,我们预测股票走势用RNN就比普通的DNN效果要好,原因是股票走势和时间相关,今天的价格和昨天、上周、上个月都有关系。而RNN 有“记忆”能力,可以“模拟”数据间的依赖关系(Dependency)。为了加强这种“记忆能力”,人们开发各种各样的变形体,如非常著名的Long Short-term Memory(LSTM),用于解决“长期及远距离的依赖关系”。如下图所示,左边的小图是最简单版本的循环网络,而右边是人们为了增强记忆能力而开发的LSTM。

同理,另一个循环网络的变种–双向循环网络(Bi-directional RNN)也是现阶段自然语言处理和语音分析中的重要模型。开发双向循环网络的原因是语言/语音的构成取决于上下文,即“现在”依托于“过去”和“未来”。单向的循环网络仅着重于从“过去”推出“现在”,而无法对“未来”的依赖性有效的建模。

递归神经网络和循环神经网络不同,它的计算图结构是树状结构而不是网状结构。递归循环网络的目标和循环网络相似,也是希望解决数据之间的长期依赖问题。而且其比较好的特点是用树状可以降低序列的长度,从降低到,熟悉数据结构的朋友都不陌生。但和其他树状数据结构一样,如何构造最佳的树状结构如平衡树/平衡二叉树并不容易。

应用场景:语音分析,文字分析,时间序列分析。主要的重点就是数据之间存在前后依赖关系,有序列关系。一般首选LSTM,如果预测对象同时取决于过去和未来,可以选择双向结构,如双向LSTM。

1.3. 卷积网络(Convolutional Neural Networks)

卷积网络早已大名鼎鼎,从某种意义上也是为深度学习打下良好口碑的功臣。不仅如此,卷积网络也是一个很好的计算机科学借鉴神经科学的例子。卷积网络的精髓其实就是在多个空间位置上共享参数,据说我们的视觉系统也有相类似的模式。

首先简单说什么是卷积。卷积运算是一种数学计算,和矩阵相乘不同,卷积运算可以实现稀疏相乘和参数共享,可以压缩输入端的维度。和普通DNN不同,CNN并不需要为每一个神经元所对应的每一个输入数据提供单独的权重。与池化(pooling)相结合,CNN可以被理解为一种公共特征的提取过程,不仅是CNN大部分神经网络都可以近似的认为大部分神经元都被用于特征提取。

以上图为例,卷积、池化的过程将一张图片的维度进行了压缩。从图示上我们不难看出卷积网络的精髓就是适合处理结构化数据,而该数据在跨区域上依然有关联。

应用场景:虽然我们一般都把CNN和图片联系在一起,但事实上CNN可以处理大部分格状结构化数据(Grid-like Data)。举个例子,图片的像素是二维的格状数据,时间序列在等时间上抽取相当于一维的的格状数据,而视频数据可以理解为对应视频帧宽度、高度、时间的三维数据。

2. 无监督的预训练网络(Unsupervised Pre-trained Neural Networks)

2.1. 深度生成模型(Deep Generative Models)

说到生成模型,大家一般想到的无监督学习中的很多建模方法,比如拟合一个高斯混合模型或者使用贝叶斯模型。深度学习中的生成模型主要还是集中于想使用无监督学习来帮助监督学习,毕竟监督学习所需的标签代价往往很高…所以请大家不要较真我把这些方法放在了无监督学习中。

相关文档
最新文档