三洋中间补气压缩机使用手册
压缩机运行操作说明
压缩机运行操作说明
一、运转前
1.确认电源的电压,显示状态正常。
2.请将油桶的卸油阀打开,泄放冷凝水后关闭。
3.请检查油位,需保持在H-L两条红线之间。
4.如水冷式压缩机请确认冷却水是否正常供应。
5.在开机前必须要把储气罐和过滤器内部的油和水泄放完后关闭。
二、启动
1.开启电源开关。
2.按下启动按钮,电机即自动起动,显示主电机运转。
3.检查排气压力及排气温度,显示是否正常。
三、运转
1.请保持排气温度在75-100度之间,避免冷凝水析出,将油乳化。
四、停机
1.按下停机按钮,显示停机倒计时,压缩机即停止运转。
2.将电源关闭。
3.非紧急情况,请勿使用紧急停机按钮停机。
五、注意事项
1.初次启动必须从进气口加大约1L油进主机,电机保养后必须确认压缩机启动的运行方向。
2.请勿将不同厂家牌子的润滑油混合使用。
三洋1.2HP冷暖空调split system heat pump n4h4维修手册说明书
MODELS
N4H418*KB300 N4H419*KB100 N4H424*KB300 N4H430*KB300 N4H436*KB300
N4H442*KB300 N4H448*KB300 N4H460*KB400 N4H461*KA100
* = A or G
! WARNING
DEATH, PERSONAL INJURY, AND/OR PROPERTY DAMAGE HAZARD
The information contained in this manual is intended for use by a qualified service technician familiar with safety procedures and equipped with the proper tools and test instruments.
R−410A CHARGING CHART
Rating Plate (required) Subcooling Temperature ° F (° C)
° F (° C) ° F (° C) ° F (° C) ° F (° C) F (° C) F (° C)
6
3
8
4
10
6
12
7
14
8
16
9
R−410A Required Liquid Line Temperature ° F (° C) 78 26 76 24 74 23 72 22 70 21 68 20 80 27 78 26 76 24 74 23 72 22 70 21 82 28 80 27 78 26 76 24 74 23 72 22 84 29 82 28 80 27 78 26 76 24 74 23 86 30 84 29 82 28 80 27 78 26 76 24 88 31 86 30 84 29 82 28 80 27 78 26 90 32 88 31 86 30 84 29 82 28 80 27 92 33 90 32 88 31 86 30 84 29 82 28 94 34 92 33 90 32 88 31 86 30 84 29 96 36 94 34 92 33 90 32 88 31 86 30 98 37 96 36 94 34 92 33 90 32 88 31 100 38 98 37 96 36 94 34 92 33 90 32 104 40 102 39 100 38 98 37 96 36 94 34 106 41 104 40 102 39 100 38 98 37 96 36 108 42 106 41 104 40 102 39 100 38 98 37 110 43 108 42 106 41 104 40 102 39 100 38 112 44 110 43 108 42 106 41 104 40 102 39 114 46 112 44 110 43 108 42 106 41 104 40 116 47 114 46 112 44 110 43 108 42 106 41 118 48 116 47 114 46 112 44 110 43 108 42 120 49 118 48 116 47 114 46 112 44 110 43 122 50 120 49 118 48 116 47 114 46 112 44 124 51 122 50 120 49 118 48 116 47 114 46
谷轮ZW系列(中间补气涡旋)压缩机应用指南
AE4-1381May 2011ZW21 to ZW61KAE and ZW30 to ZW61KSECopeland Scroll® Water Heating CompressorsTABLE OF CONTENTSSection Page Section PageIntroduction (2)ZW**KA Application (2)ZW**KS ApplicationVapour Injection - Theory of Operation (2)Heat Exchanger and Expansion Device Sizing (3)Flash Tank Application (3)Intermediate Pressure and Vapour Injection Superheat (3)Application ConsiderationsHigh Pressure Cut-Out (4)Low Pressure Cut-Out (4)Discharge Temperature Protection (4)Discharge Temperature Control (4)Discharge Mufflers (4)Oil Dilution and Compressor Cooling (4)Electrical Considerations (5)Brazing and Vapour Injection Line (5)Low Ambient Cut-Out (5)Internal Pressure Relief Valve (5)Internal Temperature Protection (5)Quiet Shutdown (5)Discharge Check Valve (5)Motor Protector (5)Accumulators (5)Screens (6)Crankcase Heat-Single Phase (6)Crankcase Heat-Three Phase (6)Pump Down Cycle (6)Minimum Run Time (6)Reversing Valves (6)Oil Type (7)System Noise & Vibration (7)Single Phase Starting Characteristics (7)PTC Start Components (7)Electrical Connections (7)Deep Vacuum Operation (7)Shell Temperature (7)Suction & Discharge Fittings (7)Three Phase Scroll Compressors (8)Brief Power Interruptions ..........................................8Assembly Line ProceduresInstalling the Compressor (8)Assembly Line Brazing Procedure (8)Pressure Testing (8)Assembly Line System Charging Procedure (8)High Potential (AC Hipot) Testing (9)Unbrazing System Components (9)Service ProceduresCopeland Scroll Functional Check (9)Compressor Replacement After Motor Burn (10)Start Up of a New or Replacement Compressor (10)FiguresBrief Product Overview (11)ZW21KAE Envelope (R-134a) (11)ZWKAE Envelope (R-407C, Dew Point) (12)ZWKA Envelope (R-22) (12)ZWKS Envelope (R-22) (13)ZWKSE Envelope (R-407C, Dew Point) (13)Heat Pump with Vapour Injection – EXV Control (14)Heat Exchanger Schematic (14)Heat Pump with Flash Tank (15)Possible Flash Tank Configuration (15)Oil Dilution Chart (16)Crankcase Heater (17)Compressor Electrical Connection (17)Scroll Tube Brazing (17)How a Scroll Works (18)IntroductionThe ZW**KA and ZW**KS Copeland Scroll®compressors are designed for use in vapour compression heat pump water heating applications. Typical model numbers include ZW30KA-PFS and ZW61KSE-TFP. This bulletin addresses the specifics of water heating in the early part and deals with the common characteristics and general application guidelines for Copeland Scroll compressors in the later sections. Operating principles of the scroll compressor are described in Figure 15 at the end of this bulletin.As the drive for energy efficiency intensifies, water heating by fossil-fueled boilers and electric elements is being displaced by vapour compression heat pumps. Emerson Climate Technologies has developed two lines of special water heater compressors to meet the requirements of this demanding application. ZW**KA compressors are designed for lighter duty applications where the ambient temperature does not fall below 0°C and where lower water temperatures can be accepted as the ambient temperature falls. ZW**KS compressors are equipped with a vapour injection cycle which allows reliable operation in cold climates with significantly enhanced heating capacity, higher efficiency, and minimal requirement to reduce water outlet temperatures. Figure 1gives a brief product overview.Water heating is characterized by long operating hours at both high load and high compression ratios. Demand for hot water is at its highest when ambients are low and when conventional heat pump capacity falls off. On the positive side, the system refrigerant charge is usually small, so the risk to the compressor from dilution and flooded starts will usually be lower than in split type air-to-air heat pumps.Water heaters must operate in a wide range of ambient temperatures, and many systems will require some method of defrost. Some systems such as Direct Heating, Top Down Heating or Single Pass Heating operate at a constant water outlet temperature with variable water flow. Others such as Recirculation Heating, Cyclic Heating or Multipass Heating use constant water flow with the water outlet and inlet temperatures both rising slowly as the storage tank heats up. Both system types need to cope with reheating a tank where the hot water has been partially used, and reheating to the setpoint temperature is required. More complex systems deliver water at relatively low temperatures for under-floor heating circuits and are switched over to sanitary water heating a few times per day to provide higher temperature water for sanitary use. In addition, some countries have specific water temperature requirements for legionella control.ZW**KA ApplicationThe application envelopes for ZW**KA compressors are shown in Figures 2 - 4.Appropriate system hardware and control logic must be employed to ensure that the compressor is always operating within the envelope. Small short-term excursions outside the envelope are acceptable at the time of defrost when the load on the compressor is low. Operation with suction superheat of 5 -10K is generally acceptable except at an evaporating tem-perature above 100C when a minimum superheat of 10K is required.ZW**KS ApplicationThe ZW**KS* vapour-injected scroll compressors differ from ZW**KA models in many important details:• Addition of vapour injection• Significantly different application envelopes• Some differences in locked rotor amps (LRA), maximum continuous current (MCC), andmaximum operating current (MOC) – seenameplatesThe application envelopes for ZW**KS compressors are shown in Figures 5 and 6.Vapour Injection – Theory of Operation Operation with vapour injection increases the capacity of the outdoor coil and in turn the capacity and efficiency of the system – especially in low ambient temperatures. A typical schematic is shown in Figure 7. A heat exchanger is added to the liquid line and is used to cool the liquid being delivered to the heating expansion device. Part of the liquid refrigerant flow is flashed through an expansion valve on the evaporator side of the heat exchanger at an intermediate pressure and used to subcool the main flow of liquid to the main expansion device. Vapour from the liquid evaporating at intermediate pressure is fed to the vapour injection port on the ZW**KS compressor. This refrigerant is injected into the mid-compression cycle of the scroll compressor and compressed to discharge pressure. Heating capacity is increased, because low temperature liquid with lower specific enthalpy supplied to the outdoor coil increases the amount of heat that can be absorbed from the ambient air. Increased heat absorbed from the ambient increases the system condensing temperature and in turn the compressor power input. The increase in power inputalso contributes to the improvement in the overall heating capacity.Vapour Injection can be turned on and off by the addition of an optional solenoid valve on the vapour injection line on systems using a thermostatic expansion valve. Alternatively, an electronic expansion valve can be used to turn vapour injection on and off and to control the vapour injection superheat. A capillary tube is not suitable for controlling vapour injection.The major advantage of the electronic expansion valve is that it can be used to optimise the performance of the system and at the same time control the discharge temperature by injecting “wet vapour” at extreme operating conditions.The configurations and schematics shown are for reference only and are not applicable to every system. Please consult with your Emerson Application Engineer.Heat Exchanger and Expansion Device Sizing Various heat exchanger designs have been used successfully as subcoolers. In general they should be sized so that the liquid outlet temperature is less than 5K above the saturated injection temperature at the customer low temperature rating point. At very high ambient temperatures, it will normally be beneficial to turn vapour injection off to limit the load on the compressor motor. Application Engineering Bulletin AE4-1327 and Emerson Climate Technologies Product Selection Software can be used to help size the subcooling heat exchanger and thermal expansion valves, but selection and proper operation must be checked during development testing. Plate type subcoolers must be installed vertically with the injection expansion device connected at the bottom through a straight tube at least 150mm long to ensure good liquid distribution. See the schematic in Figure 8. Flash Tank ApplicationA possible flash tank configuration is shown in Figure9. This particular configuration is arranged to have flow through the flash tank and expansion devices in heating, and it bypasses the tank in defrost mode. The flash tank system works by taking liquid from the condenser and metering it into a vessel through a high-to-medium pressure expansion device. Part of the liquid boils off and is directed to the compressor vapour injection port. This refrigerant is injected into the mid-compression cycle of the scroll compressor and compressed to discharge pressure. The remaining liquid is cooled, exits from the bottom of the tank at intermediate pressure, and flows to the medium-to-low pressure expansion device which feeds the outdoor coil. Low temperature liquid with lower specific enthalpy increases the capacity of the evaporator without increasing mass flow and system pressure drops.Recommended tank sizing for single compressor application in this size range is a minimum of 200 mm high by 75 mm in diameter with 3/8 in. (9.5mm) tubing connections, although it is possible to use a larger tank to combine the liquid/vapour separation and receiver functions in one vessel. A sight tube (liquid level gauge) should be added to the tank for observation of liquid levels during lab testing. See schematic diagram Figure 10 for clarification.It is important to maintain a visible liquid refrigerant level in the tank under all operating conditions. Ideally the liquid level should be maintained in the 1/3 to 2/3 full range.Under no circumstances should the level drop to empty or rise to a full tank. As the tank level rises, liquid droplets tend to be swept into the vapour line leading to “wet” vapour injection. Although this can be useful for cooling a hot compressor, the liquid quantity cannot be easily controlled. Compressor damage is possible if the tank overflows. If liquid injection is required for any reason, it can be arranged as shown in Figures 7 and 9.Since liquid leaves the tank in a saturated state, any pressure drop or temperature rise in the line to the medium-to-low pressure expansion device will lead to bubble formation. Design or selection of the medium-to-low pressure expansion device requires careful attention due to the possible presence of bubbles at the inlet and the low pressure difference available to drive the liquid into the evaporator. An electronic expansion valve is the preferred choice. Intermediate Pressure and Vapour Injection SuperheatPressure in the flash tank cannot be set and is a complex function of the compressor inlet condition and liquid condition at the inlet of the high-to-medium pressure expansion device. However, liquid level can be adjusted, which in turn will vary the amount of liquid subcooling in the condenser (water to refrigerant heat exchanger) and vary the injection pressure. Systems with low condenser subcooling will derive the biggest gains by the addition of vapour injection. Systems operating with high pressure ratios will show the largest gains when vapour injection is applied. Such systems will have higher vapour pressure and higher injectionmass flow. Intermediate pressures in flash tank and heat exchanger systems should be very similar unless the subcooling heat exchanger is undersized and there is a large temperature difference between the evaporator and the liquid sides. Vapour exiting a flash tank will be saturated and may pick up 1 - 2K superheat in the vapour line to the compressor. Vapour injection superheat cannot be adjusted on flash tank systems. Heat exchanger systems will be at their most efficient when the vapour injection superheat is maintained at approximately 5K.APPLICATION CONSIDERATIONSHigh Pressure Cut OutIf a high pressure control is used with these compressors, the recommended maximum cut out settings are listed in Figure 1. The high pressure control should have a manual reset feature for the highest level of system protection. It is not recommended to use the compressor to test the high pressure switch function during the assembly line test.Although R-407C runs with higher discharge pressure than R-22, a common setting can be used. The cutout settings for R-134a are much lower, and the switches must be selected or adjusted accordingly.Low Pressure Cut OutA low pressure cut out is an effective protection against loss of charge or partial blockage in the system. The cut out should not be set more than 3 - 5K equivalent suction pressure below the lowest operating point in the application envelope. Nuisance trips during defrost can be avoided by ignoring the switch until defrost is finished or by locating it in the line between the evaporator outlet and the reversing valve. This line will be at discharge pressure during defrost. Recommended settings are given in Figure 1. Discharge Temperature ProtectionAlthough ZW compressors have an internal bi-metal Therm-O-Disc®(TOD) on the muffler plate, external discharge temperature protection is recommended for a higher level of protection and to enable monitoring and control of vapour injection on ZW**KS* models. The protection system should shut down the compressor when the discharge line temperature reaches 125°C. In low ambient operation, the temperature difference between the scroll center and the discharge line is significantly increased, so protection at a lower discharge temperature, e.g. 120°C when the ambient is below 0°C, will enhance system safety. For the highest level of system protection, the discharge temperature control should have a manual reset feature. The discharge sensor needs to be well insulated to ensure that the line temperature is accurately read. The insulation material must not deteriorate over the expected life of the unit.Discharge Temperature ControlSome systems use an electronic expansion valve to control the vapour injection superheat and a thermistor to monitor the discharge temperature. This combination allows the system designer to inject a small quantity of liquid to keep the discharge temperature within safe limits and avoid an unnecessary trip. Liquid injection should begin at approximately 115°C and should be discontinued when the temperature falls to 105°C. Correct functioning of this system should be verified during system development. It is far preferable to use liquid injection into the vapour injection port to keep the compressor cool rather than inject liquid into the compressor suction which runs the risk of diluting the oil and washing the oil from the moving parts. If some operation mode requires liquid injection but without the added capacity associated with “wet” vapour injection, a liquid injection bypass circuit can be arranged as shown in Figures 7 and 9.Caution: Although the discharge and oil temperature are within acceptable limits, the suction and discharge pressures cannot be ignored and must also fall within the approved application envelope.Discharge MufflersDischarge mufflers are not normally required in water heaters since the refrigerant does not circulate within the occupied space.Oil Dilution and Compressor CoolingThe oil temperature diagram shown in Figure 11is commonly used to make a judgment about acceptable levels of floodback in heat pump operation. Systems operating with oil temperatures near the lower limit line are never at their most efficient. Low ambient heating capacity and efficiency will both be higher if floodback is eliminated and the system runs with 1 - 5K suction superheat. Discharge temperature can be controlled by vapour injection, “wet” vapour injection, or even liquid injection if necessary. In this situation, the oil temperature will rise well into the safe zone, and the compressor will not be at risk of failure from diluted oil. The oil circulation rate will also be reduced as crankcase foaming disappears. Special care needs to be taken at the end of defrost to ensure that the compressor oil is not unacceptably diluted. The system will resume heating very quickly and bearing loads willincrease accordingly, so proper lubrication must be ensured.Electrical ConsiderationsMotor configuration and protection are similar to those of standard Copeland Scroll compressors. In some cases, a larger motor is required in the ZW**KS* models to handle the load imposed by operating with vapour injection. Wiring and fuse sizes should be reviewed accordingly.Brazing the Vapour Injection LineThe vapour injection connection is made from copper coated steel, and the techniques used for brazing the suction and discharge fittings apply to this fitting also. Low Ambient Cut-OutA low ambient cut-out is not required to limit heat pump operation with ZW**KS compressors. Water heaters using ZW**KA compressors must not be allowed to run in low ambients since this configuration would run outside of the approved operating envelope causing overheating or excessive wear. A low ambient cut-out should be set at 0°C for ZW**KA modelsIn common with many Copeland Scroll compressors, ZW models include the features described below: Internal Pressure Relief (IPR) ValveAll ZW compressors contain an internal pressure relief valve that is located between the high side and the low side of the compressor. It is designed to open when the discharge-to-suction differential pressure exceeds 26 - 32 bar. When the valve opens, hot discharge gas is routed back into the area of the motor protector to cause a trip.Internal Temperature ProtectionThe Therm-O-Disc® or TOD is a temperature-sensitive snap disc device located on the muffler plate between the high and low pressure sides of the compressor. It is designed to open and route excessively hot discharge gas back to the motor protector. During a situation such as loss of charge, the compressor will be protected for some time while it trips the protector. However, as refrigerant leaks out, the mass flow and the amperage draw are reduced and the scrolls will start to overheat.A low pressure control is recommended for loss of charge protection in heat pumps for the highest level of system protection. A cut out setting no lower than 2.5 bar for ZW**KA* models and 0.5 bar for ZW**KS* models is recommended. The low pressure cut-out, if installed in the suction line to the compressor, can provide additional protection against an expansion device failed in the closed position, a closed liquid line or suction line service valve, or a blocked liquid line screen, filter, orifice, or TXV. All of these can starve the compressor for refrigerant and result in compressor failure. The low pressure cut-out should have a manual reset feature for the highest level of system protection. If a compressor is allowed to cycle after a fault is detected, there is a high probability that the compressor will be damaged and the system contaminated with debris from the failed compressor and decomposed oil.If current monitoring to the compressor is available, the system controller can take advantage of the compressor TOD and internal protector operation. The controller can lock out the compressor if current draw is not coincident with the contactor energizing, implying that the compressor has shut off on its internal protector. This will prevent unnecessary compressor cycling on a fault condition until corrective action can be taken.Quiet Shut downAll scrolls in this size range have a fast acting valve in the center of the fixed scroll which provides a very quiet shutdown solution. Pressure will equalize internally very rapidly and a time delay is not required for any of the ZW compressors to restart. Also refer to the section on “Brief Power Interruption”. Discharge Check ValveA low mass, disc-type check valve in the discharge fitting of the compressor prevents the high side, high pressure discharge gas from flowing rapidly back through the compressor. This check valve was not designed to be used with recycling pump down because it is not entirely leak-proof.Motor ProtectorConventional internal line break motor protection is provided. The protector opens the common connection of a single-phase motor and the center of the Y connection on three-phase motors. The three-phase protector provides primary single-phase protection. Both types of protectors react to current and motor winding temperature.AccumulatorsThe use of accumulators is very dependent on the application. The scroll’s inherent ability to handle liquid refrigerant during occasional operating flood back situations often makes the use of an accumulator unnecessary in many designs. If flood back is excessive, it can dilute the oil to such an extent thatbearings are inadequately lubricated, and wear will occur. In such a case, an accumulator must be used to reduce flood back to a safe level that the compressor can handle.In water heaters, floodback is likely to occur when the outdoor coil frosts. The defrost test must be done at an outdoor ambient temperature of around 0°C in a high humidity environment. Liquid floodback must be monitored during reversing valve operation, especially when coming out of defrost. Excessive floodback occurs when the sump temperature drops below the safe operation line shown in Figure 11 for more than 10 seconds.If an accumulator is required, the oil return orifice should be 1 - 1.5mm in diameter depending on compressor size and compressor flood back results. Final oil return hole size should be determined through testing. ScreensScreens with a mesh size finer than 30 x 30 (0.6mm openings) should not be used anywhere in the system with these compressors. Field experience has shown that finer mesh screens used to protect thermal expansion valves, capillary tubes, or accumulators can become temporarily or permanently plugged with normal system debris and block the flow of either oil or refrigerant to the compressor. Such blockage can result in compressor failure.Crankcase Heater - Single PhaseCrankcase heaters are not required on single phase compressors when the system charge is not over 120% of the limit shown in Figure 1. A crankcase heater is required for systems containing more than 120% of the compressor refrigerant charge limit listed in Figure 1. This includes long line length systems where the extra charge will increase the standard factory charge above the 120% limit.Experience has shown that compressors may fill with liquid refrigerant under certain circumstances and system configurations, notably after longer off cycles when the compressor has cooled. This may cause excessive start-up clearing noise, or the compressor may lock up and trip on the protector several times before starting. The addition of a crankcase heater will reduce customer noise and light dimming complaints since the compressor will no longer have to clear out liquid during startup. Figure 12lists the crankcase heaters recommended for the various models and voltages.Crankcase Heat – Three-PhaseA crankcase heater is required for three-phase compressors when the system charge exceeds the compressor charge limit listed in Figure 1and an accumulator cannot be piped to provide free liquid drainage during the off cycle.Pump Down CycleA pump down cycle for control of refrigerant migration is not recommended for scroll compressors of this size. If a pump down cycle is used, a separate external check valve must be added.The scroll discharge check valve is designed to stop extended reverse rotation and prevent high-pressure gas from leaking rapidly into the low side after shut off. The check valve will in some cases leak more than reciprocating compressor discharge reeds, normally used with pump down, causing the scroll compressor to cycle more frequently. Repeated short-cycling of this nature can result in a low oil situation and consequent damage to the compressor. The low-pressure control differential has to be reviewed since a relatively large volume of gas will re-expand from the high side of the compressor into the low side on shut down. Minimum Run TimeThere is no set answer to how often scroll compressors can be started and stopped in an hour, since it is highly dependent on system configuration. Other than the considerations in the section on Brief Power Interruptions, there is no minimum off time. This is because scroll compressors start unloaded, even if the system has unbalanced pressures. The most critical consideration is the minimum run time required to return oil to the compressor after startup.Since water heaters are generally of compact construction, oil return and short cycling issues are rare. Oil return should not be a problem unless the accumulator oil hole is blocked.Reversing ValvesSince Copeland Scroll compressors have very high volumetric efficiency, their displacements are lower than those of comparable capacity reciprocating compressors. As a result, Emerson recommends that the capacity rating on reversing valves be no more than 2 times the nominal capacity of the compressor with which it will be used in order to ensure proper operation of the reversing valve under all operating conditions.The reversing valve solenoid should be wired so that the valve does not reverse when the system isshut off by the operating thermostat in the heating or cooling mode. If the valve is allowed to reverse at system shutoff, suction and discharge pressures are reversed to the compressor. This results in pressures equalizing through the compressor which can cause the compressor to slowly rotate until the pressures equalize. This condition does not affect compressor durability but can cause unexpected sound after the compressor is turned off.Oil TypeThe ZW**K* compressors are originally charged with mineral oil. A standard 3GS oil may be used if the addition of oil in the field is required. See the compressor nameplate for original oil charge. A complete recharge should be ~100 ml less than the nameplate value.ZW**K*E are charged with POE oil. Copeland 3MAF or Ultra 22 CC should be used if additional oil is needed in the field. Mobil Arctic EAL22CC, Emkarate RL22, Emkarate 32CF and Emkarate 3MAF are acceptable alternatives. POE oil is highly hygroscopic, and the oil should not be exposed to the atmosphere except for the very short period required to make the brazing connections to the compressor.System Noise and VibrationCopeland Scroll compressors inherently have low sound and vibration characteristics, but the characteristics differ in some respects from those of reciprocating or rotary compressors. The scroll compressor makes both a rocking and a torsional motion, and enough flexibility must be provided to prevent vibration transmission into any lines attached to the unit. This is usually achieved by having tubing runs at least 30cm long parallel to the compressor crankshaft and close to the shell. ZW compressors are delivered with rubber grommets to reduce vibration transmission to the system baseplate.Single Phase Starting CharacteristicsStart assist devices are usually not required, even if a system utilizes non-bleed expansion valves. Due to the inherent design of the Copeland Scroll, the internal compression components always start unloaded even if system pressures are not balanced. In addition, since internal compressor pressures are always balanced at startup, low voltage starting characteristics are excellent for Copeland Scroll compressors. Starting current on any compressor may result in a significant “sag” in voltage where a poor power supply is encountered. The low starting voltage reduces the starting torque of the compressor and subsequently increases the start time. This could cause light dimming or a buzzing noise where wire is pulled through conduit. If required, a start capacitor and potential relay can be added to the electrical circuit. This will substantially reduce start time and consequently the magnitude and duration of both light dimming and conduit buzzing.PTC Start ComponentsFor less severe voltage drops or as a start boost, solid state Positive Temperature Coefficient devices rated from 10 to 25 ohms may be used to facilitate starting for any of these compressors.Electrical ConnectionThe orientation of the electrical connections on the Copeland Scroll compressors is shown in Figure 13 and is also shown on the wiring diagram on the top of the terminal box cover.Deep Vacuum OperationScrolls incorporate internal low vacuum protection and will stop pumping (unload) when the pressure ratio exceeds approximately 10:1. There is an audible increase in sound when the scrolls start unloading. This feature does not prevent overheating and destruction of the scrolls, but it does protect the power terminals from internal arcing.Copeland Scroll compressors(as with any refrigerant compressor) should never be used to evacuate a refrigeration or air conditioning system. The scroll compressor can be used to pump down refrigerant in a unit as long as the pressures remain within the operating envelope. Prolonged operation at low suction pressures will result in overheating of the scrolls and permanent damage to the scroll tips, drive bearings and internal seal. (See AE24-1105 for proper system evacuation procedures.)Shell TemperatureCertain types of system failures, such as condenser or evaporator blockage or loss of charge, may cause the top shell and discharge line to briefly but repeatedly reach temperatures above 175ºC as the compressor cycles on its internal protection devices. Care must be taken to ensure that wiring or other materials, which could be damaged by these temperatures, do not come in contact with these potentially hot areas. Suction and Discharge FittingsCopeland Scroll compressors have copper plated steel suction and discharge fittings. These fittings are far more rugged and less prone to leaks than。
日立补气增焓技术设计
大连三洋压缩机有限公司
1. 技术背景
3
2. 压缩机命名规则
3
3. 系统运行流程
4
4. 压缩机运行范围
5
5. 配套附件清单
7
1. 技术背景
普通涡旋压缩机在低蒸发温度下运行时,会发生吸气比容增大、压比升高, 排气温度快速升高等问题,造成压缩机性能急剧下降和制热量不足以及难以运 行,为解决这一问题,开发了带有中间补气功能的涡旋压缩机。
6—— 开发代号:补气系列
表 1 补气压缩机系列代号
马力/HP 3.5 4 5 8 10
型号 C-SBR120H38Q C-SBR145H38Q C-SBR180H38Q C-SCR295H38Q C-SCR370H38Q
3. 系统运行流程
冷凝器
压缩机
储液器 干燥过滤器
单向阀
视液镜
气液分离器 蒸发器
压缩机型号 C-SBR120H38Q C-SBR145H38Q C-SBR180H38Q C-SCR295H38Q C-SCR370H38Q
表 2 板式换热器的选型及安装
板式换热器的选型及安装
板换型号
板式换热器的安装注意事项
B8×10 B8×10 B8×10 B8×16 B8×20
① 板式换热器必须是直立安装的; ② 为了要达到高效率热传性能及热交换率,板式换热器最好
表 1 压缩机使用标准及使用极限值
项目 制冷剂
蒸发温度 范围
冷凝温度 范围 压缩比ຫໍສະໝຸດ 使用标准值使用极限值
R22(符合日本 JIS K1517 标准)
-30~+15℃
-30~+15℃
0.16~0.79MPa
三洋压缩机产品样本
>8?<B:=.51340,产品样本*-.540,62+/特点轻量紧凑设计高效率高可靠性低噪声低振动C-SC C-SBC-SB系列剖面图C-SC系列剖面图技术参数适用于欧洲和中国的电源制式*1表示该型号压缩机带均油管接口 *2 表示该型号压缩机带油位传感器接口测试条件R22 R407C℉ ℉ 冷凝温度 54.4 130 54.4 130 蒸发温度 7.2 45 7.2 45 液体温度 46.1 115 43.8 115 吸气温度18.365 18.3 65* R407C 的冷凝温度和蒸发温度按中间温度法技术参数适用于北美的电源制式测试条件R22/R410A R407C ℉℉冷凝温度 54.4 130 54.4 130 蒸发温度 7.2 45 7.2 45 液体温度 46.1 115 43.8 115 吸气温度18.36518.365* R407C 的冷凝温度和蒸发温度按中间温度法技术参数适用于日本的电源制式*1表示该型号压缩机带均油管接口*2 表示该型号压缩机带油位传感器接口测试条件R22R407C ℉ ℉冷凝温度 54.4 130 54.4 130 蒸发温度 7.2 45 7.2 45 液体温度 46.1 115 43.8 115 吸气温度 18.3 65 18.365* R407C 的冷凝温度和蒸发温度按中间温度法C-SB系列配线图C-SC系列配线图C-SB系列外形尺寸C-SC系列外形尺寸C-SC603H8HC-SC753H8HC-SC903H8HR22系列使用标准与使用极限*在超出本标准书的范围内进行商品设计时另行商定G表压其他注意事项1.压缩机在开封状态下请勿放置15分钟以上2.请勿压缩空气3.在真空状态下请勿通电4.充入制冷剂后应运转23秒使运动部件充分润滑5.搬运时请勿倾斜和滑落6.请勿划伤保护漆7.作为一条规定生产日期之后12个月内应完成安装8.当第6项压缩机停机时的低限不能保持时需要加装曲轴箱加热器9.运转时各相间的电压偏差应在额定电压的2%以内10.请勿反向旋转11.过滤网应安装在吸气及回油系统侧R407C系列使用标准与使用极限*在超出本标准书的范围内进行商品设计时另行商定G表压其他注意事项1.压缩机在开封状态下请勿放置15分钟以上2.请勿压缩空气3.在真空状态下请勿通电4.搬运时请勿倾斜和滑落5.请勿划伤保护漆6.作为一条规定生产日期之后12个月内应完成安装7.当第6项压缩机停机时的低限不能保持时需要加装曲轴箱加热器8.运转时各相间的电压偏差应在额定电压的2%以内9.请勿反向旋转10.过滤网应安装在吸气及回油系统侧一般事项下列事项适用于大连三洋压缩机有限公司DSA 制造的高温用涡旋压缩机1压缩机外观涂装 压缩机机体表面喷涂成黑色 2 压缩机说明压缩机铭牌包含如下项目压缩机代号 压缩机型号 电源电压频率相数制冷剂名称 所使用的冷冻油的名称及充入量制造日期 制造编号3 记号的使用说明 压缩机代号压缩机型号。
压缩机说明书
压缩机说明书压缩机说明书篇一:空气压缩机使用说明书空气压缩机使用说明书一、操作注意事项:1、压缩机必须定期检修,并保证在良好工作状态下工作。
2、在压缩机组运行前,必须注意不可有人在机器上进行检修工作。
3、压缩机应在技术规范规定的范围内运行。
4、不可以在可能吸入易燃、有毒或腐蚀性蒸汽或气体的环境中运行压缩机。
5、注意人不可以接触管路系统,尤其是排气管或是在运行中的高温部件。
6、压缩机组运行时,操作人员不可做其他别的工作,以适时监控压缩机组的运行状态。
二、维修工作注意事项:1、维修工作只可在停机并完全放空的压缩机上运行。
若有必要,将压缩机系统内的高压气体放空。
首先应断开电源控制箱的总闸,为了防止误开机组,应将总闸锁上,或者贴一张相应的指示标签。
2、开始工作前,应全部打开凝液分离器上的手动排水阀,使得压缩机组完全放空,没有压力。
3、每次修理或改造安全设备时,如果要求有修改后检查合格证的,必须经有关监测主管部门重新验收认可。
4、在压缩机组上,只可用原装备件和推荐使用的零部件进行维修。
5、在维修时要严格保持清洁,拆下的零件应置于干净的地方,并对不同的零件采取用布、纸或胶布遮盖起来,以防尘污。
6、维修后,检查一下确定没有工具,零部件和抹布留在压缩机组上面或者里面。
7、压缩机组完全降温前,决不可用易燃溶剂清洗零部件。
零部件用溶剂清洗后,然后用压缩空气将零部件吹洗干净。
8、用压缩空气吹设备时,应十分小心,并戴护目镜。
三、压缩机的主要性能参数:a、公称容积流量: 3m3/minb、吸气压力: 0.1MPac、额定排气压力: 4.0MPad、吸气温度:≤45℃e、各级排气温度:<180℃f、输气温度:≤50℃g、压缩介质:空气h、冷却水耗量:≥3.5 m3/hi、润滑油温度:≤70℃j、气缸直径:一级φ285mm二级φ155mm三级φ75mmk、活塞行程: 95mml、转速:740r/minm、配备动力: Y280M-8,740r/min,450KW, AC380V/50Hz IP44 B3n、压缩机外形尺寸(长×宽×高):~2350×1900×1500(mm)o、全机重量:2500kgp、震动烈度:≤28.0q、各级排气压力:一级排气压力:0.27~0.37MPa二级排气压力:1.2~1.39MPa三级排气压力:4.0MPa四、气路系统:气路系统的作用,主要是将气体引向压缩机,经压缩机各级压缩之后,再引向使用场所,本机的主要气路流程示意如下:其中空气滤清器、一级气缸、一级冷却器、二级气缸、二级冷却器、二级油水分离器、三级气缸、三级冷却器、三级油水分离器和以上部件连接的管道组成压缩机的气路主管路,排除油、水用的排污管路以及连接压力表的管路和控制管路等组成压缩机气路的辅助管路;用户在使用该机前,必须增加后续管道和阀门分别与送气接头、排污接头相连接,以备把压缩空气送至使用场所和把油水引至合适的位置排放掉,本机的排污是自动排污,排放的时间间隔约为20~30min排放一次,排放时间约为10s,用户可根据当地的空气湿度进行适当的调整。
动力网站-三洋压缩机-技术手册
贵公司名称:
选型日期: 年 月 日
应用商品
·柜机或其它
·单冷或热泵
商品的额定值
制冷
kW
制热
kW
输出地(国名)
电源
相
Hz
V
系 制冷剂充入量
7 排气温度
115℃以下
8 吸气温度
吸气过热度在5℃以上
9 供电电压(运转时) 额定电压±10%
130±5℃(C-SB型)
压缩机出口10cm以内位置的排气 管温度(C-SB型)
135±5℃(C-SC型)
压缩机机体上的铜管内排气温度 保护器的检测温度(C-SC型)
应无由于液体吸入而引 压缩机入口 30cm 以内位置的吸气
条件下的商品运转条件)的运转。
使用极限值:适用于过渡条件下(启动时、除霜时等)的短时间运转。
序
号
项目
使用标准值
使用极限值
备注
1 制冷剂 2 蒸发温度范围
R22(符合日本JIS K1517标准)
-15~+12℃
-25~+15℃
压力指吸气压力
0.20~0.62MPa(G) 0.10~0.69MPa(G)
比蒸发压力相对饱和温度高12以上运转比环境温度高11以上停机时1305csb型压缩机出口10cm以内位置的排气管温度csb型排气温度115以下1355csc型压缩机机体上的铜管内排气温度保护器的检测温度csc型吸气温度吸气过热度在5以上应无由于液体吸入而引起的冲刷音不增加电流及振动压缩机入口30cm以内位置的吸气管温度能够满足56714项供电电压运转时额定电压10运转时压缩机接线柱电压10供电电压启动时额定电压85以上指在启动电流升高电压下降时的压缩机接线柱电压11启停周期运转时间
压缩机使用说明指导书
压缩机使用阐明书1.概述2.重要性能参数3.各系统阐明4.主机重要部件和机组辅助设备阐明5.安装阐明6.压缩机拆卸与装配7.压缩机重要装配间隙8.压缩机运转和操作9.压缩机筹划检修10.压缩机常用故障及解决办法11.压缩机油封和启封12.备件清单13.专用工具14.整体导向环热套规程1.概述ZW-64/35型氧气压缩机为立式、四级四列、双作用、水冷却、无润滑、活塞式氧气压缩机。
可用于大中型空分设备和石油化工等其他工业部门。
该机重要特点为:a.构造紧凑、占地面积小、重量轻。
b.动力平衡性好、运转平稳可靠。
c.振动和噪音小。
d.运营经济性好。
e.导向环、活塞环、填料磨损均匀、寿命长。
f.外形美观。
2.重要参数3.各系统阐明请参阅6235LC流程图3.1 气体系统低压氧气,经吸入滤清器过滤,再经各级压缩及冷却后,送入后装置。
详细走向如下:吸入滤清器→一级气缸压缩→一级排气缓冲器→一级换热器→二级吸气缓冲器→二级气缸压缩→二级排气缓冲器→二级换热器→三级进气缓冲器→三级气缸压缩→三级排气缓冲器→三级换热器→四级进气缓冲器→四级气缸压缩→四级排气缓冲器→后续装置。
四级排气缓冲器后设有排气截止阀及放空阀,放空阀为气体紧急放空、吹除及试车用。
3.2冷却系统通往一台压缩机组(主机和各换热器)冷却水来自一根上水总管。
然后由进水总管分七条支管分别连接各级气缸和各换热器进水口。
其中DN50支管三条,分别接到各换热器进水口;DN40支管一条,接油冷却器进水口;DN32支管二条,分别接到一、四级气缸和二、三级进水口;DN15支管一支,接四级填函进水口。
各排水管管径分别与各自相应进水管管径相似,各级排水管上均设有测温装置,各进水管和各排水管用地沟均由顾客依照需要和现场位置自行设计,冷却水管所有采用钢管。
3.3润滑油系统由于导向环、活塞环和填料采用自润滑材料,因而气缸不需要注油润滑,只需润滑其他运动部件,该任务由本机组齿轮油泵来完毕。
压缩机的操作规程
压缩机的操作规程压缩机是一种能够将气体压缩为高压气体的设备,常用于工业生产中的气体压缩和输送。
为了确保压缩机的正常运行和操作安全,必须遵守一系列的操作规程。
以下是压缩机的一般操作规程,供参考:一、操作前的准备工作1.确保压缩机周围环境整洁,无杂物干扰。
2.检查压缩机的供电是否正常,检查电源线路和开关是否完好。
3.检查压缩机的润滑油是否充足,必要时进行添加。
4.检查压缩机的冷却系统是否正常工作,确保冷却水流通畅。
5.检查压缩机的涡轮叶片和滤芯是否清洁,必要时进行清洗。
二、启动压缩机1.打开压缩机的进气阀,并确保进气口无堵塞。
2.按下启动按钮,使压缩机正常启动。
3.注意观察压缩机的转速和压力表的变化,确保正常运转。
三、运行中的操作1.压缩机在运行过程中,应密切关注压力表和温度计的读数,确保不超过设定的安全范围。
2.定期检查压缩机的油温和油压,确保润滑系统正常运行。
3.注意观察压缩机的震动情况,如发现异常需立即停机检修。
4.严禁在压缩机运行时进行维修或调整工作,必须在停机后进行。
四、停机操作1.停机前应先关闭压缩机的进气阀,等待剩余气体排放完毕。
2.关闭压缩机的电源开关,确保压缩机停止运行。
3.清洁压缩机及周边工作区域,防止积尘污染。
五、维护与保养1.定期检查压缩机的润滑油,保持油位在正常范围内。
2.每季度对压缩机进行一次全面检查和保养,包括紧固螺丝、清洁滤芯和涡轮叶片等。
3.更换压缩机的滤芯和油滤,保证压缩机输出的气体质量。
4.根据压缩机的使用情况和运行时间表,及时更换磨损的零部件。
六、安全注意事项1.操作人员必须要经过相关培训和资质考核,严禁未经授权人员操作压缩机。
2.使用压缩机时,应佩戴个人防护设备,如安全帽、耳罩、手套等。
3.禁止将易燃、易爆物品放置在压缩机附近,以防发生意外事故。
4.压缩机定期检修时应先切断电源,并采取相应的警示措施,确保操作人员安全。
三洋压缩机使用注意事项(100312)客户用
6
Copyright© SANYO Electric Co., Ltd. All Rights Reserved 2007
大连三洋压缩机(有)介绍
•所有权性质: 合资企业 •投资比率: 55% 三洋电机株式会社 (日本) 40% 大连冰山集团 (中国) 5% 双日株式会社(日本) • 资产总额: 95亿 日元 • 公司开业日: 1995年10月18日 • 员工人数: 2000人 (至2007年底) •建筑面积: 71,000 平方米
三洋压缩机使用 要点介绍
大连三洋压缩机有限公司 2010.3
大连三洋介绍
三洋全球 大连三洋压缩机有限公司 三洋研发中心
太阳方舟
三洋电机株式会社设计制造的 世界上最大的太阳能电池
涡旋系列压缩机
目前的客户 半封闭产品 中国市场的领先地位
5
Copyright© SANYO Electric Co., Ltd. All Rights Reserved 2007
27
Copyright© SANYO Electric Co., Ltd. All Rights Reserved 2007
焊接 ※ 焊接材料:推荐使用银铜焊条(银45%)。 ※ 使用氮气保护。 ※ 避免焊枪火焰烧到端子或排气管根部而造 成泄漏。
案例说明:吸气管根部因焊接时油漆膜被破坏,导致 使用过程中压缩机吸气口根部锈蚀,存在故障 隐患。
主要内容
• • • • • • • • • •
26
现场安装 焊接 气密检查 抽真空和制冷剂充注 防止反转、回液 气分的设计 电线的选择 启停周期 推荐的保护装置 其他注意事项
Copyright© SANYO Electric Co., Ltd. All Rights Reserved 2007
压缩机控制功能说明
压缩机控制功能说明一、新机试车1、确认压缩机的安装及配管满足所有要求。
2、确认供电线路接线无误,接好接地线。
3、松开防震台、支撑架或电机上运输固定螺栓。
4、检查油桶内油位是否在规定油位。
5、若交货很久才试车,应从进气阀内加入约0.5公升润滑油,并用手转动空压机数转,防止起动时空压机内失油烧损,请特别注意不可让异物掉入压缩机体,以免损坏压缩机。
6、送电至压缩机控制盘。
如电源相位不符,液晶屏显示“电源相序错误”信息。
此时只需切断供电电源,将电源线中任意两相对调即可。
测试主电压是否正确,三相电压是否平衡。
7、打开压缩机空气出口,确认机组内各泄水阀关闭。
水冷式机型打开冷却水进出口。
8、将配套设备先开机运转,如干燥机、冷却塔等,并确认其运转正常。
9、转向测试:按下“ON”键,压缩机转动,立即按“紧急停止按钮”,确认压缩机转向。
正确转向请参考压缩机体上的箭头。
冷却风扇亦需注意转向。
虽然压缩机在生产过程已测试过,转向测试仍然是新机试车的重要步骤。
10、起动:再按下“ON”键起动压缩机运转。
11、观察显示仪表及指示灯是否正常,如有异常声音、振动、泄漏,立即按下“紧急停止按钮”停机检修。
12、运转温度调整压缩机运转40分钟后,调整回水阀开度,控制重车排气温度在80℃上下。
(气冷式不须调整)。
调整时,逐渐减小回水阀开度,视压缩机排气温度反应后,再行调整开度。
13、停止:按下“OFF”键,压缩机延时15秒后停止运转。
14、压缩机的各种保护功能在出厂前的试机中已经测试调整好,故您不必再次测试,完全可以放心使用。
因为如果重新测试这些保护功能,许多零件需要重新调整。
对机组而言,这些测试不一定是经济和有益的,例如过载保护、高温跳机保护、安全阀起跳压力等的测试。
二、日常开机前检查日常开机前检查是压缩机正常运转的必要工作,请确实执行。
1、油气桶泄水:打开油气桶之泄水阀些许,将停机时的凝结水排出,直到有润滑油流出时,立刻关闭。
2、检查油位:油位应在观油镜上线附近以保证运转时油位不至于过低。
压缩机的操作说明
1. 压缩机的基本结构和工作原理2. 压缩机的安装、运行、维护和故障排除的方法和注意事项3.压缩机的主要性能参数和技术数据4 .压缩机的安全指南和预防事故规定压缩机的基本结构和工作原理压缩机是一种将气体或空气从低压处吸入,经过压缩后送到高压处的机械设备。
压缩机的主要部件有:气缸:用于容纳活塞和气体,分为各级压缩气缸。
活塞:用于在气缸内做往复运动,实现气体的压缩和排出。
曲轴:用于将电动机的旋转运动转换为活塞的往复运动。
连杆:用于连接曲轴和活塞,传递动力。
十字头:用于连接连杆和活塞杆,减少摩擦。
活塞杆:用于连接十字头和活塞,传递运动。
气阀:用于控制气体的进出气缸,分为吸气阀和排气阀。
缓冲器:用于减少气体的脉动和噪声,分为吸气缓冲器和排气缓冲器。
换热器:用于冷却压缩后的气体,分为各级换热器。
滤清器:用于过滤进入压缩机的气体或空气,分为吸入滤清器和排出滤清器。
油水分离器:用于分离压缩后的气体中的油水杂质,提高气体质量。
润滑系统:用于给压缩机的运动部件提供润滑油,减少磨损,分为油泵、油冷却器、油滤器、油箱等。
冷却系统:用于给压缩机的气缸、换热器等提供冷却水,降低温度,分为进水管、排水管、水泵等。
电控系统:用于控制压缩机的启停、保护、显示等功能,分为电动机、控制柜、传感器等。
1.压缩机的工作原理是:当电动机启动后,通过联轴器带动曲轴旋转,曲轴通过连杆将旋转运动转换为活塞的往复运动。
当活塞向下运动时,在上方形成一个真空区域,使得外部低压气体或空气经过吸入滤清器和吸气阀进入一级气缸。
当活塞向上运动时,在上方形成一个高压区域,使得一级压缩后的气体经过排气阀进入一级排气缓冲器。
然后经过一级换热器冷却后,进入二级吸气缓冲器。
同样的过程在二级、三级、四级等压缩气缸中重复进行,直到达到所需的压力。
最后,经过排出滤清器和油水分离器处理后,将压缩后的气体送入后续装置或使用场所。
2.压缩机的安装、运行、维护和故障排除的方法和注意事项压缩机的安装、运行、维护和故障排除的方法和注意事项,根据不同型号和规格的压缩机可能有所不同,具体请参考压缩机的使用说明书。
三洋机说明书
三洋多媒体投影仪 说明书PLV-Z3000本说明书是利用投影仪的指南需要了解安装,利用和操作投影仪的具体信息,请查阅在CD-ROM中的用户手册。 利用投影仪以前,请阅读CD-ROM顶用户手册里的平安指南。第二页安装和操作投影仪以前,请通读用户手册,不适当的操作会致使投影仪寿命减少、故障、火灾及其他事故。为了减少触电风险,不要移动盖板和背板,里面除可替换的灯泡之外,没有效户能够自己检修的部件。检修效劳应提交有资质的效劳人员。平安警示:警告:本设备必需接地为减少火灾和触电风险,不要将本设备暴露于雨水和雾气中。--投影仪从透镜中发出强光,尽可能幸免直接注视透镜,不然会致使眼部损害,专门要注意不要让小孩直接注视光束。--在适合的位置安装投影仪,不然会致使火灾。--为了空气流通和冷却,在投影仪顶部,周围和背部留下充沛的空间是极端重要的。此处显示的尺寸是需要的最小空间。若是投影仪置于被格开的一个独立空间内,那个最小距离是必需的。
压缩机使用指南
压缩机使用指南压缩机使用指南一、引言1.1 目的本文档旨在提供一份详细的压缩机使用指南,帮助用户正确使用压缩机,并确保安全性和效率。
1.2 范围本文档适用于各种类型的压缩机,包括离心式压缩机、螺杆式压缩机等。
二、压缩机概述2.1 定义压缩机是一种能够将气体压缩为高压气体的设备,在工业生产和制造过程中起着重要的作用。
2.2 主要构成压缩机主要由压缩机本体、电机、控制系统等多个部件组成。
三、压缩机的安装与调试3.1 安装前的准备工作3.1.1 确定安装位置3.1.2 确保安装环境符合要求3.1.3 检查压缩机及附件完好性3.2 安装步骤3.2.1 安装压缩机本体3.2.2 接线和调试电机3.2.3 安装控制系统3.3 调试与测试3.3.1 检查电气系统3.3.2 检查气体流动系统3.3.3 调试压缩机控制参数四、压缩机的操作与维护4.1 操作步骤4.1.1 启动与停止4.1.2 压力控制4.1.3 温度控制4.1.4 润滑与冷却4.2 维护与保养4.2.1 定期检查与保养4.2.2 更换润滑油和过滤器4.2.3 处理常见故障五、压缩机的安全注意事项5.1 使用前的准备5.1.1 了解压缩机的特性和安全要求5.1.2 穿戴个人防护装备5.1.3 检查周围环境是否安全5.2 操作时要注意的事项5.2.1 合理操作压缩机5.2.2 避免过载运行5.2.3 防止压力过高5.3 应急处理和事故防范5.3.1 处理压缩机故障5.3.2 熟悉事故处理程序5.3.4 定期检查和维护六、附件本文档附带以下附件:- 压缩机操作手册- 压缩机安装指南- 压缩机维护记录表七、法律名词及注释7.1 法律名词1、根据《安全生产法》,压缩机属于特种设备,使用时应当遵循相关法律法规和标准。
2、依据《压力容器安全技术监察条例》,需定期对压缩机进行安全检测和评估。
7.2 注释- 本文中的\。
三洋机压缩机运行流程
三洋机压缩机运行流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!三洋机压缩机是一种常见的制冷设备,其运行流程如下:1. 启动前的准备检查压缩机的外观是否有损坏或泄漏。
(三洋)涡旋式全封闭型电动压缩机规格书
室外热 交换器
四通阀
高压开关
排气温度 保护器
压缩机
规格 对来电相序进行判断,防止压缩机反转
AC380V 35 Watts 距压缩机出口10cm以内 130±5℃ 95±11℃ 3.00MPa(G) 以下 0.03MPa(G) 以上
液态制冷 剂充注位
置
节流机构
室内热 交换器
气液分 离器
低压开关
曲轴箱加热带
POWER SUPPLY 50Hz 380~415V
R S T
POWER SUPPLY 50Hz 220V
停止时间:至少应使高低压达到平衡所需的时间
运转时压缩机接线柱电压 指在启动电流升高,电压 下降时的压缩机接线柱电 压 1周期:10分钟
停止时间:以3分钟左右 为标准
12 制冷剂注入量
制冷剂充入量应尽量少(油/制冷剂重量比推荐为0.35以上) 油比重:0.92
13 启停频度
20万个周期
B系列:保持在压缩机内下轴 B系列:不低于压缩机下轴承
制冷剂
冷冻油种类
冷冻油充入量
排气容积
种类
极数
绝缘等级
电动机
额定转速(※1) 启动电流(※2)
单位 — — — ℃ — — V Hz V kg — — ml cm3/rev. — — — min-1 A
线圈电阻值 (25℃)
Ω
连接部 (※3)
吸气管(O.D.) 排气管(O.D.)
mm (in) mm (in)
5 电动机绕组温度
115℃以下
125℃
6 压缩机外壳底部温度 7 排气温度
上限:90℃以下
下限: 比与蒸发压力相对饱和温度高12℃以上(运转时)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中间补气涡旋压缩机使用手册 大连三洋压缩机有限公司1. 技术背景......................................................................................32. 压缩机命名规则..........................................................................33. 系统运行流程..............................................................................44. 压缩机运行范围..........................................................................55. 配套附件清单..............................................................................71. 技术背景普通涡旋压缩机在低蒸发温度下运行时,会发生吸气比容增大、压比升高,排气温度快速升高等问题,造成压缩机性能急剧下降和制热量不足以及难以运行,为解决这一问题,开发了带有中间补气功能的涡旋压缩机。
中间补气涡旋压缩机即在压缩机压缩中间腔补充中压气体,增加排气量,降低排气温度,提升制热能力,使热泵空调器在低环境温度也能提供足够的制热能力。
同时,补气通道的开启和关闭可以做为一种容量卸载调节的辅助手段。
2. 压缩机命名规则在涡旋压缩机的设计开发、改进工作中,需要对新的压缩机型号命名。
为了规范压缩机型号命名,本公司制定了压缩机命名规则。
此规则适用于由大连三洋压缩机有限公司(DSA)涡旋工厂所设计、开发、改进的涡旋压缩机型号命名。
补气涡旋压缩机命名规则如下(补气压缩机系列代号见表1):C - SB R 120 H 38 Q1 2 3 4 5 61—— 涡旋B系列压缩机2—— 标准R22机型3—— 公称冷冻能力= 60Hz 公称冷冻能力(W)/ 1004—— 用途:高温用5—— 电制:三相B8 50Hz 380,415V / 60Hz 440,460V6—— 开发代号:补气系列表1 补气压缩机系列代号马力/HP 型号3.5 C-SBR120H38Q4 C-SBR145H38Q5 C-SBR180H38Q8 C-SCR295H38Q10 C-SCR370H38Q3.系统运行流程压缩机图1 压缩机设计系统运行流程图该设计系统的运行流程如图1所示,压缩机排出的高温、高压制冷剂气体,经冷凝器将热量传递给载热介质后变为液体,从冷凝器出来的高压制冷剂液体经储液器,通过干燥过滤器、视液镜后分为两路,主路的制冷剂液体直接进入经济器内,辅路的制冷剂液体先经过一个电磁阀,再经过膨胀阀节流降压后变为气液混合物后也进入经济器内,二者在经济器中产生热交换,辅路的制冷剂液体吸热后变为气体后被压缩机的辅助进气口吸入,主路的制冷剂放热变为过冷液体经膨胀阀节流降压后进入蒸发器。
在蒸发器内,主路的制冷剂吸收低温环境中的热量而变为低压气体被压缩机吸气口吸入。
主路和辅路的制冷剂在压缩机工作腔内混合,再进一步压缩后排出,构成封闭的工作循环回路。
4. 压缩机运行范围4.1压缩机运转范围图2 压缩机运行范围4.2 压缩机使用标准及使用极限为正确使用补气涡旋压缩机,对其使用标准、使用极限作如下规定:使用标准值:适用于常用条件下(日本JIS B8616、与JIS B8616相关的标准、过载、低温条件下的商品运转条件)的运转;使用极限值:适用于过渡条件下(启动时、除霜时等)的短时间运转。
表1列出了压缩机各项指标的使用标准及使用极限。
表1 压缩机使用标准及使用极限值项目 使用标准值 使用极限值备注制冷剂 R22(符合日本JIS K1517标准)-30~+15℃ -30~+15℃ 蒸发温度 范围 0.16~0.79MPa 0.16~0.79MPa+20~+68℃ +68℃ 冷凝温度 范围 0.91~2.87MPa 2.87MPa 压缩比 1.5~11 11 电动机绕 组温度115℃以下125℃上限:90℃以下下限: 比与蒸发压力相对饱和温度高12K 以上(运转时) 压缩机外壳底部温度比环境温度高11K 以上(停机时)C-SB:130℃以下距压缩机排气口10cm 以内的排气管温度 排气温度 115℃以下C-SC:135℃以下 上盖盲铜管内检测温度 吸气温度 吸气过热度在5K 以上应无由于液体吸入而引起的冲刷音(不增加电流及振动) 压缩机入口30cm 以内位置的吸气管温度。
供电电压(运转时) 额定电压±10% 运转时压缩机接线柱电压三相: 额定电压85%以上 供电电压 (启动时) 单相: 额定电压90%以上指在启动电流升高,电压下降时的压缩机接线柱电压运转时间:至少应使油回到指定油位所需的时间 1周期:10分钟启停周期停止时间:至少应使高低压达到平衡所需的时间停止时间:以3分钟左右为标准制冷剂注入量制冷剂充入量应尽量少(油/制冷剂重量比推荐为0.35以上)油比重:0.92kg/L启停频度 20万个周期C-SB:保持在压缩机内下轴承的中部以上 C-SB:不低于压缩机下轴承的下端面压缩机内油面C-SC:规定封入量的70%以上压力上升:3.00MPa(G)以下高压开关设定值 异常升 压/降压 压力下降:0.03MPa(G)以上 低压开关设定值 水份制冷回路中水份要求在200PPM 以下制冷回路中不凝性气体要求在1%(容积比)以下 不凝性 气体 残留氧气要求在0.1%(容积比)以下 抽真空24小时以后绝对压力应在1.01kPa 以下 倾斜角度 压缩机倾斜最大5°以内5.配套附件清单从系统流程图中可以看到,该系统与普通的空调系统的不同之处在于增加了一些配件,其中主要包括经济器、热力膨胀阀、电磁阀和单向阀等附件,下面就分别介绍一下这些附件的推荐选型及安装注意事项等。
经济器的选型与安装板式换热器具有换热效率高、体积小的优点,故经济器的选择优选于板式换热器,在此推荐采用舒瑞普公司生产的B8系列板式换热器,表2主要列出了不同型号的压缩机所对应的板式换热器的型号以及板式换热器的安装注意事项,表3是板式换热器的管径尺寸选型表,以供参考。
表2 板式换热器的选型及安装板式换热器的选型及安装压缩机型号板换型号 板式换热器的安装注意事项C-SBR120H38Q B8×10 C-SBR145H38Q B8×10 C-SBR180H38Q B8×10 C-SCR295H38Q B8×16 C-SCR370H38Q B8×20 ① 板式换热器必须是直立安装的;② 为了要达到高效率热传性能及热交换率,板式换热器最好被设置为逆向流;③ 冷热介质进出口接管之安装,应严格按照出厂铭牌所规定方向连接,否则,换热器性能将受到影响;④ 当使用介质不干净,有较大颗粒或长纤维时,进口处应装有过滤器;⑤ 设备应在规定的工作温度、压力范围下操作,超温、超压可能破坏密封性能造成泄漏。
禁止操作时猛烈冲击。
表3 板式换热器的管道尺寸管道尺寸辅路管径(㎜) 主路管径(㎜)板式换热器型号F3 F1 F2 F4 B8×10 12.7 9.5 12.7 12.7 B8×16 12.7 12.7 12.7 12.7 B8×20 12.7 12.7 12.7 12.7 1)辅路即为补气回路5.2 补气回路膨胀阀的选型及安装在经济器前用作减压的节流装置可以采用热力膨胀阀、电子膨胀阀或者毛细管。
其中热力膨胀阀是一种改进型的膨胀阀,膜片或波纹管上部的压力来自远距离感温包压力的响应,被广泛应用于制冷和空调设备上,故在此推荐采用热力膨胀阀作为补气回路上的节流装置。
膨胀阀种类和型号很多,如选择错误,会造成冷冻循环的冷却不良,大量液体回流,因此请选择最适合使用条件的膨胀阀。
另外,当补气循环应用于空调制冷工况时,补气膨胀阀两端的压力会较高,故需要选择能承受较高压力,且能在相对较高的压力下正常动作的膨胀阀。
表4主要推荐了ALCO 公司的B 系列热力膨胀阀的选型介绍。
表4 热力膨胀阀的选型及安装热力膨胀阀的选型及安装压缩机 型号膨胀阀 型号 热力膨胀阀的安装注意事项C-SBR120H38QBAE1HCAC-SBR145H38Q BAE1HCAC-SBR180H38Q BAE1HCAC-SCR295H38Q BAE2HCAC-SCR370H38Q BAE2HCA① 热力膨胀阀必需安装在靠近板式换热器的地方,约距离板换进口150—200mm 的位置; 阀体是在带有毛细管一方的上面垂直安装的,不能倾斜,更不能颠倒安装,这是因为在膨胀阀的构造上如横放会导致摩擦大工作不能顺利进行; ② 感温包的安装是非常重要的,带有水平管的感温包如图3所示那样,对于补气管来说,其口径肯定小于φ25.4,故感温包需安装在补气管的正上方。
需要注意的是,感温包绝不能安装在吸气管的底部,以防止吸气管底部有油或液体冷媒,使感温包接受错误的信号;③ 感温包最好安装在距离板换辅路出口400—600mm 的位置,且尽量安装在水平管段部分;另外,感温包也不得安装在存油弯的集管或者立管上;④ 外部均压管必须安装在感温包安装位置的后面,距离感温包100mm 左右的位置上,避免对感温包的影响;它必须安装于管的中上部,以免有液体进入;若将外部均压管安装在感温包的前面,将影响感温包感受的温度,也可能造成波动。
图3 感温包的安装位置5.3 电磁阀的安装注意事项膨胀阀只是一个节流元件,本身无法完全关闭,因而需要在膨胀阀前安装一个电磁阀,利用电磁阀切断供液管路,这就避免了在循环停止时有液体进入到压缩机内,造成压缩机液击现象的发生。
电磁阀需要安装在膨胀阀的前面,且位置应尽量靠近膨胀阀。
另外,并联机应该在每台压缩机的补气回路上都安装电磁阀。
表5列出了电磁阀的安装注意事项,以供参考。
表5 电磁阀的安装及注意事项电磁阀的安装注意事项① 电磁阀和压缩机要同时开启。
压缩机停机时电磁阀立即关闭,停止供液,避免停机后大量制冷剂液体流入板式换热器中,造成再次启动时压缩机发生液击;② 电磁阀必须垂直地安装在水平管路上,线圈在上方,并使制冷机液体的流向与阀体标明的箭头指向一致;③ 电磁阀的工作介质应为清洁无颗粒杂质,阀前应安装80目/寸~100目/寸过滤网,防止杂质卡死在阀体内造成电磁阀不能正常工作,产生故障。
5.4 补气回路单向阀在压缩机补气回路上需安装一个单向阀,目的有两个,一方面是为了防止压缩机在停机的瞬间发生反转;另一方面也是比较重要的方面,是为了减少压缩机的余隙容积,在不补气状态下补气管路相当于余隙容积,这势必会降低压缩机的容积效率,所以单向阀要靠近压缩机补气口安装以减少这部分余隙。