纳米光电子器件发展论文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米光电子器件发展论文

论文关键词:纳米导线激光器;紫外纳米激光器;量子阱激光器;微腔激光器;新型纳米激光器

论文摘要:纳米光电子技术是一门新兴的技术,近年来越来越受到世界各国的重视,而随着该技术产生的纳米光电子器件更是成为了人们关注的焦点。主要介绍了纳米光电子器件的发展现状。

1纳米导线激光器

2001年,美国加利福尼亚大学伯克利分校的研究人员在只及人的头发丝千分之一的纳米光导线上制造出世界最小的激光器-纳米激光器。这种激光器不仅能发射紫外激光,经过调整后还能发射从蓝色到深紫外的激光。研究人员使用一种称为取向附生的标准技术,用纯氧化锌晶体制造了这种激光器。他们先是”培养”纳米导线,即在金层上形成直径为20nm~150nm,长度为10000nm的纯氧化锌导线。然后,当研究人员在温室下用另一种激光将纳米导线中的纯氧化锌晶体激活时,纯氧化锌晶体会发射波长只有17nm的激光。这种纳米激光器最终有可能被用于鉴别化学物质,提高计算机磁盘和光子计算机的信息存储量。

2紫外纳米激光器

继微型激光器、微碟激光器、微环激光器、量子雪崩激光器问世后,美国加利福尼亚伯克利大学的化学家杨佩东及其同事制成了室温纳米激光器。这种氧化锌纳米激光器在光激励下能发射线宽小于0.3nm、波长为385nm的激光,被认为是世界上最小的激光器,也是采用纳米技术制造的首批实际器件之一。在开发的初始阶段,研究人员就预言这种ZnO纳米激光器容易制作、亮度高、体积小,性能等同甚至优于GaN蓝光激光器。由于能制作高密度纳米线阵列,所以,ZnO纳米激光器可以进入许多今天的GaAs器件不可能涉及的应用领域。为了生长这种激光器,ZnO纳米线要用催化外延晶体生长的气相输运法合成。首先,在蓝宝石衬底上涂敷一层1nm~3.5nm厚的金膜,然后把它放到一个氧化铝舟上,将材料和衬底在氨气流中加热到880℃~905℃,产生Zn蒸汽,再将Zn蒸汽输运到衬底上,在2min~10min的生长过程内生成截面积为六边形的2μm~10μm的纳米线。研究人员发现,ZnO纳米线形成天然的激光腔,其直径为20nm~150nm,其大部分(95%)

直径在70nm~100nm。为了研究纳米线的受激发射,研究人员用Nd:YAG激光器(266nm波长,3ns脉宽)的四次谐波输出在温室下对样品进行光泵浦。在发射光谱演变期间,光随泵浦功率的增大而激射,当激射超过ZnO纳米线的阈值(约为40kW/cm)时,发射光谱中会出现最高点,这些最高点的线宽小于0.3nm,比阈值以下自发射顶点的线宽小1/50以上。这些窄的线宽及发射强度的迅速提高使研究人员得出结论:受激发射的确发生在这些纳米线中。因此,这种纳米线阵列可以作为天然的谐振腔,进而成为理想的微型激光光源。研究人员相信,这种短波长纳米激光器可应用在光计算、信息存储和纳米分析仪等领域中。

3量子阱激光器

2010年前后,蚀刻在半导体片上的线路宽度将达到100nm以下,在电路中移动的将只有少数几个电子,一个电子的增加和减少都会给电路的运行造成很大影响。为了解决这一问题,量子阱激光器就诞生了。在量子力学中,把能够对电子的运动产生约束并使其量子化的势场称之成为量子阱。而利用这种量子约束在半导体激光器的有源层中形成量子能级,使能级之间的电子跃迁支配激光器的受激辐射,这就是量子阱激光器。目前,量子阱激光器有两种类型:量子线激光器和量子点激光器。

3.1量子线激光器

近日,科学家研制出功率比传统激光器大1000倍的量子线激光器,从而向创造速度更快的计算机和通信设备迈进了一大步。这种激光器可以提高音频、视频、因特网及其他采用光纤网络的通信方式的速度,它是由来自耶鲁大学、位于新泽西洲的朗讯科技公司贝尔实验室及德国德累斯顿马克斯·普朗克物理研究所的科学家们共同研制的。这些较高功率的激光器会减少对昂贵的中继器的要求,因为这些中继器在通信线路中每隔80km(50mile)安装一个,再次产生激光脉冲,脉冲在光纤中传播时强度会减弱(中继器)。

3.2量子点激光器

由直径小于20nm的一堆物质构成或者相当于60个硅原子排成一串的长度的量子点,可以控制非常小的电子群的运动而不与量子效应冲突。科学家们希望用量子点代替量子线获得更大的收获,但是,研究人员已制成的量子点激光器却不尽人意。原因是多方面的,包括制造一些大小几乎完全相同的电子群有困难。大

多数量子装置要在极低的温度条件下工作,甚至微小的热量也会使电子变得难以控制,并且陷入量子效应的困境。但是,通过改变材料使量子点能够更牢地约束电子,日本电子技术实验室的松本和斯坦福大学的詹姆斯和哈里斯等少数几位工程师最近已制成可在室温下工作的单电子晶体管。但很多问题仍有待解决,开关速度不高,偶然的电能容易使单个电子脱离预定的路线。因此,大多数科学家正在努力研制全新的方法,而不是仿照目前的计算机设计量子装置。

4微腔激光器

微腔激光器是当代半导体研究领域的热点之一,它采用了现代超精细加工技术和超薄材料加工技术,具有高集成度、低噪声的特点,其功耗低的特点尤为显著,100万个激光器同时工作,功耗只有5W。该激光器主要的类型就是微碟激光器,即一种形如碟型的微腔激光器,最早由贝尔实验室开发成功。其内部为采用先进的蚀刻工艺蚀刻出的直径只有几微米、厚度只有100nm的极薄的微型园碟,园碟的周围是空气,下面靠一个微小的底座支撑。由于半导体和空气的折射率相差很大,微碟内产生的光在此结构内发射,直到所产生的光波积累足够多的能量后沿着它的边缘折射,这种激光器的工作效率很高、能量阈值很低,工作时只需大约100μA的电流。

长春光学精密机械学院高功率半导体激光国家重点实验室和中国科学院北京半导体研究所从经典量子电动力学理论出发研究了微碟激光器的工作原理,采用光刻、反应离子刻蚀和选择化学腐蚀等微细加工技术制备出直径为9.5μm、低温光抽运InGaAs/InGaAsP多量子阱碟状微腔激光器。它在光通讯、光互联和光信息处理等方面有着很好的应用前景,可用作信息高速公路中最理想的光源。

微腔光子技术,如微腔探测器、微腔谐振器、微腔光晶体管、微腔放大器及其集成技术研究的突破,可使超大规模集成光子回路成为现实。因此,包括美国在内的一些发达国家都在微腔激光器的研究方面投人大量的人力和物力。长春光机与物理所的科技人员打破常规,用光刻方法实现了碟型微腔激光器件的图形转移,用湿法及干法刻蚀技术制作出碟型微腔结构,在国内首次研制出直径分别为8μm、4.5μm和2μm的光泵浦InGaAs/InGaAsP微碟激光器。其中,2μm直径的微碟激光器在77K温度下的激射阔值功率为5μW,是目前国际上报道中的最好水平。此外,他们还在国内首次研制出激射波长为 1.55μm,激射阈值电流为

相关文档
最新文档