16Mn钢(热处理课程设计)

16Mn钢(热处理课程设计)
16Mn钢(热处理课程设计)

目录

第一章金属热处理课程设计简介 (1)

一、课程设计的任务与性质 (1)

二、课程设计的目的 (1)

三、设计内容与基本要求 (1)

四、设计步骤 (2)

第二章材料16Mn基本参数 (2)

一、16Mn材料简介 (2)

二、16Mn材料的性能及用途 (3)

三、16Mn材料化学成分 (3)

四、16Mn物理力学性能 (3)

第三章热处理工艺设计 (4)

一、16Mn热处理概述 (4)

二、16Mn热处理 (4)

三、基本参数确定 (9)

第四章 16Mn钢热处理分析 (10)

一、16Mn钢热处理后组织分析 (10)

二、16Mn钢热处理后材料性能检测 (13)

第五章设计与心得体会 (17)

参考文献 (19)

第一章金属热处理课程设计简介

一、课程设计的任务与性质

《金属热处理原理与工艺》课程是一门重要的专业课程,金属材料热处理工艺设计及实验操作是一种重要的教学环节,通过金属材料热处理工艺金相组织分析、性能检测等实验,可以培养学生掌握热处理实验方法、原理及相关设备,运用热处理的基本原理和一般规律对实验结果进行分析讨论,有助于强化学生解决问题、分析问题的能力。

二、课程设计的目的

1、课程设计属于《金属热处理原理与工艺》课程的延续,通过设计实践,进一步学习掌握金属热处理工艺设计的一般规律和方法。

2、培养综合运用金属学、材料性能学、金属工艺学、金属材料热处理及结构工艺等相关知识,进行工程设计的能力。

3.培养使用手册、图册、有关资料及设计标准规范的能力。

4.提高技术总结及编制技术文件的能力。

5.是金属材料工程专业毕业设计教学环节实施的技术准备。

三、设计内容与基本要求

设计内容:完成合金结构钢(16Mn)的热处理工艺设计,包括工艺方法、路线、参数的确定,热处理设备及操作,金相组织分析,材料性能检测等。

基本要求:

1.课程设计必须独立的进行,每人必须完成不同的某一种钢材热处理工艺设计,能够较清楚地表达所采用热处理工艺的基本原理和一般规律。

2.合理地确定工艺方法、路线、参数,合理选择热处理设备并正确操作。

3.正确利用TTT、CCT图等设计工具,认真进行方案分析。

4.正确运用现代材料性能检测手段,进行金相组织分析和材料性能检测等。

5.课程设计说明书力求用工程术语,文字通顺简练,字迹工整,图表清晰。

四、设计步骤

方案确定:

1.根据零件服役条件合理选择材料及提出技术要求。

2.零件按材料、形状、尺寸、重量和性能要求等确定其热处理工艺方法、路线及相关参数。

3.选择热处理设备及温度控制方式、冷却介质。

4.热处理工艺实例。

5.热处理后材料性能检测。

6.金相组织分析.

7.利用Fe-Fe3C相图、TTT、CCT图等设计工具,认真进行方案分析。

一般,根据零件使用性能及技术要求,提出所可能实施的几种热处理工艺方案,首先从其所可能达到的性能要求,工艺操作的繁简及质量可靠性等进行分析比较,再根据生产批量的大小,现有设备条件及国内外热处理技术发展趋势,进行综合技术经济分析,确定最佳热处理工艺方案。

材料选择:

选择16Mn合金结构钢

零件设计:试样为16Mn无缝钢管,拟定板厚50mm,在低温环境下工作,要求有良好的综合力学性能,在低温环境下,塑性和焊接性行良好,具有良好的切削性能。

第二章材料16Mn基本参数

一、16Mn材料简介

16Mn是旧国标GB/T1591-1988中的低合金高强度结构钢的牌号,新国标GB/T1591-1994中的牌号为Q345(Q345有5个质量等级,Q345A~Q345E),Q345A对应美国ASTM的牌号是Gr.50 (中间的点不是小数点,是上下对中的,像个“乘号”点一样。)

16Mn为钢材中的一种材质。过去钢材的一种叫法。现在的称法为:

Q345(见Q345)。16,所代表的为这种钢材中的碳的含量在0.16%左右。而Mn单独提出来,是因为五大元素(碳C,硅Si,锰Mn,磷P,硫S)中,锰的含量高,才单独提出来,大约在1.20-1.60%左右。

16Mn属低合金钢板系列,在此系列中,为最普通材质,或者牌号的钢板。16Mn为钢材中的一种材质。过去钢材的一种叫法。 16Mn钢属于碳锰钢,碳的含量在0.16%左右,屈服点等于343MPa(强度级别属于343MPa级)。16Mn 钢的合金含量较少,焊接性良好,焊前一般不必预热。但由于16Mn钢的淬硬倾向比低碳钢稍大,所以在低温下(如冬季露天作业)或在大刚性、大厚度结构上焊接时,为防止出现冷裂纹,需采取预热措施。

二、16Mn材料的性能及用途

综合力学性能良好,低温性能尚可,塑性和焊接性良好,用做中低压容器、油罐、车辆、矿山机械、电站、桥梁等承受动载荷的结构、机械零件、建筑结构、一般金属结构件,热轧或正火状态使用,可用于-40℃以下寒冷地区的各种结构。

主要特性:综合性能好,低温性能好,冷冲压性能,焊接性能和可切削性能好。

应用举例:矿山,运输,化工等各种机械。

三、16Mn材料化学成分

表一 16Mn化学成分标准

四、16Mn物理力学性能

16Mn密度为7.85,16Mn钢板密度为7.85.

16Mn低合金钢管是低合金高强度结构钢:Mn含碳量为0.1%-0.25%,加入主要合金元素锰、硅、钒、铌和钛等;它的含合金总量<3%。按强度分为300、350、400和450MPa等4个级别。主要有Q295、Q345、Q390、Q420、Q460。:“Q”是屈服的“屈”字的汉语拼音大写字头,其后数字为该牌号最小屈服点(σs)值,其后的符号是按照该钢杂质元素(硫、磷)含量由高到低并伴随碳、锰元素的变化而分为A、B、C、D四等。其中A、B级钢通常称16Mn

抗拉强度:470~660牛/平方毫米;屈服强度:275~345牛/平方毫米;伸长率:21%。具体值要根据钢材的厚度或直径,以上数据对应钢材的厚度或直径为:16~100mm。

第三章热处理工艺设计

一、16Mn热处理概述

热处理的目的是改变钢的内部组织结构,以改变钢的性能,通过适当的热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。热处理工艺不但可以强化金属材料,充分挖掘材料性能潜力,降低结构重量,节省和能源,而且能够提高机械产品质量,大幅度延长机械零件的使用寿命。

热处理的三阶段:加热,保温,冷却。

这三个阶段决定了材料热处理后的组织和性能。加热是热处理的第一道工序。不同的材料,其加热工艺和加热温度都不同。加热分为两种,一种是在临界

点A

1以下的加热,此时不发生组织变化。另一种是在A

1

以上的加热,目的是为

了获得均匀的奥氏体组织,这一过程称为奥氏体化。

保温的目的是要保证工件烧透,防止脱碳、氧化等。保温时间和介质的选择与工件的尺寸和材质有直接的关系。一般工件越大,导热性越差,保温时间就越长。

冷却是热处理的最终工序,也是热处理最重要的工序。钢在不同冷却速度下可以转变为不同的组织。

16Mn钢是目前国内建筑用主要钢材之一,以热轧状态交货。16Mn属于低合金钢板系列,在此系列中为最普通材质或者牌号的钢板。根据特殊要求,可以对钢板进行一些特殊的处理:热处理和Z向性能。这里我们只讨论热处理。其热处理一般为控扎,正火等等。

二、16Mn热处理设计

采用膨胀法并结合金相-硬度法,膨胀曲线在G leeb-1500热模拟机上测定。为使加热温度接近16Mn钢的开轧温度保证微合金元素的充分溶解,根据已有文献,试样的奥氏体化温度定为1000℃(在2min内将试样加热至此温度),保温15min。分别以13种不同的冷却速度(0.1~75℃/s)将试样冷却,获取其膨胀曲线,再由膨胀曲线确定相变温度。以喷水冷却(冷却速度约为400℃/s)测定其Ms点。用DTA方法(以2℃/min由500℃升温到1000℃)确定其临界点Ac1和Ac3,最后在POLYVAR-MET金相显微镜进行组织观察,并测得显微硬度(HV2)。

测定结果为Ac1=917℃,Ac3=770℃,Ms≈400℃。根据不同冷却速度膨胀曲线上的拐点(切点或极值点),结合金相组织,确定的箱变温度见表二。将表二中的相变点绘制到温度-时间半对数坐标上,用连线法将个物理意义相同的点连接起来同时在该坐标上标出Ac1,Ac3和Ms即可绘制出CCT图(图一),冷却曲线

旁的数字为冷却速度,冷却曲线下端的数字为以此冷却速度冷却后试样的室温维氏硬度值(HV2)。

表二不同冷却速度下的相变温度

图1 16Mn钢的CCT图

16Mn一般是淬火+低温回火热处理,250℃以下回火时为回火马氏体,450以上回火时为回火索氏体。已经测出的16Mn钢过冷奥氏体等温转变曲线(TTT图)有多个.由于所用试样的化学成分和奥氏体化工艺的差别,不同测试者可获得不

同的结果,但大同小异,典型的TTT图如图2。

图2 16Mn钢的TTT图

加热到770+(20~30)℃,短时间保温或者不保温,油淬,然后250℃回火(+10-10),可以保证硬度在45-49之间,回火最好在淬后有余热时马上进行,这样可以最小程度减小变形.如果对疲劳性能有更高要求,可以在回火后再进行喷丸处理,这样光洁度也会好一点,出炉马上就得进油,不用水。 16Mn是结构钢低温回火,770淬火150~250回火淬火+低温回火,所得组织为回火马氏体。其目的是获得高的屈服强度,弹性极限和较高的韧性。淬火后低温回火。可获得比较优良的综合性能。

(1)16Mn钢的预热处理

根据不同板厚及不同环境温度下16Mn钢的预热温度

16以下不低于-10℃不预热,-10℃以下预热100~150℃;

16~24 不低于-5℃不预热,-5℃以下预热100~150℃;

25~40 不低于0℃不预热,0℃以下预热100~150℃;

40以上均预热100~150℃。

给定试样16Mn钢预先热处理工艺示意图:

图3 (a)

图3 (b)

(2)16Mn钢的退火

将组织偏离平衡状态的钢件加热到适当的温度,保温一定时间,随后缓慢冷却,从而获得接近平衡状态的组织与性能的金属热处理工艺。

16Mn属于低合金结构钢,为低碳钢,若采用通常的完全退火,则其硬度太低,切削性能不好。为改善切削性能,可采用高温退火,即在比通常完全退火更高的温度下加热,获得4~6级的粗晶粒,以提高切削性能。

16Mn钢属于亚共析钢,合金元素含量较低,具有良好的韧性,强度和抗冷热疲劳性能与一定的耐磨性。温度选择为Ac3+(20~30)℃。一般先把钢管加热到 870-880 度再炉冷至 500 度然后炉外空冷。

图4 16Mn退火后的显微组织

(3)16Mn钢的正火

正火是将钢加热到Ac3或Accm以上30~50℃——保温——出炉空冷。低碳钢正火的目的之一是提高切削性能。但是对16Mn这样碳的质量分数低于0.20的钢,即使按通常正火温度正火后,自由铁素体量仍过多,硬度过低,切削性能仍较差。为了提高硬度,应提高加热温度(可比Ac3高100℃),以增大过冷奥氏体的稳定性,而且应该增大冷却速度,以获得较细的珠光体和分散度较大的铁素体。

16Mn钢一般正火热处理,加热到560℃,保温2小时,再加热到850℃,保温3小时,炉冷。

图5 正火后的显微组织

(4)16Mn钢的淬火

将钢加热到Ac3或Ac1以上30~50℃——保温——快速冷却(大于Vk)以获得马氏体的工艺方法。

因为16Mn的含碳量太低,钢材的淬硬倾向太低,进行淬火还不如进行正火,正火后的性能会比淬火的性能更优异。当环境温度较低时刻进行淬火处理。(5)16Mn钢的回火

回火是将淬火后的钢重新加热到Ac1以下某一温度保温,然后冷却(一般空冷)至室温。

16Mn钢一般采用低温回火,在150℃~250℃温度下回火,得到回火马氏体。

综合硬度﹑抗弯强度﹑挠度3个主要机械性能来看,选择在180~200℃之间回火最佳,既可保持较高的抗弯强度﹑挠度,又有较高的硬度值(HRC62以上)。

在250℃回火,抗弯强度﹑挠度﹑硬度都很低。因此,不要选择此回火温度。

图6 16Mn热轧回火的金相图

三、基本参数确定

进行热处理时,加热温度、保温时间、冷却方式是最重要的三个基本工艺因素,正确选择这三者的规范,是热处理成功的基本保证。

1.加热温度的选择

(1)退火温度

16Mn钢属于亚共析钢,合金元素含量较低,具有良好的韧性,强度和抗冷热疲劳性能与一定的耐磨性。温度选择为Ac3+(20~30)℃

(2)正火温度

870℃~880℃,再炉冷至500℃然后炉外空冷。

(3)淬火温度

16Mn钢属于亚共析钢,合金元素含量较低,具有良好的韧性,强度和抗冷热疲劳性能与一定的耐磨性。温度选择为Ac3+(30~50)℃。因为16Mn的含碳量太低,钢材的淬硬倾向太低,一般不进行淬火处理。

(4)回火温度

低温回火:150~250℃,所得组织为回火马氏体,硬度约为HRC57~60. (5)对于16Mn钢常进行焊后热处理

通过将钢件升温和保温所需时间算在一起,统称为加热时间。

退火加热保温时间,在全部炉料到达退火温度后,保温4~6h。

回火加热保温时间为2h。

3.冷却方式

退火:随炉缓冷至500℃,出炉空冷

淬火:急冷

回火:油冷之后空冷

第四章 16Mn钢热处理分析

一、16Mn钢热处理后组织分析

研究热处理后的组织时,不但要参考铁碳相图,还要利用钢的TTT曲线或CCT曲线。

图7 铁碳相图

铁碳相图能说明慢冷时不同碳含量的铁碳合金的结晶过程和室温下的组织以及相对量。TTT曲线或CCT曲线则能说明一定成分的铁碳合金在不同冷却条件下的转变过程,以及转变后能得到的那些组织。

(一)16Mn过冷奥氏体转变产物分析

图8为16Mn钢的原始态及部分冷却速度下得到的转变产物的金相组织。由图可知,16Mn钢几乎在每种冷却速度下都有且素体析出,只是铁素体形态随冷却速度不同会发生变化。当冷却速度较慢时,其形态以块状为主, 冷却速度加快时,

铁素体组织细化并且出现针状形态, 当冷却速度非常快( 60/s, 75/s)时, 则以游离铁素体存在. 珠光体转变大约在冷却速度低于 15/ s时发生, 随着冷却速度的增加, 珠光体组织由较粗形态珠光体过渡为较细的索氏体和屈氏体, 并且数量减少. 而贝氏体转变的冷却速度范围非常宽, 在冷却速度为05/s 时, 就出现少量贝氏体, 其形态似针状铁素体, 冷却速度加大其针状组织变细, 而且, 在速度很快时以马氏体为主的显微组织里也会有少量贝氏体存在. 在冷却速度大于 20/ s时, 发生马氏体转变, 其形貌主要是板条状马氏体.

(a)原始态:(b)0.1℃/s(c)0.5℃/s(d)5℃/s(e)10℃/s(f)15℃/s

(g)20℃/s(h)30℃/s(i)45℃/s(j)75℃/s

图8 16Mn钢连续冷却转变后的金相组织

(二)16Mn钢的轧后余热热处理

金相组织:

经余热热处理的式样外表面有回火索氏体组织,是由表面快冷得到马氏体后,试样内部的热量传递到外表面对其回火所致。其范围为1.2~1.5mm。其心部组织为珠光体+铁素体,与热轧态的金相组织相比,晶粒较细小,其结果见图9。

图9 金相组织

(a)余热处理外层组织(b)余热处理心部组织(c)热轧态心部组织

力学性能:

由测试结果表四可见,经轧后余热热处理钢筋的强度标准好于热轧状态的强度指标。完全符合YB13-69标准。

表四力学性能

图10 沿径向硬度分布曲线

由图10可见,经轧后余热热处理的钢筋横截面上硬度比热轧状态钢筋横截面相应点上的硬度高,而且由表面到心部硬度缓慢地下降,这说明经轧后余热热处理的钢筋,具有良好的疲劳性能。造成力学性能提高的原因是其组织的变化。

二、16Mn钢热处理后材料性能检测

(一)16Mn钢表面组织超细化研究

图11为不同深度的TEM微观组织形貌。结果表明16Mn钢经机械研磨处理后,其表层组织由表及里分别为纳米和亚微米晶层、微米晶层和正常基体。纳米和亚微米晶层的厚度约30μm,微米晶层约 50μm。

在纳米和亚微米层,局部的纳米晶粒尺寸由50nm至200nm大小不等(图11abc,)大多数晶粒尺寸为亚微米在微米晶层,晶粒尺寸约为2μm,且均匀性较差,晶粒被明显碎化(图11d)。

图12为机械研磨处理后样品硬度沿厚度方向的变化。可以看出,表面机械研磨处理后,样品表面的硬度明显增大,并随着深度的增加而逐渐减小。

在机械研磨的过程中,弹丸与试样表面之间的碰撞,使试样表面产生强烈的塑性变形,表层晶粒被碎化,随着深度的增加,由于作用力的减小,晶粒的变形量减小,故试样表层晶粒尺寸由表里逐渐增大。另外,由于研磨过程中,弹丸碰撞方向和作用点都在不断地变化,经过反复碰撞后,样品表面附近原晶粒的变形方向和变形量都存在一定的差异,造成近表面层组织局部不均匀,局部达到纳米尺度,而有的区域晶粒仅为亚微米级。

图11 经机械研磨处理的16Mn钢表层由表及

里不同深度的TEM微观组织形貌(a、b、c

-纳米和亚微米晶层;d-微米晶粒层

图12机械研磨处理后样品由表

及里不同深度的硬度变化

结论:

(1)16Mn钢经机械研磨处理后,表层组织由表及里依次为纳米和亚微米晶层、微米晶层和正常基体。

(2)机械研磨处理使16Mn钢的表面得到明显强化,表层硬度远远高于内部基体的硬度。

(二)16Mn钢的高温强度试验

钢材高温力学性能试验所需的设备应包括加载、加热和温度控制以及数据量测和记录等3个系统。该试验在一台型号为WAW-1000微机控制电液伺服万能试验机上进行,试验机最大加载能力为1000kN,控制精度为±1 %。试验机配备有TL -10 00筒式高温炉,炉室直径80 mm ,恒温区长度为350mm,最高升温1000℃,控温精度为±1℃。变形的量测采用电子引伸计,测量标距50 0m m ,最大量程为25 mm ,精度0.178%。实验设备如图13。测量装置如图14所示。

图13 实验设备图14 变形测量仪器

恒载加温试验结果及分析:

恒载加温试验中由于应力保持不变 ,试验只能参考变形—时间曲线图 ,试验中某一温度下临界荷载的判断标准为试验过程中试件的变形速率突然变大或者持续变大,此时所施加的荷载即为临界荷载。图15~图18分别为对应600、500、400、300℃时不同荷载水平下的变形—时间曲线图。

图15 600℃恒载加温不同荷载水平下的变形-时间曲线图16 500℃恒载加温不同荷载水平下的变形-时间曲线

图17 400℃恒载加温不同荷载水平下的变形-时间曲线图18 300℃恒载加温不同荷载水平下的变形-时间曲线

图15中600℃恒载加温试验荷载水平为0130时,试验达到目标温度后试件的变形速率不发生改变。荷载水平为0135 时,试件在整个试验过程中变形速率越来越大。图16中500 ℃恒载加温试验荷载水平为0150时,试验达到目标温度后试件的变形速率没有发生大的改变。图17中400℃恒载加温试验荷载水平为0155时,变形速率逐渐变小,而荷载水平为0160时,试验达到目标温度后试件的变形速率突然变大。同样图18中300℃恒载加温试验荷载水平为0170时,变形速率逐渐变小,而荷载水平为0175时,试验达到目标温度后试件的变形速率也突然增大。依据判断标准,该批次16Mn钢在600℃时恒载加温的临界荷载水平

0130;500℃时恒载加温的临界荷载水平为0150;400℃时恒载加温的临界荷载水平为0155;300℃时恒载加温的临界荷载水平为0170.

恒温加载试验结果及分析:

将恒温加载试验记录的应力- 应变数据进行适当的处理:由应变仪测量的变形是标距500mm长试件的变形,但实际上标距内试件的温度不是一个标准的恒温区间,假设中间标距为350mm长的试件是恒温区,两端近似考虑为常温,以此处理

应变数据,取其条件屈服强度值,分别为f 011、f 012、f 015、f 110、f115和f 210。用条件屈服强度除以该批次钢材常温屈服强度便得到高温强度折减系数。

表五恒温加载条件下屈服强度折减系数值

各次试验不同温度条件下屈服强度的折减系数如表五所列。将每一温度水平下3次试验的结果取平均值得表六。

表六恒温加载条件下平均屈服强度折减系数值

从表五试验数据结果看出 ,每个温度水平下的3次试验结果基本相同,说明试验重复性比较好。从表六可知,屈服强度折减系数随温度的升高而降低 ,600℃下f 011降为常温下强度的33%,f 015降为常温下强度的50 %左右,试验结果数据与国外一些规范有一定的差异。图19为根据表六分析数据绘制的曲线图。

图19 恒温加载条件下屈服强度折减系数随温度的变化曲线

(三)碳、锰元素对等温转变的影响

碳不论在钢或铸铁中均为主要的基本元素;当含碳量超过 1. 2%以上时会使过剩碳化物的数量增多,并使它们的尺寸增大;但是碳化物在组织中分布得越来越不均匀,甚至沿晶粒边界会出现碳化物定向的缺陷,这就使机械性能变坏。所以,为了改善其机械性能,选择了等温退火处理。

图20 C、Mn元素对HIT曲线的影响

图20表明,提高碳量由于增大了奥氏体中碳的过饱和度,合金的孕育期缩短,碳化物的析出倾向增大,同时由于C的析出,非均质晶核增加,促进奥氏体向珠光体转变,所以提高碳量使转变曲线左移。Mn的影响如图(b)所示。Mn 量增加,合金的临界温度下降,奥氏体更趋稳定;同时奥氏体的溶碳能力提高,因而使合金的转变孕育期延长,转变温度下降,使等温转变曲线向右下方移动。

(四)钢在热处理后常见的缺陷

(1)带状组织:是亚共析钢中先析出铁素体,分别沿着压力加工方向呈带状交替分布,显微镜下形成黑白交替的带状组织。

(2)脱碳:在氧化介质中,刚进行长时间加热,表面就会脱碳,表面上几乎全由单一的铁素体组成。

(3)过热、过烧:钢在加热时形成粗大奥氏体晶粒的现象称为过热;过烧指加热温度过高,不仅奥氏体晶粒粗大,且在奥氏体晶界处产生氧化甚至局部熔化的现象。

(4)魏氏组织:先共析片状铁素体或先共析片状渗碳体。

(5)淬火裂纹:淬火冷却时形成的拉应力超过材料微裂纹扩展所需临界应力时形成的宏观裂纹。

第五章设计与心得体会

在本学期期末开始金属热处理工艺课程设计前,我们已修金属热处理原理与

工艺这一门课程,任课老师李会强着重为我们讲述了热处理原理、热处理工艺这两大方面的知识。了解到热处理原理包括金属固态相变基础、钢中奥氏体的形成、珠光体转变、马氏体转变、贝氏体转变、过饱和固溶体的脱溶分解(含钢的回火),以及热处理工艺包括钢的退火与正火、钢的淬火与回火、钢的化学热处理。这些基本热处理知识为我们此次的课程设计打下了一定的基础,是我们独立完成一个专业课程设计的前提。

在设计中,我们很容易就可以发现,这一次的课程设计属于《金属热处理原理与工艺》课程的延续,我们可以通过设计实践,进一步学习掌握金属热处理工艺设计的一般规律和方法,也培养了我们综合运用金属学、材料性能学、金属工艺学、金属材料热处理及结构工艺等相关知识进行工程设计的能力,当然也培养了我们使用手册、图册、有关资料及设计标准规范的能力以及提高了我们技术总结、编制技术文件的能力。

在设计工程中,我很清楚地感觉到,我对热处理这门课程有了更深的认识,懂得热处理是一门很灵活的技术,不同的温度,不同的介质,还有材料中某一部分成分的不同都会影响着最终制作的零件的性能,同时也发现自己在这一方面所接触到的知识还很肤浅,在课程设计的资料收集过程中,我查阅了大量有关资料,拓展了知识面,也走了不少弯路,但通过向老师请教和与同学交流等方式,一些问题基本上得到了解决,总的来说整个过程还算是很有收获的。现在我对所学专业的专业知识有了进一步地了解,为大学最后一学年的学习打下了比较坚实的基础,也为以后的工作提供了理论基础。在课程设计说明书编写过程中,自学能力得到了一定的提升。特别是在文献搜索上得到了较好的锻炼,整个设计过程中接触了不少学术刊物,基于阅读量有限,因此在说明书的部分板块内容上还稍显不足。可以说通过课程设计在很大程度上培养了我独立动手及与同学沟通的能力,使我对即将面对的社会和工作生活有了更大的信心。设计的顺利进行、说明书的编写和完成,使我充分体会到了在设计过程中的不易和完成时的喜悦。

同时发现自己在很多发面存在不足,对自己所学专业的知识了解不够深入,对专业前景及专业的研究方向的了解更是不够,所以我决心以后努力学好专业各门课程。更让我明白要做好任何事情都需要耐心、细心、恒心,要严格按照步骤一步一步来才能有效率的完成整个热处理工艺的设计。

另外本班同学及其他专业同学在整个过程中,我们相互学习、交流、探讨了热处理工艺的许多要点,促进了班级形成团结、融洽的气氛,也提高了我们专业的凝聚力,这使我觉得能在期末时还能度过一段充实的日子,很难得,所以在此特向他们表示感谢!

参考文献

[1]范志康, Harding R A.发达国家奥贝球铁的研究与进展[J]。铸造技术, 1994

(3) :37- 42.

[2]刘金城, 孙国雄. 国外ADI的最新进展[J]. 现代铸铁, 2003 (3) :1- 5.

[3]陆兴主编,戚正风、王传雅主审,《热处理工程基础》,北京:机械工业出

版社,2007年3月第1版.

[4]汪浩、宁海霞编,姜左主审,《金属热处理》,北京:化学工业出版社.

[5]中国机械工程学会热处理学会编,《热处理手册典型零件热处理》,北京:

机械工业出版社,2008年1月第4版.

[6]机械工业职业教育研究中心组编,《热处理工技能实战训练提高版》,北京:

机械工业出版社.

[7]彭其凤、丁洪太主编,《热处理工艺及设计》,上海交通大学出版社.

[8]雷廷权、傅家骐主编,《金属热处理工艺方法500种》,北京:机械工业出版

社,2000年10月第1版.

[9]许天已主编,姜左主审,《钢铁热处理使用技术》,北京:化学工业出版社,

2005年2月第1版.

[10]邵红红、纪嘉明主编,《热处理工》,北京:化学工业出版社,2004年6月

第1版.

[11]郭丽波主编,《热处理工操作技术要领图解》,山东科学技术出版社.

[12]陈尚策等主编,《机械工程材料及工艺基础》,重庆大学出版社.

[13]建生主编,《金属学及热处理》,北京:机械工业出版社.

[14]潘邻主编《化学热处理应用技术》,北京:机械工业出版社.

热处理工艺课程设计

热处理工艺课程设计 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

热处理工艺课程设计高速高载齿轮的热处理工艺 姓名:成** 学号:******* 学院:扬州大学机械工程学院 专业:材料成型及控制工程 设计指导老师:黄新

前言 热处理工艺是金属材料工程的重要组成部分。通过热处理可以改变材料的加工工艺性能,充分发挥材料的潜力,提高工件的使用寿命。本课程设计是在《材料科学基础》﹑《金属热处理工艺学》﹑《失效分析》﹑《金属力学性能》等课程学习的基础上开设的,是理论与实践相结合的重要教学环节。通过该课程设计,可使学生在综合运用所学专业基础理论和专业知识能力方面得到训练,学会独立分析问题和解决问题的方法,提高工程意识和工程设计能力。 热处理工艺是整个机械加工过程种的一个重要环节,它与工件设计及其它加工工艺之间存在密切关系。如何实现工件设计时提出的几何形状和加工精度,满足设计时所要求的多种性能指标,热处理工艺制定的合理与否,有着至关重要的作用。 现代工业的飞速发展对机械零部件﹑工模具等提出的要求愈来愈高。热处理不仅对锻造机械加工的顺利进行和保证加工效果起着重要作用,而且在改善或消除加工后缺陷,提高工件的使用寿命等方面起着重要作用。为获得理想的组织与性能,保证零件在生产过程中的质量稳定性和使用寿命,就必须从工件的特点﹑要求和技术条件,认真分析产品在使用过程中的受力状况和可能失效形式,正确选择材料;再根据生产规模﹑现场条件﹑热处理设备提出几种可行的热处理方案,最后根据其经济性﹑方便性﹑质量稳定性和便于管理﹑降低成本等因素,确定出一种最佳方案。

箱式电阻炉(材料热处理课程设计说明书)

化学与材料工程学院 材料热处理课程设计说明书 学生姓名: 专业:金属材料工程 学号: 班级:材料金属 指导老师:刘

目录 一、设计任务书 (3) 二、工艺设计 (3) 1.型的选择 (3) 2.炉膛尺寸的确定 (3) 3.炉子砌砖设计 (4) 4.中温箱式电阻炉功率的计算 (4) 5.电热元件 (5) 6.电热元件的设计计算 (5) 三、工艺流程图和设备装置图 (7) 四、进度安排 (9) 五、总结与体会 (9)

一、设计任务书 为某厂设计一台热处理电阻炉,其技术条件如下: 1)用途:中碳钢、低合金钢毛坯或零件的淬火、正火及退火处理,处理对象为 中小型零件,无定型产品,处理批量为多种,小批量。 2)生产率:160 kg/h 3)工作温度:最高使用温度950℃ 4)生产特点:周期式成批装料,长时间连续生产。 二、工艺设计 1.炉型的选择 根据设计的具体要求和生产特点,进行综合技术经济分析。决定选用箱式电阻炉,不通保护气体,炉子最高温度为950℃。属中温箱式电阻炉。 2.炉膛尺寸的确定 (1)查表,箱式电阻炉单位炉底面积生产率P 0 ,取P =100[kg/(m2·h)] (2)炉底面积采用加热能力指标法计算,F 效= P P0 =125 100 =1.25 m2 炉底有效面积炉底总面积=F 有效 F 总 = 0.75 - 0.85,取上限,0.85,炉底总面积: 1.25 F 总 = 0.85 F 总 = 1.5625 m2 炉底板宽度 B =1 2F 总 =1 2 ?1.5625 =0.88 m 炉底板长度 L =2F 总 =2?1.5625 =1.77 m (3).炉膛高度的确定炉膛高度H与宽度B之比H B =0.52– 0.9,取0.7 高度H = 0.628 m (4).炉膛有效尺寸(可装工件) L 效×B 效 ×H 效 =1.77m × 0.88m × 0.628m (5).炉膛尺寸 宽 B =B 效 +2×(0.1-0.15)取0.1 B=0.88+2×0.1=1.08 m

课程设计退火炉温度控制系统资料讲解

课程设计退火炉温度 控制系统

课程设计设计题目:退火炉温度控制系统 学院: 专业: 班级: 姓名: 学号: 指导老师: 日期:

摘要 退火炉是金属热处理中的重要设备,它把压力容器加热到一定温度并维持一段时间,然后让其自然冷却。其目的在于消除压力容器的整体压力。提高压力容器的使用寿命。温度是退火炉的主要被控变量,是保证其产品质量的一个重要因素。退火炉温度控制的稳定性和控制精度直接影响产品的质量。 本文以AT89C51单片机为控制核心,采用模块化的设计方案,包括硬件设计与软件设计两部分。硬件设计包括温度检测模块,按键模块,执行模块,LED显示模块,单片机最小系统。本设计要求采用电热丝加热,通过A/D转换将采集到的温度数据输入单片机中,与系统给定值比较,从而对退火炉的温度进行控制,通过按键输入控制信号,三位LED显示炉温。最后设计出最少拍无纹波控制器,通过MATLAB仿真检验是否有纹波。

目录 第1章绪论 (3) 1.1设计背景与算法 (3) 第2章课程设计的方案 (5) 2.1概述 (5) 2.2系统组成总体结构 (5) 第3章程序设计与程序清单 (7) 3.1单片机最小系统设计 (7) 3.1.1单片机选择 (7) 3.1.2时钟电路设计 (8) 3.1.3复位电路设计 (9) 3.2程序清单与电路图 (11) 3.3温度控制电路 (17) 第4章控制算法 (18) 4.1程序框图 (18) 4.2算法设计 (19) 第5章课程设计总结................................................ - 22 -

16Mn钢(热处理课程设计)

目录 第一章金属热处理课程设计简介 (1) 一、课程设计的任务与性质 (1) 二、课程设计的目的 (1) 三、设计内容与基本要求 (1) 四、设计步骤 (2) 第二章材料16Mn基本参数 (2) 一、16Mn材料简介 (2) 二、16Mn材料的性能及用途 (3) 三、16Mn材料化学成分 (3) 四、16Mn物理力学性能 (3) 第三章热处理工艺设计 (4) 一、16Mn热处理概述 (4) 二、16Mn热处理 (4) 三、基本参数确定 (9) 第四章 16Mn钢热处理分析 (10) 一、16Mn钢热处理后组织分析 (10) 二、16Mn钢热处理后材料性能检测 (13) 第五章设计与心得体会 (17) 参考文献 (19)

第一章金属热处理课程设计简介 一、课程设计的任务与性质 《金属热处理原理与工艺》课程是一门重要的专业课程,金属材料热处理工艺设计及实验操作是一种重要的教学环节,通过金属材料热处理工艺金相组织分析、性能检测等实验,可以培养学生掌握热处理实验方法、原理及相关设备,运用热处理的基本原理和一般规律对实验结果进行分析讨论,有助于强化学生解决问题、分析问题的能力。 二、课程设计的目的 1、课程设计属于《金属热处理原理与工艺》课程的延续,通过设计实践,进一步学习掌握金属热处理工艺设计的一般规律和方法。 2、培养综合运用金属学、材料性能学、金属工艺学、金属材料热处理及结构工艺等相关知识,进行工程设计的能力。 3.培养使用手册、图册、有关资料及设计标准规范的能力。 4.提高技术总结及编制技术文件的能力。 5.是金属材料工程专业毕业设计教学环节实施的技术准备。 三、设计内容与基本要求 设计内容:完成合金结构钢(16Mn)的热处理工艺设计,包括工艺方法、路线、参数的确定,热处理设备及操作,金相组织分析,材料性能检测等。 基本要求: 1.课程设计必须独立的进行,每人必须完成不同的某一种钢材热处理工艺设计,能够较清楚地表达所采用热处理工艺的基本原理和一般规律。 2.合理地确定工艺方法、路线、参数,合理选择热处理设备并正确操作。 3.正确利用TTT、CCT图等设计工具,认真进行方案分析。 4.正确运用现代材料性能检测手段,进行金相组织分析和材料性能检测等。 5.课程设计说明书力求用工程术语,文字通顺简练,字迹工整,图表清晰。 四、设计步骤 方案确定: 1.根据零件服役条件合理选择材料及提出技术要求。

汽车发动机活塞销的选材与热处理工艺课程设计讲课讲稿

汽车发动机活塞销的选材与热处理工艺课 程设计

1 汽车发动机活塞销的零件图如下 图1 汽车发动机活塞销零件尺寸图

2 服役条件与性能分析 活塞销(英文名称:Piston Pin),是装在活塞裙部的圆柱形销子,它的中部穿过连杆小头孔,用来连接活塞和连杆,把活塞承受的气体作用力传给连杆。为了减轻重量,活塞销一般用优质合金钢制造,并作成空心。塞销的结构形状很简单,基本上是一个厚壁空心圆柱。其内孔形状有圆柱形、两段截锥形和组合形。圆柱形孔加工容易,但活塞销的质量较大;两段截锥形孔的活塞销质量较小,且因为活塞销所受的弯矩在其中部最大,所以接近于等强度梁,但锥孔加工较难。本次设计选用内孔为原形的活塞销。 服役条件:(1)高温条件下承受周期性强烈冲击和弯曲、剪切作用 (2)销表面承受较大的摩擦磨损。 失效形式:由于承受周期性的应力,使其发生疲劳断裂和表面严重磨损。 性能要求:(1)活塞销在高温条件下承受很大的周期性冲击负荷,且由于活塞销在销孔内摆动角度不大,难以形成润滑油膜,因此润滑条件较差。为此活塞销必须有足够的刚度、强度和耐磨性,质量尽可能小,销与销孔应该有适当的配合间隙和良好的表面质量。在一般情况下,活塞销的刚度尤为重要,如果活塞销发生弯曲变形,可能使活塞销座损坏;(2)具有足够的冲击韧性;(3)具有较高的疲劳强度。 3 技术要求 活塞销技术要求: ①活塞销全部表面渗碳,渗碳层深度为0.8 ~ 1.2mm,渗碳层至心部组织应均匀过渡,不得有骤然转变。 ②表面硬度58 ~ 64 HRC,同一个活塞销上的硬度差应≤3 HRC。 ③活塞销心部硬度为24 ~ 40 HRC。

热处理电炉安全操作规程正式版

Guide operators to deal with the process of things, and require them to be familiar with the details of safety technology and be able to complete things after special training.热处理电炉安全操作规程 正式版

热处理电炉安全操作规程正式版 下载提示:此操作规程资料适用于指导操作人员处理某件事情的流程和主要的行动方向,并要求参加施工的人员,熟知本工种的安全技术细节和经过专门训练,合格的情况下完成列表中的每个操作事项。文档可以直接使用,也可根据实际需要修订后使用。 1. 热处理工人在进行各种工艺操作前必须穿戴好规定的安全防护用品。 2. 加热炉在使用前需要检查其电源接头和电源线路的绝缘是否良好。 3. 操作工在进行装炉前,首先要检查炉膛后面及小车下面的几组接线铝夹头是否有熔化现象,如有,应找电工马上更新。 4. 在合上闸后,应观察炉膛后面及小车下面几组铝夹头上的固定螺栓是否发红,若发红,应找电工拧紧。合上闸后,操作工用手晃几下热电偶传导线,看表盘

上的黑针和红划线针是否上下摆动幅度较大,若大,应找电工拧紧表盘后的螺栓或拧紧热电偶上的螺栓。 5. 每次装炉前应先设定一个低温数值,来验证表盘上黑针指出的数是否和设定的温度值相符。然后按照黑针指出的数值来修正设定温度的红指针。到达恒温阶段还要摇起炉门观察小车上各炉板温度是否接近均匀,如发现个别炉板温度过高,先立即找电工查明原因。 6. 工件的装炉与出炉均不能触及电垫元件,以免断电装置失效时发生触电事故。 7. 进行热处理操作时,操作工不得离开现场,切实注意观察温度和设备运转情

箱式电阻炉课程设计

一、设计任务书 题目:设计一台中温箱式热处理电阻炉; 生产能力:160 kg/h ; 生产要求:无定型产品,小批量多品种,周期式成批装料,长时间连续生产; 要求:完整的设计计算书一份和炉子总图一张。 二、炉型的选择 根据生产特点,拟选用中温箱式热处理电阻炉,最高使用温度650℃,不通保护气氛。 三、确定炉体结构及尺寸 1.炉底面积的确定 因无定型产品,故不能用实际排料法确定炉底面积,只能用加热能力指标法。已知生产率p 为160 kg/h ,按照教材表5-1选择箱式炉用于退火和回火时的单位面积生产率p 0为 100 kg/(m 2﹒h ),故可求得炉底有效面积: F 1=P P 0=160100 =1.6m 2 由于有效面积与炉底总面积存在关系式F 1F ?=0.60~0.85,取系数上限,得炉底实际面积: F = F 10.85=1.6 0.85 =1.88m 2 2.炉底长度和宽度的确定 由于热处理箱式电阻炉设计时应考虑出料方便,取L B ?=2,因此,可求得: L =√F 0.5?=√1.880.5?=1.94m B =L 2?=1.942?=0.97 m 根据标准砖尺寸,为便于砌砖,取L =1.970 m ,B =0.978 m ,如总图所示。 3.炉膛高度的确定 按照统计资料,炉膛高度H 与宽度B 之比H B ?通常在0.5~0.9之间,根据炉子工作条件,取H B ?=0.654m 。 因此,确定炉膛尺寸如下: 长 L =(230+2)×8+(230×1 2+2)=1970 m 宽 B =(120+2)×4+(65+2)×2+(40+2)×3+(113+2)×2=978mm 高 H =(65+2)×9+37=640 mm 为避免工件与炉内壁或电热元件搁砖相碰撞,应使工件与炉膛内壁之间有一定的空间,确定工作室有效尺寸为: L 效=1700 mm B 效=700 mm H 效=500 mm 4.炉衬材料及厚度的确定 由于侧墙、前墙及后墙的工作条件相似,采用相同炉衬结构,即113mm QN ?0.8轻质粘土砖,+80 mm 密度为250 kg m 3?的普通硅酸铝纤维毡,+113mm B 级硅藻土砖。 炉顶采用113 mmQN ?1.0轻质粘土砖,+80 mm 密度为250 kg m 3?的普通硅酸铝纤维毡,+115 mm 膨胀珍珠岩 。 炉底采用三层QN ?1.0轻质粘土砖(67×3)mm ,+50 mm 密度为250 kg m 3?的普通硅酸铝

热处理原理与工艺课程设计

* * 大学 热处理原理与工艺课程设计 题目: 50Si2Mn弹簧钢的热处理工艺设计 院(系):机械工程学院 专业班级:** 学号:******* 学生姓名:** 指导教师:** 起止时间:2014-12-15至2014-12-19

课程设计任务及评语 院(系):机械工程学院教研室:材料教研室 学号******* 学生姓名** 专业班级*** 课程设计题目50Si 2 Mn弹簧钢的热处理工艺设计 课程设计要求与任务一、课设要求 熟悉设计题目,查阅相关文献资料,概述50Si 2 Mn弹簧钢的热处理工艺,制 定出热处理工艺路线,完成工艺设计;分析50Si 2 Mn弹簧钢的成分特性;阐述 50Si 2 Mn弹簧钢淬火、回火热处理工艺理论基础;阐述各热处理工序中材料的组织和性能;阐明弹簧钢的热处理处理常见缺陷的预防及补救方法;选择设备;给出所用参考文献。 二、课设任务 1.选定相应的热处理方法; 2.制定热处理工艺参数; 3.画出热处理工艺曲线图; 4分析各热处理工序中材料的组织和性能; 5.选择热处理设备 三、设计说明书要求 设计说明书包括三部分:1)概述;2)设计内容;3)参考文献。 工作计划 集中学习0.5天,资料查阅与学习,讨论0.5天,设计6天:1)概述0.5天,2)服役条件与性能要求0.5天,3)失效形式、材料的选择0.5天,4)结构形状与热处理工艺性0.5天,5)冷热加工工序安排0.5天,6)工艺流程图0.5天,7)热处理工艺设计1.5天,8)工艺的理论基础、原则0.5天, 09)可能出现的问题分析及防止措施0.5天,10)热处理质量分析0.5天,设计验收1天。 指 导 教 师 评 语 及 成 绩成绩:学生签字:指导教师签字: 年月日

课程设计论文热处理工艺设计

目录 第一章 热处理工设计目的 (1) 第二章 课程设计任务 (1) 第三章 热处理工艺设计方法 (1) 3.1 设计任务 (1) 3.2 设计方案 (2) 3.2.1 12CrNi3叶片泵轴的设计的分析 (2) 3.2.2 钢种材料 (2) 3.3设计说明 (3) 3.3.1 加工工艺流程 (3)

3.3.2 具体热处理工艺 (4) 3.4分析讨论 (11) 第四章 结束语 (13) 参考文献 (14)

12CrNi3叶片泵轴的热处理工艺设计 一. 热处理工艺课程设计的目的 热处理工艺课程设计是高等工业学校金属材料工程专业一次专业课设计练习,是热处理原理与工艺课程的最后一个教学环节。其目的是: (1)培养学生综合运用所学的热处理课程的知识去解决工程问题的能力,并使其所学知识得到巩固和发展。 (2)学习热处理工艺设计的一般方法、热处理设备选用和装夹具设计等。 (3)进行热处理设计的基本技能训练,如计算、工艺图绘制和学习使用设计资料、手册、标准和规范。 二. 课程设计的任务 进行零件的加工路线中有关热处理工序和热处理辅助工序的设计。根据零件的技术要求,选定能实现技术要求的热处理方法,制定工艺参数,画出热处理工艺曲线图,选择热处理设备,设计或选定装夹具,作出热处理工艺卡。最后,写出设计说明书,说明书中要求对各热处理工序的工艺参数的选择依据和各热处理后的显微组织作出说明。 三. 热处理工艺设计的方法 1. 设计任务 12CrNi3叶片泵轴零件图如图3.1

图3.1 12CrNi3叶片泵轴 2、设计方案 2.1.工作条件 叶片泵是由转子、定子、叶片和配油盘相互形成封闭容积的体积变化来实现泵的吸油和压油。叶片泵的结构紧凑,零件加工精度要求高。叶片泵转子旋转时,叶片在离心力和压力油的作用下,尖部紧贴在定子内表面上。这样两个叶片与转子和定子内表面所构成的工作容积,先由小到大吸油再由大到小排油,叶片旋转一周时,完成两次吸油与排油。泵轴在工作时承受扭转和弯曲疲劳,在花键和颈轴处收磨损。因此,要求轴有高的强度,良好的韧性及耐磨性。 2.1.1失效形式 叶片泵轴的主要失效形式是疲劳断裂,在花键和轴颈处可能发生工作面的磨损、咬伤,甚至是咬裂。 2.1.2性能要求 根据泵轴的受力情况和失效分析可知 ,叶片泵轴主要是要求轴具有高的强度,良好的韧性及耐磨性,以保证轴在良好的服役条件下长时间的工作。 2.2钢种材料 12CrNi3A钢属于合金渗碳钢,比12CrNi2A钢有更高的淬透性,因此,可以用于制造比12CrNi2A钢截面稍大的零件。该钢淬火低温回火或高温回火后都具有良好的综合力学性能,钢的低温韧性好,缺口敏感性小,切削加工性能良好,当硬度为HB260~320时,相对切削加工性为60%~70%。另外,钢退火后硬度低、塑性好,因此,既可以采用切削加工方法制造模具,也可以采用冷挤压成型方法制造模具。为提高模具型腔的耐磨性,模具成型后需要进行渗碳处理,然后再进行淬火和低温回火,从而保证模具表面具有高硬度、高耐磨性而心部具有很好的韧性,该钢适宜制造大、中型塑料模具。12CrNi3高级渗碳钢的淬透性较高 ,退火困难。由于不渗碳表面未经镀铜防渗 ,因此渗碳后进行低温回火 , 降低硬度 , 便于切去不渗碳表

热处理箱式电阻炉课程设计

热处理箱式电阻炉课程设计 一、设计任务 1、炉型:箱式炉 2、设计要求:(1)生产率或一次装炉量:100kg/h (2)零件尺寸:长、宽、高尺寸最大不超过150mm (3)零件材料:中、低碳钢、低合金钢及工具钢 (4)零件热处理工艺:淬火加热 3、任务分析: (1)生产率或一次装炉量为100kg/h ,属小型炉; (2)生产长、宽、高尺寸最大不超过150mm 的零件,选择箱式炉合理; (3)淬火加热工艺表明所设计的箱式炉属于中温范畴。 二、电阻炉的炉体结构设计 1、炉型选择:由于所生产的零件尺寸较小,都不大于150mm ,且品种较多,热处理 工艺为淬火加热,具体品种的淬透性不同,工艺有所差别,故采用周期作业中温箱式热处理炉进行设计。(额定温度为950℃) 2、炉膛设计 (1)典型零件的选定 参照设计任务的要求,选用40Cr 钢齿轮模拟设计 ①齿轮参数:分度圆mm d 128= 齿顶圆mm d a 136= 齿数32=z 模数 4=m 齿宽mm b 70= 全齿高mm h 9= 齿根圆mm d f 118= 齿轮孔径mm d 40=孔 ②设定工艺曲线: 加热时间 t=a ×k ×D (a :加热系数,k :工件装炉条件修正系数,D :工件 《热处理手册》第四版第二卷,机械工业出版p55 工艺周期为5h 《热处理设备》p117表5-4

有效厚度) 查表得:a 为1.2-1.5min/mm 取1.3 min/mm k 取1.8 故时间 t=1.3×1.8×70=163.8min 取加热时间3h ,保温时间2h 工艺周期为5h (2)确定炉膛尺寸 一次装炉量=生产率×周期=100kg/h ×5h=500kg 单位重量 kg kg d d 337.6108.7b ])2 ( )2[(m 322 =???-=孔π 零件个数 809.78337 .6500 ≈== n 个 查表可知,炉底单位面积生产率 h m kg P ?=20100 有效面积 22 01100 100m m P P F === 有效 由于工件之间距离为工件高度的0.3-0.5,故取工件之间距离为30mm 设计每次装炉80个零件,分两层分布,每层40个,纵向8个,横向5个 实际炉底面积 224.125.18 .01 m m K F F ≈== = 有效实 (K 为炉底利用系数,通常为0.8-0.85) 取 长 L=1.4m , 宽 B=1.0m 炉子高度一般为(0.52-0.90)B ,取0.6B ,故H=0.6m 3、炉体各部分结构 (1)炉衬:分为内层耐火层和外层保温层 内层:用QN —1.0的轻质耐火粘土砖 外层:B 级硅藻土砖,热导率为t 1023.0131.03 -?+,最高使用温度为900℃ (2)炉墙: 耐火层:QN —1.0轻质耐火粘土砖,规格为230×113×65mm ,热导率为 t 3110256.029.0-?+=λ,厚度 mm 1131=δ 保温层:B 级硅藻土砖,规格为230×113×65mm ,热导率为 t 1023.0131.03 -2?+=λ,厚度 mm 2302=δ 炉膛尺寸: L=1.4m B=1.0m H=0.6m 《热处理设备课程设计指导书》附表2

热处理工艺设计课程设计

北华航天工业学院 《热处理工艺设计》 课程设计报告 报告题目:CA8480轧辊车床主轴 和淬火量块 热处理工艺的设计 作者所在系部:材料工程系 作者所在专业:金属材料工程 作者所在班级:B10821 作者学号:20104082104 作者姓名:倪新光 指导教师姓名:翟红雁 完成时间:2013.06.27

课程设计任务书 课题名称 CA8480轧辊车床主轴和淬火量块 热处理工艺的设计 完成时间06.27 指导教师翟红雁职称教授学生姓名倪新光班级B10821 总体设计要求 一、设计要求 1.要求学生在教师指导下独立完成零件的选材; 2.要求学生弄清零件的工作环境。 3.要求学生通过对比、讨论选择出最合理的预先热处理工艺和最终热处理工艺方法; 4.要求学生分别制定出预先热处理和最终热处理工艺的正确工艺参数,包括加热方式、加热温度、保温时间以及冷却方式; 5.要求学生写出热处理目的、热处理后组织以及性能。 工作内容及时间进度安排 内容要求时间备注 讲解并自学《金属热处理工艺》课本第六章;收集资料, 分析所给零件的工作环境、性能要求, 了解热处理工艺设计的方法、内容和步骤; 通过对零件的分析,选择合适的材料以及技术要 求 0.5天 热处理工艺方法选择和工艺路线的制定 确定出几种(两种以上)工艺 线及热处理 方案,然后进行讨论对比优缺点, 确定最佳工艺 路线及热处理工艺方案 1.5天 热处理工艺参数的确定及热处理后组织、性能 查阅资料,确定出每种热处理工艺的参数, 包括加热方式、温度和时间,冷却方式等,并绘 出相应的热处理工艺曲线 1.5天 编写设计说明书按所提供的模板 0.5天 答辩1天 课程设计说明书内容要求 一. 分析零件的工作环境,确定出该零件的性能要求,结合技术要求,选出合适的材料,并阐述原因。 二. 工艺路线和热处理方案的讨论。要求两种以上方案进行讨论,条理清晰,优缺点明确。 三. 每种热处理工艺参数的确定(工序中涉及到的所有热处理工艺)。写出确定参数的理由和根据,(尽可能写出所使用的设备)要求每一种热处理工艺都要画出热处理工艺曲线; 四. 写出每个工序的目的以及该零件热处理后常见缺陷。

钢的热处理工艺课程设计

钢的热处理工艺课程设计 一、目的 1、深入理解热处理课程的基本理论。 2、初步学会制定零部件的热处理工艺。 3、了解与本设计有关的新技术、新工艺。 4、设计尽量采用最新技术成就,并注意和具体实践相结合。使设计 具有一定的先进性和实践性。 二、设计任务 1、编写设计说明书。 2、编制工序施工卡片。 3、绘制必要的工装图。 三、设计内容和步骤 (一)零部件简图、钢种和技术要求。 技术要求: 钢种:柄部45#钢刃部W6Mo5Cr4V2高速钢 要求:扁尾硬度为HRC25~45 刃部的3/4硬度为HRC63~65 (二)零部件的工作条件、破坏方式和性能要求分析。 1、高速钢锥柄麻花钻的工作条件: 工具的工作条件比较复杂,各种工具的工作条件又有较大的差异,加工时往往以摩擦为主,常有较大的冲击。机用工具切削速度较高,会产生大量的切削热,有时会发生切削刃软化现象。 作为机床上使用的金属切削工具,其主要工作部分是刀刃或刀尖,刀具在进行切削时,刀尖与工件之间,刀尖与切除的切削之间要产生强烈的

摩擦,刀尖要承受挤压应力,弯曲应力,还要承受不同程度的冲击力。同时伴随摩擦会产生高温。 金属切削工具首先应具备高的硬度和耐磨性。在一定条件下,工具的硬度越高,其耐磨性也越高。同时切削工具还具备足够的韧性,否则可能因为脆性过大,在外力作用下产生蹦刃,折断,破碎等现象。红硬性也是切削工具的重要性能,特别是高速切削工具,红硬性特别重要。 2、高速钢锥柄麻花钻的失效形式 由于工具种类的不同以及使用条件的差异,起失效形式也有所不同。切削工具失效主要由于磨损、横刃、外缘点磨损、崩刃、剥落、折断或加工的工件打不到技术要求等原因造成的 (1)磨损 磨损时切削工具在正常使用情况下最常见的失效形式。当切削工具发生严重磨损时,工具与被加工工件之间摩擦力增大,表现为切削时发出尖叫声或严重的震动,甚至无法切削。 磨损的产生大都是由于工具的切削刃与被切削工件之间的摩擦所产生的。有时也可能是由于在工具表面形成积痟瘤,形成粘合磨损所造成的。(2)崩刃 崩刃也是常见的失效形式,其中包括大的崩刃,小的崩刃,掉牙,掉齿等现象,很多的崩刃产生是由于切削时切削刃长期受循环应力所造成的一种疲劳断裂现象。 对间断切削的工具或切削时承受较大的载荷的工具如何提高韧性,减少崩刃非常重要。这类工具要求材料组织均匀,不应有严重的碳化物偏析,热处理硬度不宜过高,不能产生淬火,过热及回火不足等增加工具脆性的现象。 (3)断裂,破碎

热处理箱式炉安全操作规程简易版

The Daily Operation Mode, It Includes All The Implementation Items, And Acts To Regulate Individual Actions, Regulate Or Limit All Their Behaviors, And Finally Simplify Management Process. 编订:XXXXXXXX 20XX年XX月XX日 热处理箱式炉安全操作规 程简易版

热处理箱式炉安全操作规程简易版 温馨提示:本操作规程文件应用在日常的规则或运作模式中,包含所有的执行事项,并作用于规范个体行动,规范或限制其所有行为,最终实现简化管理过程,提高管理效率。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 1遵守一般热处理工安全操作规程。仔细检测温度仪表、热电偶电气设备、接地线等是否完好。 2检查炉膛内是否有异工件,炉底板、电阻丝是否完好。 3工件进出炉应断电操作,并注意工件或工具不得与电阻丝相碰撞接触。装、出炉时不得砸撞炉底板,不得撞击阁砖。 4电炉通电前应首先合闸,再开控制柜电钮。停炉时应首先关控制柜电钮,再拉闸。 5每两周必须清理一次炉底上的杂物,发现问题应及时处理好。

6使用温度不得超过950℃。每次大修理后,在使用前需经过电热烘干,升温到300℃到400℃时取出炉底板,打开炉门八小时烘,然后关闭炉门再升温到500℃到600℃烘干8小时。 7发现仪表失灵,电阻丝相互接触烧坏,电阻丝加热时不平衡,应停炉并通知维修人员进行修理。 8发生事故要保持现场,并报告有关部门。 该位置可填写公司名或者个人品牌名 Company name or personal brand name can be filled in this position

课程设计论文--热处理工艺设计(精选.)

沈阳理工大学热处理工艺课程设计 目录 第一章 热处理工设计目的 (1) 第二章 课程设计任务 (1) 第三章 热处理工艺设计方法 (1) 3.1 设计任务 (1) 3.2 设计方案 (2) 3.2.1 12CrNi3叶片泵轴的设计的分析 (2) 3.2.2 钢种材料 (2) 3.3设计说明 (3) 3.3.1 加工工艺流程 (3) 3.3.2 具体热处理工艺 (4) 3.4分析讨论 (11) 第四章 结束语 (13) 参考文献 (14)

沈阳理工大学热处理工艺课程设计 12CrNi3叶片泵轴的热处理工艺设计 一. 热处理工艺课程设计的目的 热处理工艺课程设计是高等工业学校金属材料工程专业一次专业课设计练习,是热处理原理与工艺课程的最后一个教学环节。其目的是: (1)培养学生综合运用所学的热处理课程的知识去解决工程问题的能力,并使其所学知识得到巩固和发展。 (2)学习热处理工艺设计的一般方法、热处理设备选用和装夹具设计等。 (3)进行热处理设计的基本技能训练,如计算、工艺图绘制和学习使用设计资料、手册、标准和规范。 二. 课程设计的任务 进行零件的加工路线中有关热处理工序和热处理辅助工序的设计。根据零件的技术要求,选定能实现技术要求的热处理方法,制定工艺参数,画出热处理工艺曲线图,选择热处理设备,设计或选定装夹具,作出热处理工艺卡。最后,写出设计说明书,说明书中要求对各热处理工序的工艺参数的选择依据和各热处理后的显微组织作出说明。 三. 热处理工艺设计的方法 1. 设计任务 12CrNi3叶片泵轴零件图如图3.1 图3.1 12CrNi3叶片泵轴

2、设计方案 2.1.工作条件 叶片泵是由转子、定子、叶片和配油盘相互形成封闭容积的体积变化来实现泵的吸油和压油。叶片泵的结构紧凑,零件加工精度要求高。叶片泵转子旋转时,叶片在离心力和压力油的作用下,尖部紧贴在定子内表面上。这样两个叶片与转子和定子内表面所构成的工作容积,先由小到大吸油再由大到小排油,叶片旋转一周时,完成两次吸油与排油。泵轴在工作时承受扭转和弯曲疲劳,在花键和颈轴处收磨损。因此,要求轴有高的强度,良好的韧性及耐磨性。 2.1.1失效形式 叶片泵轴的主要失效形式是疲劳断裂,在花键和轴颈处可能发生工作面的磨损、咬伤,甚至是咬裂。 2.1.2性能要求 根据泵轴的受力情况和失效分析可知 ,叶片泵轴主要是要求轴具有高的强度,良好的韧性及耐磨性,以保证轴在良好的服役条件下长时间的工作。 2.2钢种材料 12CrNi3A钢属于合金渗碳钢,比12CrNi2A钢有更高的淬透性,因此,可以用于制造比12CrNi2A钢截面稍大的零件。该钢淬火低温回火或高温回火后都具有良好的综合力学性能,钢的低温韧性好,缺口敏感性小,切削加工性能良好,当硬度为HB260~320时,相对切削加工性为60%~70%。另外,钢退火后硬度低、塑性好,因此,既可以采用切削加工方法制造模具,也可以采用冷挤压成型方法制造模具。为提高模具型腔的耐磨性,模具成型后需要进行渗碳处理,然后再进行淬火和低温回火,从而保证模具表面具有高硬度、高耐磨性而心部具有很好的韧性,该钢适宜制造大、中型塑料模具。12CrNi3高级渗碳钢的淬透性较高 ,退火困难。由于不渗碳表面未经镀铜防渗 ,因此渗碳后进行低温回火 , 降低硬度 , 便于切去不渗碳表面的渗碳层。材料加工成叶片泵轴需进行复杂的化学热处理,使心部硬度为 HRC31~HRC41,表面硬度不低于HRC60,从而使泵轴表面有较高硬度,心部呈现

热处理炉安全操作规程

1热处理人员接到任务时首先检查热处理炉的状况是否满足热处理的条件,包括以下项目: 1.1温层是否完好。 1.2挡风墙是否完好。 1.3油泵、风机是否能正常工作。 1.4测温仪表是否正常。 1.5风冷要求是否能满足。 1.6炉车运行是否完好。 1.7油库油量是否满足生产需要。 1.8油嘴调节系统是否灵敏可靠。 1.9以上情况正常时,可进行下面操作;如不正常,应查出原因并使其恢复正常。 2热处理人员根据生产安排合理吊装工件,工件摆放应符合以下规定: 2.1弯管在炉车上的排列应考虑散热不受阻隔,风冷散热方便,火嘴墙应便于火焰通过,但不直接烧在弯管上。 2.2弯管应用垫砖垫放牢靠平稳,防止钢管变形,并应考虑垫砖承受能力。 2.3两层码放时,应注意上下层管子之间尽量避免相压而以垫砖承受为主,当不可避免时,相压部位必须有支点不得悬空。 2.4两层码放时,对大口径薄壁管,第二层必须以耐火砖为支点,不得压在底层弯管上,且管口必须支撑,支撑物必须靠牢吃力。

2.5工件摆放完毕后应画管子摆放图以便记录管子编号。 3装炉结束后,将炉车开进炉内,放下炉门,将炉门与炉车、炉车与后炉墙之间的缝隙用沙土、石棉布等加以密封 4启动油泵、风机、点燃火嘴。 5调整火嘴及风量,使炉内温度按照热处理工艺曲线的要求控制升温速度恒温时间及冷却速度。 6控制炉温和工件温度的热电偶必须经计量合格,且在计量的有效期内。热电偶的安装位置应能正确反映炉温和工件的真实温度。 7热处理炉的油系统管路,接头应坚持每天检查一次,如有渗油现象应立即排除。 8吊装管件时,应先检查钢丝绳及卸卡物是否合格,注意吊装角度, 并合理使用钢丝绳及卸卡。 9每次工作完毕要拉闸断电。 10炉车的耐火砖垫块应经常检查及时更换。 11热处理炉车轨道下不得放置障碍物,炉车进炉或出炉时,必须 一人在外瞭望,一人操作。 12点火前应进行炉周围检查,清理易燃易爆物后才允许点炉,引 火防止烧伤自己,不得在眼前点火,应侧脸点火。 13经常检查油路系统是否漏油,如有漏油应及时处理。 14出炉前,应注意检查周围有无易燃易爆物品 15做好班前安全交底,班后安全总结,做好自身安全保护工作。 16遵守安全规章制度,如进入车间戴安全帽,穿绝缘鞋等。

课程设计退火炉温度控制系统

课程设计设计题目: 退火炉温度控制系统 学院: 专业: 班级: 姓名: 学号: 指导老师: 日期:

摘要 退火炉是金属热处理中的重要设备,它把压力容器加热到一定温度并维持一段时间,然后让其自然冷却。其目的在于消除压力容器的整体压力。提高压力容器的使用寿命。温度是退火炉的主要被控变量,是保证其产品质量的一个重要因素。退火炉温度控制的稳定性和控制精度直接影响产品的质量。 本文以AT89C51单片机为控制核心,采用模块化的设计方案,包括硬件设计与软件设计两部分。硬件设计包括温度检测模块,按键模块,执行模块,LED显示模块,单片机最小系统。本设计要求采用电热丝加热,通过A/D转换将采集到的温度数据输入单片机中,与系统给定值比较,从而对退火炉的温度进行控制,通过按键输入控制信号,三位LED显示炉温。最后设计出最少拍无纹波控制器,通过MATLAB 仿真检验是否有纹波。

目录 第1章绪论 (3) 1.1设计背景与算法 (3) 第2章课程设计的方案?5 2.1概述?5 2.2系统组成总体结构 (5) 第3章程序设计与程序清单 (7) 3.1单片机最小系统设计 (7) 3.1.1单片机选择 (7) 3.1.2时钟电路设计 (8) 3.1.3复位电路设计?9 3.2程序清单与电路图 (11) 3.3温度控制电路................................ 错误!未定义书签。第4章控制算法?18 4.1程序框图? 18 4.2算法设计 (19) 第5章课程设计总结?错误!未定义书签。

第1章 绪论 1.1 设计背景与算法 背景:退火炉是冶金和机械行业常用的热处理工业设备。一般说来,退货处理工艺师冶金和机械产品的最后处理工序,它的处理效果将直接影响产品的质量。因此,对退火炉的基本要求就是根据退火处理工艺曲线,提供准确的升温,保温及降温操作,同时保证颅内各处的温度均匀。在目前实际生产中,退火炉的种类很多,按燃料分有燃油炉、燃气炉、电炉等。电炉按台数计算占80%,燃油炉和燃气炉占20%。 退火是金属热处理中的重要工序,它是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却(通常是缓慢冷却,有时是控制冷却)的一种金属热处理工艺。目的是使经过铸造、锻轧、焊接或切削加工的材料或工件软化,改善其塑性和韧性,使其化学成分均匀化,并去除其参与应力,或得到预期的物理性能。温度控制是热处理质量控制的重要技术措施,是退火控制的核心。智能温控将大大提高热处理质量,消除认为的不稳定因素,提高温度控制的精确程度,满足特殊材料的热处理要求。 同时,退火炉采用自动化技术控制温度,对保护生态环境方面也具有重要意义。退火炉的炉温动态特性直接影响产品的质量,生产过程中对钢材的温升曲线有较高的要求,温度过低,达不到退火的预期目的;温度过高将导致过热,甚至过烧。通过对退火炉中生产过程的优化控制和自动工艺管理控制,不但可以缩短生产周期,提高产量和质量,还可以减少人为因素造成的废品率。热处理后产生的废气对自然环境的污染很大,退火炉的燃料如果是欠氧燃烧,燃料燃烧不充分,则会产生大量黑烟,而过氧燃烧又会产生氮氧化合物等有害气体。若通过对燃烧过程进行有效控制,使燃烧在合理的空燃比下运行,则可以极大的减少退火炉对周边环境的污染,对构建科持续发展型社会就有积极的意义。 目前世界各国对能源消耗和大气环境的污染越来越重视,而我国既是钢铁大国又是能源大国,因此研究高性能退火炉温度控制系统具有极为重要的现实意义。 算法:在数字随动控制系统中,要求系统的输出值尽快地跟踪给定值的变化,最少拍控制是满足这一要求的一种离散化设计方法。 最少拍控制是一种直接数字设计方法。所谓最少拍,就是要求闭环系统对于某种特定的输入在最少个采样周期内达到无静差的稳态,是系统输出值尽快地跟踪期望值的变化。 闭环Z传函具有形式 z z z z N N ---+++=Φφφφ 221)(1

热处理箱式炉安全操作规程实用版

YF-ED-J3574 可按资料类型定义编号 热处理箱式炉安全操作规 程实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

热处理箱式炉安全操作规程实用 版 提示:该操作规程文档适合使用于工作中为保证本部门的工作或生产能够有效、安全、稳定地运转而制定的,相关人员在办理业务或操作设备时必须遵循的程序或步骤。下载后可以对文件进行定制修改,请根据实际需要调整使用。 1遵守一般热处理工安全操作规程。仔细检 测温度仪表、热电偶电气设备、接地线等是否 完好。 2检查炉膛内是否有异工件,炉底板、电阻 丝是否完好。 3工件进出炉应断电操作,并注意工件或工 具不得与电阻丝相碰撞接触。装、出炉时不得 砸撞炉底板,不得撞击阁砖。 4电炉通电前应首先合闸,再开控制柜电 钮。停炉时应首先关控制柜电钮,再拉闸。

5每两周必须清理一次炉底上的杂物,发现问题应及时处理好。 6使用温度不得超过950℃。每次大修理后,在使用前需经过电热烘干,升温到300℃到400℃时取出炉底板,打开炉门八小时烘,然后关闭炉门再升温到500℃到600℃烘干8小时。 7发现仪表失灵,电阻丝相互接触烧坏,电阻丝加热时不平衡,应停炉并通知维修人员进行修理。 8发生事故要保持现场,并报告有关部门。

真空热处理炉课程设计

真空热处理炉 设计说明书 (课程设计) 一、设计任务说明说: WZC-60型真空淬火炉技术参数:

二、确定炉体结构和尺寸: 1、炉膛尺寸的确定 由设计说明书中,真空加热炉的有效加热尺寸 为900mm×600mm×450mm ,隔热屏部结构尺寸 主要根据处理工件的形状、尺寸和炉子的生产率决定, 并应考虑到炉子的加热效果、炉温均匀性、检修和装 出料操作的方便。一般隔热屏的表面与加热器之 间的距离约为50—100mm;加热器与工件(或夹具、 料筐)之间的距离为50一150mm。隔热屏两端通常不 布置加热器,温度偏低。因此,隔热屏每端应大于 有效加热区约150—300mm,或更长一些。从传热学 的观点看,圆筒形的隔热屏热损失最小,宜尽量采用。 则: L=900+2×(150~300)=1100~1400mm B=600+2×(50~150)+2×(50~100) =800~1100mm H=450+2×(50~150)+2×(50~100) L=1300㎜=650~950mm B=900㎜不妨,我们取L=1300 mm;B=900mm;H=850mm。 H=850㎜

2、炉衬隔热材料的选择 由于炉子四周具有相似的工作环境,我们一般选用相同的材料。为简单起见,炉门及出炉口我们也采用相同的结构和材料。这里我们选用金属隔热屏,由于加热炉的最高使用温度为1300℃,这里我们采用六层全金属隔热屏,其中三层为 钼层,外三层为不锈钢层。 按设计计算,第一层钼辐射屏与炉温相等,以后各辐射屏逐层降低,钼层每层降低250℃左右,不锈钢层每层降低150℃左右。 则按上述设计,各层的设计温度为: 第一层:1300℃;第二层:1050℃; 第三层:800℃;第四层:550℃; 第五层:400℃;第六层:250℃; 水冷夹层壁:100℃ 最后水冷加层壁的温度为100℃<150℃, 符合要求。 3、各隔热层、炉壳壁的面积及厚度 (1)、隔热屏 由于隔热层屏与屏之间的间距约8~15mm,这里我们取10mm。钼层厚度0.3mm,不锈钢层厚度0.6mm。屏的各层间通过螺钉和隔套隔开。

热处理工艺课程设计-精品

钢的热处理工艺设计说明 书 学生姓名 设计题目活塞杆Ⅱ 指导教师 系主任 完成日期年月日

目录 一目的————————————————————3二设计任务—————————————————— 3 三设计内容和步骤——————————————— 3 (1)零部件简图,钢种和技术要求——————— 3 (2)工作条件,破坏方式,性能要求—————— 4 (3)零部件用钢的分析—————————————4 四热处理工艺及参数的论述———————————9 五选择加热设备————————————————18 六工装图——————————————————— 19 七工序质量检验项目、标准方法———————— 20 八缺陷及其分析————————————————20 九参考文献————————————————— 22

一、目的 1. 深入了解热处理课程的基本理论 2. 初步学会制定零部件的热处理工艺 3. 了解与本设计有关的新技术,新工艺 4. 设计尽量采用最新技术成就,并注意和具体实践相结合,是设计具有一定的先进性和实践性. 二、设计任务 1. 编写设计说明书 2. 编制工序施工卡片 3. 绘制必要的工装图 三、设计内容和步骤 3.1零部件简图、钢种和技术要求 1.简图 2.钢种: 35CrMo 3.技术要求:

(1)调质处理HB217~269; (2)直径80外表面镀铬; (3)直径42表面高频处理,硬度HRC55~57; 3.2零部件的工作条件、破坏方式和性能要求的分析 (1)零部件的工作条件 活塞杆是支持活塞做功的连接部件,大部分应用在油缸、气缸运动执行部件中,是一个运动频繁、技术要求高的运动部件。 (2)零部件的主要破坏方式 1)断裂活塞杆断裂部位在活塞杆与十字头锁紧螺母旋合处的最末2~ 3 道螺纹的根部。该处螺纹系锻造成形后采用滚压加工, 螺纹直径为M95。活塞杆运行时间为2. 5 年。活塞杆在工作过程中主要承受交变的拉压载荷作用。 2)磨损颗粒污染为活塞杆损坏最快的因素之一,虽然在导向套上装有防尘圈及密封件等,但也难免将尘埃、污物带入液压系统,引发活塞杆的磨损。 3)腐蚀活塞杆在工作过程中活塞杆裸露在外直接和环境相接触,很易引发氧化,从而降低其使用寿命。 ( 3 )零部件性能要求 1.具有高的接触疲劳极限; 2.具有高的抗弯强度; 3.具有高的耐磨性; 4.具有足够的冲击韧性; 5.具有高的传递精度和最小的工作响音. 3.3零部件用钢的分析 1.相关钢种化学成分的作用 (1)35CrMo

相关文档
最新文档