微机控制技术的发展概况及趋势

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微机控制技术的发展概况及趋势

微机控制技术是以微型计算机作为机电一体化的控制器,结合微型计算机的工作原理和接口设计,相应的控制硬件和软件以及它们的配合,实现对控制对象的控制的一门技术。它的发展离不开自动控制理论和计算机技术的发展,随着科学技术的发展,人们越来越多地用计算机来实现控制系统。

本文从计算机控制系统的发展历史,我国工业控制机及系统的发展应用,计算机控制系统的发展趋势,这几个方面来阐述微机控制技术的发展概况及相关趋势。

计算机控制系统在60年代引入控制领域当时计算机是控制调节器的设定点, 具体的控制则由电子调节器来执行, 这种系统称为计算机监控系统。在60 年代末期出现了用一台计算机直接控制一个机组或一个车间的控制系统,简称集中控制系统。这种控制系统即常说的直接数字控制(DDC)系统。计算机DDC 控制的基本思想是使用一台计算机代替若干个调节控制回路功能。这个控制系统由于只有一台计算机而且没有分层,所以非常有利于集中控制盒运算的集中处理,并且能得到很好的反映,并且,各个控制规律都可以直接实现。但是,如果生产过程复杂,则该系统的可靠性就很难保证了。系统的危险性过于集中, 一旦计算机发生故障, 整个系统就会停顿。[7]

70 年代随着电子技术的飞速发展,随着大规模集成电路的出现和发展, 集散控制系统(DCS)出现,之后在此基础上,随着生产发展的需要而产生了一种更新一代的控制系统,即分布式控制系统。典型的集散控制系统具有两层网络结构下层负责完成各种现场级的控制任务,上层负责完成各种管理、决策和协调任务。

90年代以来,随着各个学科的发展和交叉融合,随着现代大型工业生产自动化的不断兴起, 利用计算机网络作为控制工具的综合性控制系统,计算机集成系统(CIPS)应运而生。它紧密依赖于最新发展的计算机技术、网络通信技术和控制技术,并且终将成为未来控制系统的发展趋势。

我国工业控制发展的道路是比较曲折的,20世纪80年代末到90年代初,我国市场上大都是首先引进了成套设备,在引进成套设备的同时相继引进了各种工控系统,来填充国内在这方面的不足,90年代后,在我国一批科学家的带领下,我国逐渐有了自己设计的控制系统和装置,建立自己的实验室,生产出属于自己版权的产品,然后在原有技术的基础上进行二次开发和应用,从1997年开始,大陆本土的IPC厂商开始进入该市场,IPC也随之发展成了中国第二代主流工控机技术。[1]

目前国内的工控机供应渠道主要来源于中国台湾及内地的厂商,国外的产品(例如RADISYS、ROCKWELL、INTEL等)经过几年的市场拼杀后,由于成本高、价格高、服务难,现已完全退出国内市场。目前,国内的IT业研发、加工技术力量不断提升;各类芯片和各类器件、生产设备在国际市场基本可平等选购;软件资源的可移植性可节省大量的人力、物力。在这些有利条件下,国内一些厂商抓住机会快速崛起,利用本土综合竞争优势逐步将国外品牌挤出国内工控市场。某些企业以每年超过100%的资产增长速度,鼎立于国内的工控市场,而且已成功打入国际工控市场。

随着技术的进步,计算机控制系统将会有以下几个发展趋势

(1)DCS和工业控制计算机技术正在相互渗透发展,并扩大各自的应用领域。原来一般流程工业的控制多选用集散型控制系统(DCS),离散型制造业的控制多采用可编程控制器(PLC)。随着DCS和PLC相互渗透发展继而扩大自己的应用领域,将出现DCS和PLC融合于一体的集成过程控制系统。[2]

(2)随着计算机技术和网络技术的迅猛发展, 各种层次的计算机网络在控制系统中的应用越来越广泛, 规模也越来越大, 从而使传统意义上的回路控制系统所具有的特点在系统网络化过程中发生了根本变化, 并最终逐步实现了控制系统的网络化。并且工业控制网络将向有

线和无线相结合的方向发展。计算机网络技术、无线技术以及智能传感器技术的结合,产生了基于无线技术的网络化智能传感器。这种基于无线技术的网络化智能传感器使得工业现场的数据能够通过无线链路直接在网络上传输、发布和共享。[3]

(3)在传统的集散和分布式计算机控制系统中, 根据完成的不同功能和实际的网络结构, 系统以网络为界限被分成了多个层次,各层网络之间通过计算机相连。这中复杂多层的结构会造成多种障碍,具有很多缺点。新一代计算机控制系统的结构发生了明显变化,逐步形成两层网络的系统结构。上层负责完成高层管理功能, 包括各种控制功能之间的协调、系统优化调度、信息综合管理和组织以及总体任务的规划等。底层负责完成所有具体的控制任务,如参数调节的回路控制、过程数据的采集和显示、现场控制的监视以及故障诊断和处理等等。[4]

(4)随着科学技术的发展,对工业过程不仅要求控制的精确性,更加注重控制的鲁棒性、实时性、容错性以及对控制参数的自适应和自学习能力。另外,被控工业过程日趋复杂,过程严重的非线性和不确定性,使许多系统无法用数学模型精确描述。这样建立在数学模型基础上的传统方法将面临空前的挑战,也给智能控制方法的发展创造了良好的机遇。传统的控制方法在很大的程度上依赖于过程的数学模型,但是,至今获取过程的精确数学模型仍然是一件十分困难的工作。没有精确的数学模型作前提,传统的控制系统的性能将大打折扣。而智能控制器的设计却不依赣过程的数学模型,因而对于复杂的工业过程往往可以取得很好的控铷效果。[5]

(5)工业控制软件己向组态化方向发展,工业控制软件主要包括人机界面软件、控制软件以及生产管理软件等。目前,我国已开发出一批具有自主知识产权的实时监控软件平台、先进控制软件、过程优化控制软件等成套应用软件。[6]

参考文献:

[1]肖承华.我国工业控制自动化技术的现状[M].湖南:冷水江,2013:12-24

[2]黄勤.微型计算机控制技术[M].北京:机械工业出版社,2009:12-14

[3]张艳兵.计算机控制技术[M].北京:国防工业出版社,2008:17-20.

[4]徐建军.计算机控制系统理论与应用[C].北京:机械工业出版社,2008:17-22.

[5]祁立勋.浅谈浅谈计算机控制技术原理及发展趋势[P].北京:信息出版社,2010:8-1

[6]周志峰.计算机控制技术[M]北京:清华大学出版,2014:11-14

[7] William B Gudykunst. computer technology theory[M]. Beverly Hills, CA: Sage Pub, 2001.

[8]L. E. Sarbaugh. Intercultural communication[M]. New Brunsw-ick, N.J.U.S.A: Transaction Books, 2013.

相关文档
最新文档