自动重合闸

合集下载

自动重合闸过程

自动重合闸过程

自动重合闸过程
自动重合闸的触发条件是断路器因故障分闸,操作步骤包括继电保护动作、预定延时后自动合闸,预期结果是恢复线路供电。

当电力系统发生故障导致断路器跳闸切断电源时,如果该故障是暂时性的,自动重合闸装置会被激活。

首先,继电保护装置会检测到故障并发出信号使断路器跳闸。

随后,设备会有一个预定的延时(通常在0.5s到1.5s之间),待故障消除后,断路器会自动重新闭合,尝试恢复供电。

如果故障为永久性的,自动重合闸装置应保证只动作一次,避免重复冲击电网造成更大的损害。

自动重合闸在电力系统中起着至关重要的作用,它可以提高供电可靠性,对两侧电源线路而言,能提升系统并列运行的动态稳定性,进而增加传输容量。

对于瞬时性故障,例如雷击导致的绝缘子表面闪络或大风造成的碰线等,使用自动重合闸可以有效减少停电损失,并增强送电线路的容量。

此外,它还有助于纠正由于断路器机构或继电保护误动引起的误跳闸,从而确保电网的稳定运行。

关于不同类型的自动重合闸技术,主要有单相重合闸和三相重合闸两种方式。

单相重合闸主要应用在输电线路
上,可以在发生单相接地短路时仅断开故障相,减少对健全相的影响,提高系统的稳定性。

而三相重合闸则适用于故障为瞬时性且影响所有相的情况,它操作简单并且在大多数情况下足以解决问题。

还有一种是为多次重合闸,通常用于配电网中与分段器配合自动隔离故障区段。

在选择自动重合闸方式时,需要考虑到故障类型、线路的重要性以及系统的运行条件等因素。

电气系统继电保护第6章自动重合闸

电气系统继电保护第6章自动重合闸
ZJ3闭合,直流电源经回路7和10使合闸接触器HC励磁,使断路器合闸。由于 ZJ电流自保持线圈的作用,只要电压线圈被短时启动,便可保证使ZJ于合闸
过程中一直处于动作状态,从而使断路器可靠合闸。
• 如果线路上的故障是暂时性的,则断路器合闸后DL1打开,TWJ失磁, TWJ1打开,1SJ返回ZJ也因DL1打开而返回。ISJ返回后,1SJ1断开,电容C开 始经1R充电,大约经10~15s后,C两端充满电压,这一电路就自动复归,准
• 2、检查同步继电器的结构接线 • 检查同步继电器可用一种有两个电压线圈的电磁型电 压继电器来实现,其内部接线如图6.6所示。它的两组线圈 分别经电压互感器接入母线电压UB和线路电压UL,两组线 圈在铁芯中所产生的磁通ΦB、ΦL也方向相反。因此,铁芯 中的总磁通Φ∑为两电压所产生的磁通之差,也就是反映两 侧电源的电压差△U。
• (5)防止断路器多次重合于永久性故障的措施 在原理接线图中,若ZJ动作后,它的常开接点ZJ1、ZJ2、
ZJ3被粘住时,线路发生永久性故障,则当第一次重合闸后, 保护再次动作,使断路器断开,断路器跳开后,由于DL1又处 于闭合状态,若无防跳继电器TBJ,则ZJ被粘住的接点又会立 即启动HC,发出合闸脉冲,形成多次重合。为此,在原理图 中装设了防跳继电器TBJ。
③ 可以纠正由于断路器机构不良或继的基本要求: • (l)动作迅速
在满足故障点去游离(即介质恢复绝缘能力)所需的时间以及 断路器消弧室和断路器的传动机构准备好再次动作所而的时间的条 件下,ZCH装置的动作时间应尽可能短。 • 对于重合闸动作的时问,一般采用0.5~1.55s。 • (2)不允许任意多次重合
(5)手动合闸于故障线路不重合 当手动合闸于故障线路时,继电保护动作使断路器跳闸后,装 置不应重合。

自动重合闸

自动重合闸

五、重合闸与继电保护的配合
1. 重合闸前加速保护(简称为“前加速”)
I
I
I
A t I ARD
Bt
Ct
1
2
3
• 优点
– 能够快速切除各条线路上的瞬时性故障;
– 可能使瞬时性故障来不及发展为永久性故障, 从而提高重合闸的成功率;
– 所用设备少,只需装设一套重合闸装置,简单
经济。
29
五、重合闸与继电保护的配合
11
二、单侧电源线路的三相一次重合闸
重合闸 起动
重合闸 时间
一次合闸 脉冲
手动跳闸后闭锁 手动合闸后加速

合闸
信号
后加速 保护
1. 重合闸起动
① 保护动作起动 ② 手动跳闸起动(不对应起动)
12
二、单侧电源线路的三相一次重合闸
重合闸 起动
重合闸 时间
一次合闸 脉冲
手动跳闸后闭锁 手动合闸后加速

9
一、三相自动重合闸
三相一次重合闸方式就是不论在输电线 路上发生单相接地短路还是相间短路,继电 保护装置均将线路三相断路器断开,然后重 合闸起动,将三相断路器一起合上。若故障 为瞬时性故障,则重合成功;若故障为永久 性故障,则继电保护将再次将断路器三相断 开,不再重合。
10
一、三相自动重合闸
对单侧电源线路三相自动重合闸的基本要求: —安装地点:线路电源侧 —适用范围:35kV及以下线路(三相一次重合 闸) —线路特点:只有一个电源供电(不存在非同 期重合闸问题)
Bt
Ct
1
2
3
主要用于35KV以下由发电厂或重要变 电站引出的直配线路上,以便快速切除故 障,保证母线电压降低的时间最短。

安全自动装置之自动重合闸讲解

安全自动装置之自动重合闸讲解

安全自动装置之自动重合闸讲解一、自动重合闸的原理自动重合闸是在电力系统出现短路故障后,通过自动执行器将高压断路器的闭锁机构解开,达到重新合闸、恢复电力供应的目的。

其原理主要包括两个方面:故障检测和重合闸操作。

故障检测:通过电流、电压等传感器感知电力系统的工作状态,当检测到电力系统出现短路故障时,自动重合闸装置会向控制器发送故障信号。

重合闸操作:控制器接收到故障信号后,会发出命令控制自动执行器,将断路器的闭锁机构解开,实现断路器的合闸操作。

然后,控制器会检测电力系统是否恢复正常,如果正常,则保持断路器合闸;如果仍然存在故障,断路器会再次断开,以避免电力系统受到更大损坏。

二、自动重合闸的工作流程自动重合闸的工作流程主要包括以下几个步骤:检测故障、解锁闭锁机构、合闸操作和故障恢复判断。

1.检测故障:自动重合闸通过安装在电力系统中的传感器检测电流、电压等参数,当检测到电力系统出现故障时,会发出故障信号。

2.解锁闭锁机构:控制器接收到故障信号后,会发出命令控制自动执行器,将断路器的闭锁机构解开,使断路器能够合闸。

3.合闸操作:经过解锁闭锁机构后,自动执行器会控制断路器合闸,使电力系统重新供电。

4.故障恢复判断:控制器会监测电力系统的运行状态,如果检测到故障已经消除,电力系统恢复正常,则保持断路器合闸;如果仍然存在故障,断路器会再次断开。

三、自动重合闸的应用场景自动重合闸适用于各种电力系统,特别是对于较大容量的电力系统,自动重合闸可以快速恢复电力供应,减少停电时间,提高电力系统的可靠性。

以下是一些自动重合闸的应用场景。

1.供电可靠性要求高的场所:如医院、飞机场、铁路等场所,对电力系统的稳定供电要求较高,一旦出现故障需要快速恢复供电。

2.对停电时间要求较短的场所:有些生产流程、数据中心等场所,对停电时间的要求非常严格,自动重合闸可以帮助尽快恢复供电,减少生产线和数据的中断。

3.长距离输电线路:对于长距离输电线路,一旦发生短路故障,停电范围较大,自动重合闸可以帮助恢复供电,减少停电范围。

9.自动重合闸(共43张)

9.自动重合闸(共43张)
第10页,共43页。
五、装设重合(chónghé)闸的规定
第11页,共43页。
六、重合 闸的分类 (chónghé)
第12页,共43页。
9.2 单侧电源(diànyuán)线路三相一次自动重合 闸
三相一次自动重合闸就是在输电线路上发生任何故障, 继电保护装置将三相断路器断开时,自动重合闸起
动,经0.5~1s的延时,发出重合脉冲,将三相断路器
第27页,共43页。
9.3 双侧电源线路的三相(sān 一次重合 xiānɡ) 闸
一、 双侧电源线路重合闸的特点
(1)当线路上发生故障时,两侧的保护装置可能以不同的时 限动作于跳闸,例如一侧为第I段动作,而另一侧为第II段动作,
此时为了保证故障点电弧的熄灭和绝缘强度的恢复,以使重合闸有 可能成功,线路两侧的重合闸必须保证在两侧的断路器都跳闸以后, 再进行重合; (2)当线路上发生故障跳闸以后,常常存在着重合闸时两侧电源是否
制。
后加速保护的的缺点:
(1)每个断路器上都需要装设一套重合闸,与前加速 相比较为复杂。
(2)第一次切除故障可能带有延时。
应35用KV:以上的网络(wǎngluò)及对重要负荷供电的送电线
路。
第26页,共43页。
四、重合闸时间的整定原则
M1
2N
(1) 单侧电源(diànyuán)线路重合闸
k
▪故障点电弧熄灭及周围介质绝缘强度的恢复时间t u;
第九章 自动 重合闸 (zìdòng)
9.1 自动重合闸的作用及要求
9.2 单侧电源线路三相一次重合闸 9.3 双侧电源线路三相一次重合闸 9.4 单相自动重合闸与综合自动重合闸
第1页,共43页。
9.1 自动重合闸的作用及要求

第5章 自动重合闸

第5章 自动重合闸

5.3 高压输电线路的单相自动重合闸
5.3.2单相自动重合闸的特点
2、动作时限的选择 满足:故障点灭弧和周围介质去游离时间,大于断路器及其操作 机构复归原状准备好再次动作的时间。
此外考虑: (1)两侧不同时限切除故障的可能性; (2)潜供电流对灭弧所产生的影响,图5.13(P161) 根据实测确定灭弧时间,我国电力系统220KV 的线路上为0.6s以 上。
5.2 输电线路的三相一次自动重合闸
2、双侧电源线路重合闸的主要方式
(2)非同期自动重合闸
当重合闸时间不够快,两侧电势功角摆开较快,但冲击电流未超 过规定值,可采用非同期自动重合闸。 (3)检同期自动重合闸 当必须满足同期条件才能重合闸时,需要采用检同期自动重合闸。 具体方法: 1)系统有3个及3个以上联系线路,可以不检同步重合闸;
5.2 输电线路的三相一次自动重合闸
(3)检同期自动重合闸
方法:
2)双回线路,检查另一线路有电流时,可以重合(见图5.2);
5.2 输电线路的三相一次自动重合闸
3)必须检定同步的重合,其步骤:一侧先检无压合闸,另一侧再 同步合闸(图5.3所示) 3、具有同步检定和无电压检定的重合闸 缺陷:检查线 路无压合闸的 一侧,若正常 时误跳,这时 由于对侧并未 动作,线路上 有电压,因而 不能实现重合。

在220KV-500KV 的线路上获得了广泛的应用。110KV不推荐使用 。
5.3 高压输电线路的单相自动重合闸
5.3.3 输电线路自适应单相重合闸的概念
能自动识别故障的性质,在永久故障时不重合的重合
闸称之为自适应重合闸。 参考文献【3】
5.4 高压输电线路的综合重合闸简介

在线路上设计自动重合闸装置时,将单相重合闸和三相重合闸综 合在一起,当发生单相接地故障时,采用单相重合闸方式工作; 当发生相间短路时,采用三相重合闸方式工作。综合考虑这两种 重合闸方式的装置称为综合重合闸装置。

自动重合闸原理

自动重合闸原理

自动重合闸原理
自动重合闸是电力系统中的一种保护装置,用于自动恢复电力供应和减少停电时间。

它能够实现对电力系统中断电事故的快速切除和自动回复操作。

自动重合闸的工作原理如下:
1. 监测电力系统状态:自动重合闸装置通过接收与电力系统相关的信号,如电流、电压、频率等,监测电力系统的状态。

2. 检测异常情况:当系统发生故障或异常情况时,自动重合闸装置会检测到这些异常,并根据预设的保护参数进行判断。

3. 切除电力系统:当自动重合闸装置判断出电力系统发生故障或异常情况时,它会迅速切除电力系统,即打开断路器或切断电力供应,以避免故障扩大或造成更大的损失。

4. 分析故障原因:自动重合闸装置会通过对故障信号的分析,确定故障的位置和原因,为后续的维修工作提供参考。

5. 重启电力系统:在故障得到修复或自动重合闸装置判断故障消除后,它会恢复电力供应并重新闭合断路器,将电力系统重新连接起来。

自动重合闸装置的作用是保护电力系统的安全运行。

它能够快速切除故障电路,减少停电时间,提高电力供应的可靠性。


时,它还能够避免对电力系统的损坏,确保电力系统的稳定性和可用性。

自动重合闸开关操作方法

自动重合闸开关操作方法

自动重合闸开关操作方法
自动重合闸开关是一种常见的电力设备,可用于电路的开关控制。

它能够自动判断电流状态并进行合闸操作。

以下是一般的自动重合闸开关操作方法:
1. 保持开关处于打开状态:在操作之前,确保自动重合闸开关处于打开状态,这意味着电路是断开的。

2. 启动保护装置:在重合闸之前,需要启动电路保护装置,例如保护继电器或保护设备,这些装置可以检测电路中的异常状态。

3. 确定合闸条件:根据电路的情况和需要进行合闸操作的约束条件,确定合闸条件,例如电流大小、电压稳定程度等。

4. 手动或自动操作:自动重合闸开关通常有两种操作方式,一种是手动操作,一种是自动操作。

手动操作需要人工干预,而自动操作则可以根据设定的合闸条件自动进行。

5. 检测合闸条件:在进行自动合闸操作时,自动重合闸开关会自动检测合闸条件是否满足,例如电流、电压等是否符合设定的条件。

6. 合闸操作:如果检测到合闸条件满足,则自动重合闸开关将进行合闸操作,闭合电路。

7. 监控电路状态:在合闸之后,需要持续监控电路的状态,确保电路正常运行,避免再次出现异常情况。

需要注意的是,具体的操作方法可能会因为不同型号的自动重合闸开关而有所差异,因此在使用之前应仔细阅读使用说明书,按照说明进行操作。

自动重合闸

自动重合闸
两侧断路器均跳闸后再重合、同步问题 1.不检查同步重合闸(快速重合闸) 2.解列重合闸 3.检查同步和检查无电压重合闸
3.检查同步和检查无电压重合闸(图5-7)
检查无电压一侧先动作(同步检定也要投入) 检查同步一侧后动作(无电压检定决不能投入
TJJ
TJJ
四.重合闸和继电保护的配合
1. 重合闸前加速保护(图5-11) 特点:能快速切除瞬时性故障、提高 重合闸成功率;首次动作无选择性,断 路器工作条件加重。适合35KV以下(10kv) 发电厂和变电站的直配线路。
3.对自动重合闸的基本要求
(1)采用控制开关位置和断路器位置不对应 起动 (手动跳闸、保护跳闸、误动跳闸) (2) 一次重合闸只应动作一次 (永久性故障,第二次跳闸后不再重合) (3) 手动合闸保护随即跳闸,重合闸不 应动作。 二.单侧电源线路三相一次重合闸
二.单侧电源线路三相一次重合闸
三.双侧电源线路重合闸的方式
第五章 自动重合闸
一.自动重合闸概述 1.自动重合闸在电力系统中的作用 输电线路故障大多是瞬时性的,采用在断路 器跳闸后自动重新合闸的装置。可提高供 电可靠性和电力系统并列运行稳定性。 (1KV以上有断路器的线路) 2.自动重合闸的分类 三相和综合(单相、三相)重合闸; 一次和多次; 单侧图5-16)
对非全相运 行中仍然能 正确工作的 保护接N端 子; 对非全相运 行中可能误 动的保护接 M 端子,重 合闸起动后 将其闭锁。
四.重合闸和继电保护的配合
2. 重合闸后加速保护(图5-12) 特点:保护首次动作可能有延时,但能快 速切除永久性故障;首次动作有选择性, 不扩大停电范围;适合 35KV 及以上网络 及重要负荷供电的线路。
五.单相和综合重合闸

自动重合闸

自动重合闸

3、 U 的大小与相位(或频率)的关系: s t U 2U M sin 2U sin (6.7) 2 2
可见,U 将随着δ (角频率ω S)的增大而增大。
加于同步检查继电器上的电压△U与幅值和相位的关系 (a) 幅值不等但同相位; (b) 不同相位,但幅值相等
重合闸后加速
当线路发生故障后,保护有选择性地动作切除故障,重合闸进行—次重合 以恢复供电。若重合于永久性故障时,保护装臵即不带时限无选择性的动作断 开断路器,这种方式称为重合闸后加速。
断路器灭弧
电弧的特点是: (1)起弧电压、电流数值低 (2)电弧能量集中,温度很高 (3)电弧是一束质量很轻的游离 态气体,在外力作用下,很易弯曲、 变形。 (4)电弧有良好的导电性能、具 有很高的电导: (5)电弧有阴极区(包括阴极斑 点)、弧柱区(包括弧柱、弧焰)、 阳极区(包括阳极斑点)三部分组 成。 游离作用: 当开关工作时,介质会由绝缘状 态变成导电状态。介质的放电现象 是由于电场、热、光的作用下,介 质里的中性质点产生自由电子、正、 负离子的结果。这种现象我们称为 游离作用。在介质中产生的游离作 用达到一定程度时,介质将被击穿, 而产生电弧放电。电弧的形成是由 于介质的游离而发生的。
7
2015-3-24
KKJ(合后继电器)
KKJ的由来 现在微机保护操作回路都会有KKJ继电 器。它是从电力系统KK操作把手的合后位 臵接点延伸出来的,所以叫KKJ。 KKJ继电器实际上就是一个双圈磁保持 的双位臵继电器。该继电器有一动作线圈 和复归线圈,当动作线圈加上一个“触发 ”动作电压后,接点闭合。此时如果线圈 失电,接点也会维持原闭合状态,直至复 归线圈上加上一个动作电压,接点才会返 回。当然这时如果线圈失电,接点也会维 持原打开状态。手动/遥控合闸时同时启动 KKJ的动作线圈,手动/遥控分闸时同时启 动KKJ的复归线圈,而保护跳闸则不启动复 归线圈(保护跳闸和手动/遥控跳闸回路之 间加有的二极管就是为实现此目的)。这 样KKJ继电器(其常开接点的含义即我们传 统的合后位臵)就完全模拟了传统KK把手 的功能,这样既延续了电力系统的传统习 惯,同时也满足了变电站综合自动化技术 的需要。

自动重合闸原理

自动重合闸原理

自动重合闸原理自动重合闸是一种用于电力系统的保护装置,它的作用是在电路发生故障时,迅速切断故障部分,保护电力设备和人身安全。

那么,自动重合闸的原理是什么呢?本文将从自动重合闸的工作原理、结构组成和应用特点三个方面来详细介绍。

首先,我们来了解一下自动重合闸的工作原理。

自动重合闸的工作原理是利用电磁吸引力来实现的。

当电路发生故障时,电流会突然增大,这时会产生电磁场,使得电磁铁受到吸引力,触发机构被吸引,从而实现自动重合闸的动作。

在动作之后,自动重合闸会自动进行复位,为下一次的保护动作做好准备。

其次,自动重合闸的结构组成主要包括电磁铁、触发机构、复位机构和控制电路。

电磁铁是自动重合闸的核心部件,它能够产生强大的吸引力;触发机构是连接电磁铁和断路器的机构,它能够将电磁铁的动作传递给断路器;复位机构是用于自动复位的部件,它能够在动作之后将自动重合闸复位到初始位置;控制电路是用于监控电流和控制自动重合闸动作的电路,它能够实现自动重合闸的智能化控制。

最后,我们来看一下自动重合闸的应用特点。

自动重合闸具有动作速度快、可靠性高、使用方便等特点。

它能够在电路发生故障时,迅速切断故障部分,保护电力设备和人身安全;同时,它还能够实现自动复位,减少了维护成本和维护工作量。

因此,自动重合闸在电力系统中得到了广泛的应用,成为了电力系统中不可或缺的重要装置。

总之,自动重合闸是一种用于电力系统的重要保护装置,它的工作原理是利用电磁吸引力,结构组成包括电磁铁、触发机构、复位机构和控制电路,应用特点是动作速度快、可靠性高、使用方便。

通过本文的介绍,相信读者对自动重合闸的原理有了更深入的了解,对于电力系统的保护装置有了更全面的认识。

自动重合闸

自动重合闸
如果无电流时间是可调的,则应规定调整的极限。”
可见我们所讨论的“O-0.3s-CO-3min-CO”这种开关操作顺序,也是我们最常见到的一种了,它主要用于具有快速自动重合闸功能的场合。其实若注意到开关的额定短路开断电流时,大家可以注意到这两者之间有一种关系。当额定短路开断电流在40KA以下的时候,一般是31.5KA较多,这时采用的多为“O-0.3s-CO-3min-CO”操作顺序,而额定短路开断电流在40KA以上的时候,便多为“O-3min-CO-3min-CO”这种操作顺序了。因为按照目前系统的短路容量,一般线路的短路电流都达不到40KA,所以一般的线路采用“O-0.3s-CO-3min-CO”这种操作顺序,因为它要具备重合闸功能。而对于大容量的场合比如母线或主设备,其短路电流可能会超过40KA,但这些场合大多又不采用重合闸的,所以选用的多为“O-3min-CO-3min-CO”这种操作顺序。随着系统容量的不断增大,短路电流也在不断增大,如果短路电流大于40KA,有很多开关的选型就不匹配了,所以目前电网也在想尽办法来限制短路电流在40KA以下。前一段河南电网就进行了几个重要的500KV变电站220KV母线分列运行的措施,对开关的方面就有上述考虑。总之这个操作顺序是根据当前系统发展的情况和开关所使用的场合来确定的,也可以认为是市场的需要。
简单的了解了一下这种操作顺序的意义,下面来说说这种具有快速自动重合闸功能的开关的操作顺序的具体情况。一般额定能力都是考虑最坏情况出现的,这个额定操作顺序,也是考虑了最坏情况下的重合闸,什么是最坏情况下的重合闸呢?即发生的是永久性的故障。
我们来假设这个过程吧:开关正常运行中,线路永久性故障,开关跳闸O----考虑到熄弧及故障点绝缘恢复等因素,自动重合闸装置延时---0.3S---发出重合闸指令,开关重合闸于永久性故障,此时开关立刻无延时的跳闸,等于是经历了一个合上闸立刻又跳闸的过程,即----CO----跳闸后,此时考虑到开关需要重新储能以及灭弧室等电强度的恢复还有对系统的冲击等等,要再次快速重合闸已不可能,这次要经过一个长的时间即----180S----才能再次合闸,结果又合到了永久故障上,同样开关立刻无延时的跳闸,等于是再次经历了一个合上闸立刻又跳闸的过程,即-----CO。至此,彻底完成了一次额定操作顺序。这是最坏的情况了,如果要超越这个额定极限,比如说没有到180S就要再次合闸,或者不断的跳闸合闸不遵循额定操作顺序,暂不说对系统冲击的情况,开关本身则有可能已经爆炸了。

自动重合闸的作用及要求

自动重合闸的作用及要求

设置自动重合闸装置好处
✓大大提高供电的可靠性,减少线路停电的次数。 ✓在高压输电线路上采用重合闸,可以提高电力系统并列运行的稳 定性。 ✓在架空线路上采用重合闸,可以暂缓架设双回线路,以节约投资。 ✓对断路器本身由于机构不良或继电保护误动作而引起的误跳闸, 也能起纠正的作用。
自动重合闸不利的影响
(1)使电力系统又一次受到故障的冲击; (2)由于断路器在很短的时间内,连续切断两次短路电 流,而使其工作条件变得更加恶劣。
非同步合闸的问题。 二、两侧电源线路上的主要合闸方式: (1)快速自动重合方ห้องสมุดไป่ตู้: (2)非同期重合闸方式:
(3)检查双回线另一回线电流的重合闸方式. (4)自动解列重合闸方式
(5)具有同步检定和无压检定的重合闸。
在两侧的断路器上,除装有单侧电源线路的ZCH自动重合闸装 置外,在一侧装有低电压继电器,用以检查线路上有无电压 (检无压侧),在另一侧装有同步检定继电器,进行同步检 定(检同步侧)。
,若成功,恢复正常供电;若不成功,按选择性动作。 • 主要用于35KV以下的网络。
2 、重合闸后加速保护(简称“后加速”) 每条线路上均装有选择性的保护和ZCH。 第一次故障时,保护按有选择性的方式动作跳闸,若是永久性故
障,重合后则加速保护动作,切除故障。 应用于35KV以上的网络中。
第四节 单相自动 重合闸与综合自动 重合闸
生相间故障时,采用三相重合闸方式。单相重合闸和三相 重合闸综合在一起,成为综合重合闸。
• 下图所示单电源网络,已知:在1QF断路器上采用了重合闸前加 速保护动作的接线,它利用电流速断保护重合闸前的非选择性动 作,此电流速断保护的动作时间为0.1s,A、B、C三变电所保护 的动作时间分别为1.5s、1.0s、0.5s;所有断路器的重合闸时间均 为0.35s,跳闸时间为0.07s;自动重合闸的整定时间为0.8s。请简 单分析当K点瞬时性故障,故障发生后经过多长时间能恢复正常 供电?

自动重合闸电气符号

自动重合闸电气符号

自动重合闸电气符号摘要:一、自动重合闸的定义与作用二、自动重合闸电气符号的分类1.单极自动重合闸电气符号2.双极自动重合闸电气符号3.三极自动重合闸电气符号三、自动重合闸电气符号的图形符号与含义四、自动重合闸电气符号的应用场景五、自动重合闸电气符号的绘制规范六、总结与展望正文:自动重合闸是一种用于电力系统中控制开关装置,能在电路故障时自动切断电源,并在故障排除后自动合闸,恢复供电。

它具有提高系统可靠性、减少停电时间和提高电力设备利用率等作用。

在电气工程中,自动重合闸电气符号是用来表示自动重合闸设备的一种图形符号,具有可读性和实用性。

自动重合闸电气符号主要分为以下三类:1.单极自动重合闸电气符号:表示单极自动重合闸设备,由一个垂直线和一个水平线组成,垂直线表示开关本体,水平线表示动触头。

2.双极自动重合闸电气符号:表示双极自动重合闸设备,由两个相互垂直的线组成,分别表示两个动触头。

3.三极自动重合闸电气符号:表示三极自动重合闸设备,由三个相互垂直的线组成,分别表示三个动触头。

在自动重合闸电气符号中,图形符号直观地表达了自动重合闸设备的基本结构和工作原理。

其中,垂直线表示开关本体,水平线表示动触头,斜线或箭头表示动触头的移动方向。

这些符号有助于电气工程师、技术人员和操作人员快速了解自动重合闸设备的功能和特性。

自动重合闸电气符号应用于电力系统设计、施工图审查、设备操作和维护等场景。

在实际应用中,自动重合闸电气符号的绘制需遵循一定的规范,以确保符号的一致性、可读性和实用性。

总之,自动重合闸电气符号在电力系统中具有重要应用价值。

了解和掌握自动重合闸电气符号的分类、含义和规范,对于电气工程师和相关专业人员来说,具有重要的实际意义。

自动重合闸基本概念

自动重合闸基本概念

自动重合闸基本概念概述在电力系统运行中,由于各种原因可能发生电力故障,为保障电力系统的可靠供电,需要采取控制措施。

自动重合闸是电力故障自动控制的一种常用技术手段。

它通过检测故障信号并执行控制指令,自动完成开断、合上电路的操作,从而快速恢复电力供应。

自动重合闸的作用自动重合闸系统是一种能够自主检测电力故障并能自动进行开关控制的电力装置。

当电路发生故障时,自动重合闸系统依据预先设定的参数自动进行开断操作,对故障进行隔离,避免电力故障对整个电网造成更大的影响。

故障消失后,自动重合闸系统会自动完成合闸操作,恢复电力供应,从而保证了电力系统的可靠性和稳定性。

自动重合闸的组成自动重合闸系统主要由以下组成部分:1. 故障检测模块自动重合闸系统的关键模块是故障检测模块,该模块通过复杂的算法检测电路发生的故障类型和位置,并控制重合闸操作,从而实现故障隔离和恢复电力供应的过程。

2. 动作控制器动作控制器是自动重合闸系统的另一个重要组成部分,它能够执行故障检测模块发来的指令,并控制重合闸执行器的动作。

3. 重合闸执行器重合闸执行器是开合闸器的核心部件,它能够执行动作控制器的指令,对电路进行开断和合闸操作。

4. 监控系统自动重合闸系统还要配备一套监控系统,用于监测电力系统的运行状态。

通过监控系统能够实时获取系统的参数和状态数据,对系统进行稳定性分析和运行预测,从而提高系统的可靠性和稳定性。

监控系统还可以对系统故障进行记录和分析,为故障排除提供重要依据。

自动重合闸的优势自动重合闸系统具有以下优势:1. 故障处理速度快自动重合闸系统能够在极短的时间内检测故障、隔离故障、恢复电力供应,从而及时保障电力系统的可靠供电。

2. 操作可靠性高自动重合闸系统采用数字化技术,操作可靠性高,在复杂的电力系统中能够稳定地工作,并对整个系统的稳定性产生积极的影响。

3. 适用范围广自动重合闸系统适用于各种电力故障的处理,具有广泛的适用范围,在电力系统运行中得到广泛的应用。

自动重合闸

自动重合闸
一般在220kV及以下电压单回联络线、两侧电源之间相互联系薄弱的线路(包括经低一级电压线路弱联系的 电磁环网),特别是大型汽轮发电机组的高压配出线路。
当发生单相接地故障时采用单相重合闸方式,而当发生相间短路时采用三相重合闸方式。
一般在允许使用三相重合闸的线路,但使用单相重合闸对系统或恢复供电有较好效果时,可采用综合重合闸 方式。
启动方式
断路器位置启动包括单相偷跳启动、三相偷跳启动,分别由“单相偷跳允许重合”、“三相偷跳允许重合” 控制字选择投退。
重合闸根据Ⅰ线、Ⅱ线分相跳闸开入确定单相跳闸启动或三相跳闸启动。接入装置的跳闸开入信号要求跳闸 成功后立即返回,装置将根据对应跳闸相无电流加以确认,判断为单相跳闸启动或三相跳闸启动。
对于重合闸的经济效益,应该用无重合闸时,因停电而造成的国民经济损失来衡量。由于重合闸装置本身的 投资很低,工作可靠,因此,在电力系统中获得了广泛应用。
分类
综合重合闸
单相重合闸
三相重合闸
110kV及以上线路大多采用三相一次重合闸,根据运行经验110kV以上的大接地电流系统的高压架空线路上, 短路故障中70%以上是单相接地短路,特别是220kV以上的架空线路,由于线间距离大,单相接地故障甚至高达 90%左右。在这种情况下,如果只把发生故障的一相断开,然后再进行单相重合闸,而未发生故障的两相在重合 闸周期内仍然继续,就能大大提高供电的可靠性和系统并列运行的稳定性。因此,在220kV以上的大接地电流系 统中,广泛采用了单相重合闸。
产品介绍
在电力系统的故障中,大多数是输电线路(特别是架空线路)的故障。运行经验表明,架空线路故障大都是 “瞬时性”的,例如,由雷电引起的绝缘子表面闪络、大风引起的碰线、鸟类以及树枝等物掉落在导线上引起的 短路等,在线路被继电保护迅速断开以后,电弧即行熄灭,外界物体(如树枝、鸟类等)也被电弧烧掉而消失。 此时,如果把断开的线路断路器再合上,就能够恢复正常的供电。因此,称这类故障是“瞬时性故障”。除此之 外,也有“永久性故障”,例如由于线路倒杆、断线、绝缘子击穿或损坏等引起的故障,在线路被断开以后,它 们仍然是存在的。这时,即使在合上电源,由于故障依然存在,线路还要被继电保护再次断开,因而就不能恢复 正常的供电。

自动重合闸

自动重合闸
DL400-1991《继电保护和安全自动装置技
术规程》规定: 对3kV及以上的架空线路和兼作旁路的母联 断路器或分段断路器,宜装设自动重合闸装 置。 对于低压侧不带电源的降压变压器以及母线, 必要时也可装设自动重合闸装置。
自动重合闸的指标
动作成功的次数 总动作的次数
重合闸成功率=
正确动作参数 正确动作率= 总动作次数
三相一次重合闸工作原理图
优点:简单可靠,还可以纠正 断路器误碰或偷跳,可提高供 电可靠性和系统运行的稳定性 ,在各级电网中具有良好的运 行效果,是所有重合闸的基本 控制开关与断路器位置不对应启动: 启动方式
重合闸的启动方式
断路器控制开关处于“合闸后”状态,线路
由于某种原因,工作人员误碰断路器操作机

双电源线路的三相一次自动重合闸
在使用检查线路无电压方式的重合闸一侧,
当其断路器在正常运行情况下,由于某种原 因 (如误碰跳闸机构、保护误动等)而跳闸 时,由于对侧并未动作,因此,线路上有电 压,因而就不能实现重合。所以一般在检定 无电压的一侧也同时投入同步检定继电器, 两者的触点并联工作。
检无压 检同期
按照断路器跳闸方式分类
三相重合闸
• 当线路上发生任何形式的故障时,均实现三 相自动重合,当重合到永久性故障时,断开 三相后不再重合;
按照断路器跳闸方式分类
单相重合闸
• 当线路上发生单相的故障时,实行单相自动 重合闸(断路器分相操作机构),当重合到 永久性故障时,断开三相不再进行重合,当 线路发生相间故障时,断开三相不进行自动 重合。
自动重合闸
背 景
在电力系统的各种故障中,输电线路(架空线
路)是发生故障几率最多的元件,约占电力 系统总故障的90%。 输电线路故障的性质,大多数是瞬时性故障, 故障几率占输电线路故障的90%左右,而永 久性故障确不到10%,最严重时也不到20%。

自动重合闸-很全面实用课件

自动重合闸-很全面实用课件

潜供电流使短路时弧光通道的去游离受到严重阻 碍,电弧未熄灭,自动重合闸不能成功。
(四) 单相重合闸的优点: 1.在绝大多数的故障情况下对用户的连续供电; 2.加强双侧电源联络线的联系,提高系统的动态 稳定性。避免薄弱系统的解列;
(四) 单项重合闸的缺点: 1.需要有按相操作的断路器; 2.重合闸回路的接线比较复杂; 3.需防止非全相运行引起保护误动,使保护的接 线、整定和调试工作复杂化。
瞬时性:等待故障点的故障消除、绝缘强度恢复。 永久性:还需考虑断路器的恢复,保证再次分闸。
1、 单侧电源线路的三相重合闸
重合闸最小时间整定原则: (1).断路器跳闸后,负荷电动机向故障点反馈电流 的时间;故障点的电弧熄灭并使周围介质恢复绝缘 强度所需时间; (2).断路器跳闸熄弧后,其触头周围绝缘强度的恢 复以及消弧室充满油、气所需时间,操动机构恢复 所需时间; (3).继电保护跳闸出口的重合闸,还需加上断路器 的跳闸时间。
(3).继电保护跳闸出口的重合闸,还需加上断路器 的跳闸时间。
根据我国电力系统的运行经验,重合闸的最小 时间为0.3—0.4S。
2、双侧电源线路的三相重合闸
还需考虑线路两侧继电保护以不同实现切除故障 的可能性。
3、双侧电源线路的三相重合闸的最佳重合时间概念
按照对系统稳定性影响最严重的故障条件计算并 整定最佳重合时间,保证在重合于严重的永久故障 时对系统的再次冲击最小,其他故障形态下尽管不 是最佳,但可能是次佳,不会是最坏。
单相重合时间 0 >=1
三相重合时间 0 M6
0 120
0 &
0 M11
不检方式
检无压方式 0 &
0 M16
检同期方式 0 &
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DH-3型三相一次自动重合闸装置实验一、实验目的1、熟悉三相一次重合闸装置的电气结构和工作原理。

2、理解三相一次重合闸装置内部器件的功能和特性,掌握其实验操作及调整方法。

二、预习与思考1、电容式重合闸装置主要组成元件是什么?各起什么作用?2、电容式的重合闸装置为什么只能重合一次?3、重合闸装置ZJ两个触点为什么串联使用?4、重合闸装置中充电电阻能否任意更换?为什么?5、重合闸装置不动作的内部原因是什么?6、电秒表使用时应注意什么?三、原理说明DH-3型三相一次重合闸装置用于输电线路上实现三相一次自动重合闸,它是重要的保护设备。

重合闸装置内部结线见图18-1。

装置由一只DS-22时间继电器(作为时间元件)、一只电码继电器(作为中间元件)及一些电阻、电容元件组成。

装置内部的元件及其主要功用如下:1、时间元件SJ:该元件由DS-22时间继电器构成,其延时调整范围为1.2-5S,用以调整从重合闸装置起动到接通断路器合闸线圈实现断路器重合的延时,时间元件有一对延时常开触点和一对延时滑动触点及两对瞬时切换触点。

2、中间元件ZJ:该元件由电码继电器构成,是装置的出口元件,用以接通断路器的合闸线圈。

继电器线圈由两个绕组组成:电压绕组ZJ(V),用于中间元件的起动;电流绕组ZJ(I),用于在中间元件起动后使衔铁继续保持在合闸位置。

3、电容器C:用于保证装置只动作一次。

4、充电电阻4R:用于限制电容器的充电速度。

5、附加电阻5R:用于保证时间元件SJ的线圈热稳定性。

6、放电电阻6R:在需要实现分闸,但不允许重合闸动作(禁止重合闸)7、信号灯XD:在装置的接、线中,监视中间元件的触点ZJ1、和控制按钮的辅助触点是ZJ2否正常。

故障发生时信号灯应熄灭,当直流电源发生中断时,信号灯也应熄灭。

8、附加电阻17R:用于降低信号灯XD上的电压。

在输电线路正常工作的情况下,重合闸装置中的电容器C经电阻4R已经充足电,整个装置处于准备动作状态。

当断路器由于保护动作或其它原因而跳闸时,断图18-1 自动重合闸装置内部接线图路器的辅助接点起动重合闸装置的时间元件SJ,经过延时后触点SJ闭合,2电容器C 通过SJ 2对ZJ (V )放电,ZJ (V )起动后接通了ZJ (I )回路并自保持到断路器完成合闸。

如果线路上发生的是暂时性故障,则合闸成功后,电容器自行充电,装置重新处于准备动作的状态。

如线路上存在永久性故障,此时重合闸不成功,断路器第二次跳闸,但这一段时间远远小于电容器充电到使ZJ (V )起动所必须时间(15~25S ),因而保证装置只动作一次。

图18-2 DH-3型重合闸装置试验接线图+-四、实验设备五、实验步骤和操作方法1、DH-3型自动重合闸装置实验接线见图18-2,按图接线完毕后首先进行自检,然后请指导教师检查,确定无误后,接入直流操作电源进行调试。

2、时间继电器动作电压、返回电压的测定(1)合上开关S1,调节R1使直流电压调至装置的额定值,检查各元件有无异常现象,投入后15~25秒指示灯应发光。

(2)合上S1、S2,调节R1逐步提高输入电压,读取SJ铁芯可靠吸合的最小动作电压。

(3)上述SJ动作后,向反方向调节R1,逐步降低输入电压,读取SJ 返回的最高电压。

3、中间元件的自保持电流测试(1)合上S1后,调节R1使电压等于装置的额定电压,用手按中间元件ZJ的衔铁,使常开接点闭合,调整R2,使流过ZJ线圈的电流略低于0.9倍的额定电流时,然后将手松开,ZJ应能自保持。

断开S1,使ZJ复归。

(2)再合上S1,待电容充电15~25秒后,投入S2,使SJ线圈励磁,经过某一整定延时时间,ZJ动作并自保,此时断开S2,ZJ不应返回。

(3)重复上述步骤,调整R2测出中间元件ZJ的最小保持电流。

4、中间元件电压线圈的动作电压测定在重合闸继电器接线端子○5与○17之间连接一导线,合上S1,调节R1,从零伏逐渐升高电压,测出使中间元件衔铁能被可靠吸住的最小动作电压。

一般对于额定电压为220伏的中间元件ZJ动作电压为50伏左右,本项测定完毕应拆除连接导线。

5、充电时间的测定仍按图18-2接线,在额定电压下合上S1对C充电,经15~25秒后再投入S2,中间元件ZJ应能可靠地动作并自保持。

这时电秒表1所记录的时间即为充电时间。

重复测定充电时间时,应先断开S1,后断开S2,以保证电容器的放电状态。

并将电秒表1回零,再重复以上操作,进行第二次试验。

如充电时间不符合要求,应检查充电电阻、电容器是否良好,是否参数变值,若变值需更换C或4R使之达到所需的充电时间。

调整完毕,应再次测量中间元件的动作电压和自保持电流。

6、保证只动作一次测定在额定电压下合上S1,充电60秒后,瞬间短接○3○15两端子,使电容器放电,然后合上S2,此时中间元件不应动作。

7、重合闸装置动作时间整定试验见图18-2先将S1合上,观察电秒表1,当给电容器C充电25秒后,再合上S2,此时电秒表2所记录的就是重合闸装置的动作时间。

这一接线方式的特点是:当合上S2,起动重合闸装置的同时起动了电秒表2,停止了电秒表1,并以中间元件ZJ常开接点的闭合停止电秒表2计时,所以电秒表2可测得重合闸继电器起动到实现断路器重合的时间。

电秒表1记录了电容器C的充电时间。

重合闸装置动作时间的整定可以通过改变时间元件的整定时间来实现。

六、技术数据1、额定工作电压直流220V。

2、中间元件电流绕组ZJ(I)的额定保持电流为直流0.25A。

3、在额定电压下,当环境温度为20±5℃,相对湿度不大于70%时,电容器充电到中间元件动作电压的时间(装置准备下一动作时间)在15~25S 范围内。

4、在70%额定电压下,环境温度为20±5℃,相对湿度不大于70%时,装置应保证可靠动作,此时电容器充电到使中间元件动作的时间,允许增加到2S。

5、当中间元件电压绕组去掉电压,在电流绕组流过额定电流时,衔铁应保持在吸合位置。

6、中间元件的电流绕组ZJ(I)允许流过3倍的额定电流历时1S。

7、中间元件的触点ZJ1、ZJ2串联后,在额定电压下能接通8A的电流,历时5S。

8、在额定电流下,中间元件电流绕组ZJ(I)的功率消耗应不大于1.35W。

9、时间元件的延时调整范围为1.2~5S。

10、时间元件的线圈串联附加电阻后,能长期经受110%的额定电压。

七、注意事项在操作试验前必须熟悉实验电路,认真按照操作规程的要求,正确接线,细心操作,特别要注意在电流保持回路中,不能误接入电压信号,变阻器R2串入保持回路的阻值必须从最大位置慢慢减小,同时注意观察毫安表的指示,不应大于装置的额定保持电流。

每个操作试验环节要确保其正确性和安全性。

八、实验报告对重合闸继电器的动作特性,起动条件,实验操作进行总结,结合上述思考题写出实验实验报告。

表18-1附1、自动重合闸前加速保护实验一、实验目的1、熟悉自动重合闸前加速保护的原理接线。

2、理解自动重合闸前加速保护的组成型式,技术特性,掌握其实验操作方法。

二、预习和思考1、图19-2中各个继电器的功用是什么?2、在重合闸动作前是由哪几个继电器及其触点共同作用,实现前加速保护。

3、重合于永久性故障,保护再次起动,此时由哪几个继电器及其触点共同作用,恢复有选择性地再次切除故障的?4、为什么加速继电器要具有延时返回的特点?5、在前加速保护电路中,重合闸装置动作后,为什么JSJ继电器要通过1LJ的常开触点、JSJ自身延时返回的常开触点进行自保持?6、在输电线路重合闸电路中,采用前加速时,JSJ是由什么触点起动的?7、请分析自动重合闸前加速保护的优缺点。

三、原理说明重合闸前加速保护是当线路上发生故障时,靠近电源侧的保护首先无选择性地瞬时动作使断路器跳闸,而后再借助自动重合闸来纠正这种非选择性动作。

重合闸前加速保护的动作原理可由图19-1说明,线路X-1上装有无选择性的电流速断保护1和过流保护2,线路X-2上装有过流保护4,ZCH仅装在靠近电源的线路X-1上。

无选择性电流速断保护1的动作电流,按线路末端短路时的短路电流来整定,动作不带延时。

过流保护2、4的动作时限按阶梯原则整定,即t2>t4。

图 19-1 自动重合闸前加速保护原理说明图当任何线路、母线(I除外)或变压器高压侧发生故障时,装在变电所I 的无选择性电流速断保护1总是首先动作,不带延时地将1QF跳开,而后ZCH 动作再将1QF重合,若所发生的故障是暂时性的,则重合成功,恢复供电;若故障为永久性的,由于电流速断已由ZCH的动作退出工作,因此,此时只有各过流保护再次起动,有选择性地切除故障。

图19-2示出了ZCH前加速保护的原理接线图。

其中1LJ是电流速断,2LJ 是过流保护。

从该图可以清楚地看出,线路X-1故障时,首先速断保护的1LJ 动作,其接点闭合,经JSJ的常闭接点不带时限地动作于断路器使其跳闸,随后断路器辅助触点起动重合闸继电器,将断路器重合。

重合闸动作的同时,起动加速继电器JSJ,其常闭接点打开,若此时线路故障还存在,但因JSJ的常闭接点已打开,只能由过流保护继电器2LJ及SJ带时限有选择性地动作于断路器跳闸,再次切除故障。

自动重合闸前加速保护有利于迅速消除故障,从而提高了重合闸的成功率,另外还具有只需装一套ZCH的优点。

其缺点是增加了1QF的动作次数,一旦1QF或ZCH拒绝动作将会扩大停电范围。

图 19-2 自动重合闸前加速保护原理接线图四、实验设备五、实验步骤和操作方法1、根据过电流保护的要求整定2LJ的动作电流值,和SJ的动作时限(例:取2LJ动作电流为1A,SJ为1.5S)。

2、根据速断保护的要求整定1LJ的动作电流(例:取1LJ动作电流为3A)。

3、根据时间继电器、加速继电器、保护出口继电器的技术参数选择相应的操作电源。

4、按图19-2自动重合闸前加速保护原理接线图分别绘制展开图和安装图,然后进行安装接线。

5、检查“前加速保护”接线的正确性,确定无误后,接入相应直流操作电源。

6、此时重合闸装置未启动,加速继电器JSJ未动作。

调节交流电流回路,给电流继电器输入一个大于整定值的电流,模拟线路XL-1故障,观察前加速闭合模拟ZCH出口动作情况,加速跳闸后重合闸启动,图19-3中用开关S1接点ZJ的闭合来起动JSJ,JSJ常闭触点打开。

37、模拟故障继续存在,但由于JSJ常闭触点已经打开,所以只能由过电流保护2LJ和SJ带时限有选择性地进行跳闸,切除故障。

六、注意事项在操作试验前必须理解自动重合闸前加速保护的电路原理,在操作过程中要集中思想进行正确接线,严格按照操作规程的要求,加入试验电流,进行动作试验,要确保实验中每一环节的正确性和安全性。

七、实验报告分析前加速保护动作特性,结合上述思考题写出报告。

相关文档
最新文档