半波偶极子天线地HFSS仿真设计

半波偶极子天线地HFSS仿真设计
半波偶极子天线地HFSS仿真设计

实用标准文案

半波偶极子天线的HFSS仿真设计

一、实验目的:

1.以一个简单的半波偶极子天线设计为例,加深对对称阵子天线的了解;

熟悉HFSS软件分析和设计天线的基本方法及具体操作;2.

利用HFSS软件仿真设计以了解半波振子天线的结构和工作原理;3.

通过仿真设计掌握天线的基本参数:频率、方向图、增益等。 4.二、实验步骤:

本次实验设计一个中心频率为3GHz的半波偶极子天线。天线沿着Z轴放置,中心位于坐标原点,天线材质使用理想导体,总长度为0.48λ,半径为λ/200。天线馈电采用集总端口激励方式,端口距离为0.24mm,辐射边界和天线的距离为λ/4。

1、添加和定义设计变量

参考指导书,在Add Property对话框中定义和添加如下变量:

2、设计建模

1)、创建偶极子天线模型

首先创建一个沿Z轴方向放置的细圆柱体模型作为偶极子天线的一个臂,其底面圆心坐标为(0,0,gap/2),半径为dip_radius,长度为dip_length,材质为理想导体,模型命名为Dipole,如下:

精彩文档.

实用标准文案

然后通过沿着坐标轴复制操作生成偶极子天线的另一个臂。此时就创建出了偶极子的模型如下:

精彩文档.

实用标准文案

2)、设置端口激励

半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面,并设置端口平面的激励方式为集总端口激励。该矩形面需要把偶极子天线的两个臂连接起来,因此顶点坐标为(0,-dip_radius,-gap/2),长度和宽度分别为2*dip_radius和gap。如下:

半波偶极然后设置该矩形面的激励方式为集总端口激励。由之前的理论分析可得,。将负载阻抗也设置为73.2 ?为了达到良好的阻抗匹配,子天线的输入阻抗为73.2?,随后进行端口积分

线的设置。此处积分线为矩形下边缘中点到矩形上边缘中点。)、设置辐射边界条件3本次设计中采必须先设置辐射边界条件。要在仿真软件中计算分析天线的辐射场,轴放置的圆Z这里,1/4用辐射边界和天线的距离为个工作波长。我们先创建一个沿着精彩文档.

实用标准文案

柱体模型,其材质为空气,底面圆心坐标为(0,0,-rad_height),半径为rad_radius,高度为2*rad_height。具体参数如下:

然后将圆柱体表面设置为辐射边界条件:精彩文档.

实用标准文案

3、求解设置

分析的半波偶极子天线的中心频率在3GHz左右,所以把求解频率设置为3GHz。同时添加

2.5~

3.5GHz的扫频设置,扫频类型选择快速扫频,分析天线在2.5~3.5GHz频段内的回波损耗和电压驻波比。

1)、求解频率和网络剖分设置

设置求解频率为3GHz,自适应网格剖分的最大迭代次数为20,收敛误差为0.02。如下:

、扫频设置2)2.5~3.5GHz,扫频步进为0.001GHz扫频类型选择快速扫频,扫频范围为。如下:精彩文档.

实用标准文案

4、设计检查和运行仿真计算

通过前面的操作,我已经基本完成了偶极子天线模型的创建求解设置等HFSS设计的前期工作,现在开始运行仿真计算并查看分析结果。检查设计的完整性和正确性:

随后开始分析。

5、HFSS天线问题的数据后处理

在完成了模型的创建和检查后,现在开始对天线的各项性能参数进行仿真分析,主要有回波损耗、驻波比、Smith圆图、输入阻抗和方向图等。

1)、回波损耗

根据软件仿真结果,可以得到如下的在2.5~3.5GHz频段内的回波损耗S的分析结果:11精彩文档.实用标准文案

从结果可以看出,设计的偶极子天线中心频率为3GHz左右,S<-10dB的相对带宽为11

BW=(3.24-2.789)/3=15.3%.

2)、电压驻波比VSWR

如图所示:

3)、Smith圆图

在天线的相关问题的分析中Smith圆图是一个非常有用的工具,借助它可以方便的进行阻抗匹配,给出驻波比,归一化输入阻抗等各种信息。在HFSS中得到的Smith圆图如下:

从Smith圆图中可以看出,在中心频率为3GHz的归一化阻抗约为1,说明天线的端口阻抗匹配良好。VSWR<2(即反射系数的模小于三分之一)的频率范围约为2.78GHz~3.27GHz。

精彩文档.

实用标准文案

4)、输入阻抗

输入阻抗是天线的一个重要性能参数,我们可以通过HFSS直接查看天线的输入阻抗值。

从结果报告中可以看出,设计的半波偶极子天线在中心频率3GHz上,输入阻抗为(72.8-j0.4)?,

与理论分析比较接近。

5)、方向图

天线方向图是方向性函数的图形表示,它可以形象的描述天线的辐射特性随着空间方向坐标的变化。首先定义辐射表面如下:

E面方向图参数设置:

单极子天线的设计

第五章 常用单极子天线的设计与实例 §5.1常用的单极子天线...........................................................................................................- 2 - §5.1.1单极子天线..........................................................................................................- 2 - §5.1.2单极子天线的辐射场和电特性...........................................................................- 4 - §5.1.3单极子天线的馈电方法.....................................................................................- 11 - §5.2宽频带平面单极子天线的设计......................................................................................- 13 - §5.2.1 具有切角的平面单极子天线................................................................................- 14 - §5.2.2 具有短路节加载的平面单极子天线....................................................................- 17 - 5.3 总结....................................................................................................................................- 22 -

宽带印刷偶极子天线设计

宽带印刷偶极子天线设计 何庆强何海丹 (中国西南电子技术研究所,成都610036) 摘要:构建了一个宽带印刷偶极子天线,基于等效电路模型进行分析,给出了一套完整的设计计算公式。采用该方法进行设计,可一次成功,不必进行参数扫描和优化。给出的例子所得天线带宽达到54.15%,优于最新的国内外报道。 关键词:偶极子,巴伦,等效电路,宽带 Design of a Broadband Printed Dipole Antenna He Qingqiang He Haidan (Southwest China Institute of Electronic Technology, Chengdu 610036) Abstract: A broadband printed dipole antenna is created. Based on the analysis of equivalent circuit model, a perfect designing calculated process is given. Applying the proposed method, the dipole design can be successful once time and doesn’t need parameter tune and optimization. The designed dipole obtains a 54.15% bandwidth and has a better wideband characteristic compared with recent reports. Keywords: Dipole; Balun; Equivalent circuit; Broadband 1 引言 印刷巴伦偶极子天线最早研究起源于1974年[1]。最近几年的研究表明:通过快速的单元模型分析 计算,天线带宽可以达到18%[2];通过采用V形地平面,天线带宽可以达到33%以上[3];通过神经网络参数优化,天线的带宽可以达到40%[4];采用等效电路优化结合周期性加载原理,印刷偶极子天线的带宽可以达到47.8%[5]。 在这篇文章里,我们基于等效电路模型进行分析,计算出了偶极子天线的物理参数尺寸。采用该方法进行设计,可一次成功,无须参数优化,所得天线的带宽可达54.15%,优于文献[1-5]给出的设计结果。2 等效电路模型分析与设计 图1给出了偶极子天线的几何结构及其参数。图中实线部分为天线结构示意图,该天线印刷在厚度为h,介电常数为 r ε的介质板上。印刷振子辐射臂长为L t,宽为L w;振子的下底长为L H,宽为L d。在振子的中间,刻有一纵向长槽,长为L ab,宽为S w。该天线采用标准的50欧SMA馈电。

(完整版)双频单极子天线毕业设计

摘要 本设计介绍了射频双频单极子天线的基本原理以及基于HFSS的射频双频单极子天线的设计过程。双频天线一个最为简单的颁发就是采用印刷单极子天线来实现,这类天线所需成本极低,而且结构和加工都极为简易,是目前为止众多学者的研究方向。本篇论文主要设计与仿真射频双频单极子天线。 半波偶极子天线和单极子天线是迄今为止应用较为广泛的天线。利用镜像原理,引入接地面可以将半波偶极子天线的长度减少一半,即1/4波长单极子天线。 然后,文中设计并仿真了一个单极子天线,能够使用在无线局域网中。其L 型单极子天线由微带线直接馈电,天线工作于IEEE802.11a和802.11b两个工作频段,实现了天线的双频工作特性。仿真结果表明,该天线低频单极子天线垂直方向长度等于19mm时,该单极子天线的双频振

点,也就是高频振点对应IEEE802.11a (5.15GHz~5.825GHz),低频振点对应IEEE802.11b (2.4GHz~2.4825GHz),能够应用在无线局域网所涉及到到相关频段力,同时具备较佳的辐射方向图性质。 关键词:双频单极子;射频; WLAN; HFSS Design of Radio-Frequency Monopole Antenna ABSTRACT This design introduces the basic principles of radio dual-band monopole antenna and a dual-band radio-based HFSS monopole antenna design process. Printed monopole antenna as a dual-band antenna in the form of a simple structure, easy processing, low cost, is also a hot topic in the antenna field. In this thesis, dual-band monopole antenna

1半波偶极子

附录: 3D模型 0.00 — ■1O.DO — -5O.DO — -SOOO 750 AY 尸曲 1 nrsauesigni 回波损耗(S11)

15D — Curve hla l*imc X¥ nd300 1.010 F『eq[G 冏 电压驻波比(VSWR ) 130 50 50 200 40 15030 170 020 0G 2 00 180 0 -20 50 ■ 90 110 120^ 16%^0 90 80 Loo o uo Curve info — 5(1,1) Setup 1 ; Swe&p Name Freq Ang Mag RX ml 3 006052 7423 _G ------- 0D1D6 1.0123 +0 0171i] Smith圆图

输入阻抗 Nam亡 Curve Info ---- dB(GainTotal) Setupl : LastAdaptive FreqPSHM Phi=T>deg? -180 增益方向图 Theta 90 0000 Ang 90 0000 Mag 2.4102

43Sle+000 4562e+000 34?6e+000 2309C+000 3130e+001 7022e+001 0913e:+001 4804C+001 8696e+001 2587e+001 647Se+001 03?0e+0Sl 4261e+001 8152e+001 2044e+001 5935e+001 9E27e+001 三维增益方向图

半波偶极子天线 一、实验目的 1.熟练使用HFSS软件。 2.掌握半波偶极子天线的原理。 二、实验原理 此次设计为一个中心频率为3GHz的半波偶极子天线,天线沿z轴放置,天线材质使用理想导体,总长度为0.48入,半径为入/200.天线馈电采用集总端口激励方式,端口距离为 0.24mm,辐射边界和天线的距离为入/4.模型图如下: 1.电流分布 对于从中心馈电的偶极子天线,其两端为开路,故电流为零。假设将偶极子天线沿z轴放置,其中心位于坐标原点,则长度为I的偶极子天线的电流分布可以表示为: /(左)=/o sini(; - - I W £ W 2 I o是波腹电流;k是波数,且k=2 n/入;I是偶极子天线一个臂的长度。对于半波偶极 子天线而言,长度1=入/4。将参数代入上式可得半波偶极子天线的电流分布为: /(z) = /泸in(彳一归)=/O cos(kz) 下图为分析模型图: 申)讹) 0 日山 2.辐射场和方向图 已知半波偶极子天线上的电流分布,可以利用叠加原理来计算半波偶极子天线的辐射场。经计算得半波偶极子天线的辐射场为:

半波偶极子天线的HFSS仿真设计

天线原理与设计华中科技大学 半波偶极子天线的HFSS仿真设计 一、实验目的 1、学会简单搭建天线仿真环境的方法,主要是熟悉HFSS软件的使用方法; 2、了解利用HFSS仿真软件设计和仿真天线的原理、过程和方法; 3、通过天线的仿真,了解天线的主要性能参数,如驻波比特性、smith圆图特性、方向图 特性等; 4、通过对半波偶极子天线的仿真,学会对其他类型天线仿真的方法; 二、实验仪器 1、装有windows系统的PC一台 2、HFSS13.0软件 3、截图软件 三、实验原理 1、首先明白一点:半波偶极子天线就是对称阵子天线。 图1 对称振子对称结构及坐标 2、对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。一臂的导线半径为a,长度为l。两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=2l。对称振子的长度与波长相比拟,本身已可以构成实用天线。 3、在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布。取图1的坐标,并忽略振子损耗,则其电流分布可以表示为: 式中,Im为天线上波腹点的电流;k=w/c为相移常数、根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心点对称;超过半波长就会出现反相电流。 4、在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z)、长度为dz的电流元件串联而成。利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。

图2 对称振子辐射场的计算 如图2 所示,电流元I(z)所产生的辐射场为 其中 5、方向函数 四、实验步骤 1、设计变量 设置求解类型为Driven Model 类型,并设置长度单位为毫米。 提前定义对称阵子天线的基本参数并初始化 2、创建偶极子天线模型,即圆柱形的天线模型。 其中偶极子天线的另外一个臂是通过坐标轴复制来实现的。 3、设置端口激励 半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面。 4、设置辐射边界条件 要在HFSS中计算分析天线的辐射场,则必须设置辐射边界条件。这里创建一个沿Z轴放置的圆柱模型,材质为空气。把圆柱体的表面设置为辐射边界条件。 5、外加激励求解设置 分析的半波偶极子天线的中心频率在3G Hz,同时添加2.5 G Hz ~3.5 G Hz频段内的扫频设置,扫频类型为快速扫频。

半波偶极子天线毕业设计开题报告

毕业设计开题报告 半波偶极子天线设计 学院: 班级: 学生姓名: 指导教师: 职称: 2012 年11月19日

开题报告填写要求 1.开题报告作为毕业设计答辩委员会对学生答辩资格审查的依据材料之一,应在指导教师指导下,由学生在毕业设计工作前期完成,经指导教师签署意见、专家组及学院教学院长审查后生效; 2.开题报告必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴; 3.毕业设计开题报告应包括以下内容: (1)研究的目的; (2)主要研究内容; (3)课题的准备情况及进度计划; (4)参考文献。 4.开题报告的撰写应符合科技文献规范,且不少于2000字;参考文献应不少于15篇,包括中外文科技期刊、教科书、专著等。 5.开题报告正文字体采用宋体小四号,1.5倍行距。附页为A4纸型,左边距3cm,右边距2cm,上下边距为2.5cm,字体采用宋体小四号,1.5倍行距。 6.“课题性质”一栏: 理工类:A..理论研究B.工程设计C..软件开发D. 应用研究E.其它经管文教类:A.理论研究B.应用研究C.实证研究D.艺术创作E.其它 “课题来源”一栏: A.科研立项 B.社会生产实践 C.教师自拟 D.学生自选 “成果形式”一栏: A.论文 B.设计说明书 C.实物 D.软件 E.作品

毕业设计开题报告

附页: 一、研究的目的: Radio frequency identification(RFID)技术是一种利用射频技术实现的非接触式自动识别技术,近年来,RFID技术飞速发展并逐渐成为自动物体识别应用中的主要技术[1]。现今有很多种RFID天线类型,如偶极子天线、分形天线、环形槽天线和微带贴片天线等[2]。这里着重研究RFID技术中的半波偶极子天线,它的结构是由一个简易的偶极子天线由两段同样粗细、长度相等的直导线构成,在中间两个端点之间进行馈电。由于它结构简单,广泛应用于通信、雷达和探测等各种无线电设备中,适用于短波、超短波,甚至微波。它既可作为简单的天线单独使用,又可作为天线阵的单元或面天线的馈源[3-4]。半波偶极子天线的长度是半个波长,它的结构如图1所示。由于半波偶极子是基本的线天线,很多天线都是在半波振子的基础上设计的。这里介绍半波偶极天线及其主要研究内容。 图1 半波偶极子天线结构 二、主要研究内容: 1对天线基础的研究 包括电磁辐射及原理、电基本振子的辐射场、天线的性能参数(方向图、辐射强度、方向性系数、效率、增益、输入阻抗、天线的极化等)、对称天线辐射等。 2对天线模型的尺寸和结构的研究 3对HFSS v10软件的研究 本设计使用HFSS v10软件对半波偶极子天线进行仿真设计,设计流程如图3所示,设计流程中的各个步骤的功能分述如下。 (1)设置求解类型。使用HFSS进行天线设计时,可以选择模式驱动(driven modal)求解类型或者终端驱动(driven terminal)求解类型。 (2)创建天线的结构模型。根据天线的初始尺寸和结构,在HFSS模型窗口中创建出天线的HFSS参数化设计模型。 (3)设置边界条件。在半波偶极子天线的设计中,我使用辐射边界条件,为了模拟

CST-偶极子相控阵天线的仿真及优化

实验报告 学生:学号:指导教师: 实验地点:实验时间: 一、实验室名称: 二、实验项目名称:微波工程CAD实验 三、实验学时:20 四、实验原理: CST仿真软件是基于有限积分法,将整个计算区域离散化并进行数值计算,模拟各种实际器件得出场分布及其各种参数的特性曲线,最后可根据实际要求对所得结果进行优化,得出最优化下的器件尺寸参数。 本次实验利用CST对偶极子相控阵天线及微带到波导转换模型进行了仿真模拟,以此来掌握CST的应用。 五、实验目的: 了解并掌握CST仿真软件的基本操作,学习利用CST仿真软件进行一些简单的工程设计。 六、实验容: 第一题偶极子相控阵天线的仿真与优化:①偶极子天线尺寸如下图,在4~12GHz的频率围,请优化单个偶极子天线的工作频率谐振在f0=8GHz,待优化的变量Lambda初值取为29mm,绘出在该工作频率点的方向图;②将该单个天线在x和y方向分别以Lambda/4作为空间间隙、以90度作为相位间隙,扩展成一个2*2的相控阵天线阵,请使用三种方法计算该天线阵的方向图;③对结果进行比较、分析和讨论。

第二题微带到波导转换的仿真与优化:在26~30GHz频率围优化下图微带到波导的转换,使全频带反射最小,并绘出中心频点28GHz的电场、磁场与表面电流的分布;微带是Duroid5880基片,介电常数2.2,基片厚0.254mm,金属层厚0.017mm,介质上的空气尺寸3*1*8mm,标准50欧姆微带线宽0.77mm;波导是Ka波段的BJ320波导,尺寸7.112*3.556*10mm;L 是微带基片底面到波导短路面距离,W0*L0是伸入波导中的微带探针的宽与长,W1*L1是第一段变阻线的宽与长,W2*L2是第二段变阻线的宽与长,7个待优化变量可取下图给的初值。 七、实验器材(设备、元器件): 台式计算机;CST Design Environment 2009仿真软件;U盘(学生自备)。 八、实验步骤: 第一题:偶极子相控阵天线的仿真 a.单个偶极子天线模型 单个偶极子天线方向图

偶极子天线特征研究

微波偶集极子 ——偶极子天线特性研究 原理 能有效辐射或接收空间波动的装置被称为天线。天线的种类很多,描写天线电性能的参数也很多,其中一个重要参数就是方向性。对于不同的使用目的,对方向性的要求是不同的。天线的方向性一般指的是辐射或接收的能量与空间坐标的关系。通过建立边界条件解麦克斯韦方程,我们可以得有关天线辐射场的特性。但这是一个很复杂的问题,有兴趣的同学可以参考有关天线理论的书籍。这里我们通过实验来研究天线的指向性。 天线的形式 1.对称振子:由两根同样线径、同样长度的直导线构成。其半径为a ,线长为l 。这种天线广泛用于各种无线通讯设备中。 2a 忽略辐射引起的衰减和振子的粗细,对称振子的归一化方向函数可表示为: θ θβθβθsin )() cos()cos cos()(max f l l f ?= 式中β是相位因子β=2π/λ。下标max 表示是方向函数在最大方向上的最大函数值。下面给出了臂长l 与波长λ为不同值时方向函数图形。 0.20.40.60.81.00 30 60 90 120 150 180 210 240 270 300 330 0.00.20.40.60.81.0 图 1 l/λ=0.25时的方向函数 0.250.50 0.751.000 30 60 90 120 150 180 210 240 270 300 330 0.000.25 0.500.751.00 图 2 l/λ=0.5时的方向函数 0.00 0.250.50 0.751.000 30 60 90 120150 180210240 270 300 330 0.250.50 0.751.00 图 4 l/λ=1时的方向函数 0.25 0.500.75 1.000 30 60 90 120 150180 210 240 270 300 330 0.000.25 0.500.751.00 图 3 l/λ=0.75时的方向函数

实验三_半波偶极子

实验三 半波偶极子 一、【实验目的】 1. 以一个简单的半波偶极子天线设计为例,熟悉HFSS 软件分析和设计天线的基本方法及具体操作; 2. 利用HFSS 软件仿真设计了解半波振子天线的结构和工作原理; 3. 通过仿真设计掌握天线的重要指标:回波损耗S11、3D 方向图 二、【实验仪器】 计算机一台、HFSS 软件 三、【实验内容】 1、对半波偶极子进行HFSS 建模 2、仿真计算其特性参数 四、【实验原理】 半波偶极子是工程中常用的一种经典天线,其全长为半个波长。 五、【实验步骤】 本次实验设计一个中心频率为915 MHz 的半波偶极子天线。根据f c /=λ可以计算出915MHz 在真空中对应的波长是328mm ,所以真空中放置的半波偶极子天线的长度为半个波长即164mm 。故天线的初始尺寸设置如下图所示,两侧82mm 长的矩形条为半波偶极子的两个臂,中间3mm*3mm 的矩形面用于模拟RFID 芯片。 1、初始步骤 (1)打开HFSS ,新建一个项目,将project 重命名为较规则的名字,如dipole 。 (2)设置求解类型:点击菜单栏HFSS/SolutionType ,在跳出窗口中选择Driven Modal ,再点击OK 按钮。

(3)为建立的模型设置单位:点击菜单栏3D Modeler/Units,在跳出窗口中选择mm,再点击OK按钮。 2、设计建模 1)创建偶极子天线模型 首先创建一个沿Y轴方向放置的矩形条作为偶极子天线的一个臂,矩形条线宽为3mm,长度为82mm。并将其改为铜黄色。 画好后,使用(视图旋转功能)、(放缩到合适大小)和(拖曳放缩)等功能按钮,将矩形面调整到合适的视图。 然后选中刚才画好的上臂,并利用(绕着坐标轴复制)操作生成偶极子天线的另一个臂。 由于天线是金属材质,需将矩形条设置为理想导体,选中两个矩形条,右键→assign boundary→Perfect E。 2)、设置端口激励 半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于XY平面的矩形面作为激励端口平面,并设置端口平面的激励方式为集总端口激励。该矩形面需要把偶极子天线的两个臂连接起来,长度和宽度均为3mm。 然后设置该矩形面的激励方式为集总端口激励:选中刚刚绘制好的矩形面,右键→assign e xcitation→lumped port,端口阻抗设置为50欧姆。单击None,在其下拉菜单中选择new line,进入设置积分线的状态,分别在矩形面的上下边缘的中点位置(鼠标在边缘移动至中点时会变成三角形)单击鼠标确定积分线的起点和终点。设置好积分线后自动回到“端口设置”对话框,此时None变成Defined。 随后进行端口积分线的设置。此处积分线为矩形下边缘中点到矩形上边缘中点。 3)、设置辐射边界条件 要在仿真软件中计算分析天线的辐射场,必须先设置辐射边界条件。本次设计中采用辐射边界和天线的距离为1/4个工作波长。 这里,我们创建一个长方体,X方向长度为2*82mm,Y方向长度为2*100mm,Z 方向长度为2*82mm。并让其关于原点中心对称。 为了不让空气盒子遮蔽其中的天线,将空气盒子设置为0.9的透明度,并将其材质为设置为air(空气)。

半波偶极子天线的HFSS仿真设计

半波偶极子天线的HFSS仿真设计 一、实验目的: 1.以一个简单的半波偶极子天线设计为例,加深对对称阵子天线的了解; 2.熟悉HFSS软件分析和设计天线的基本方法及具体操作; 3.利用HFSS软件仿真设计以了解半波振子天线的结构和工作原理; 4.通过仿真设计掌握天线的基本参数:频率、方向图、增益等。 二、实验步骤: 本次实验设计一个中心频率为3GHz的半波偶极子天线。天线沿着Z轴放置,中心位于坐标原点,天线材质使用理想导体,总长度为0.48λ,半径为λ/200。天线馈电采用集总端口激励方式,端口距离为0.24mm,辐射边界和天线的距离为λ/4。 1、添加和定义设计变量 参考指导书,在Add Property对话框中定义和添加如下变量: 2、设计建模 1)、创建偶极子天线模型 首先创建一个沿Z轴方向放置的细圆柱体模型作为偶极子天线的一个臂,其底面圆心坐标为(0,0,gap/2),半径为dip_radius,长度为dip_length,材质为理想导体,模型命名为Dipole,如下:

然后通过沿着坐标轴复制操作生成偶极子天线的另一个臂。此时就创建出了偶极子的模型如下:

2)、设置端口激励 半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面,并设置端口平面的激励方式为集总端口激励。该矩形面需要把偶极子天线的两个臂连接起来,因此顶点坐标为(0,-dip_radius,-gap/2),长度和宽度分别为2*dip_radius和gap。如下: 然后设置该矩形面的激励方式为集总端口激励。由之前的理论分析可得,半波偶极子天线的输入阻抗为73.2?,为了达到良好的阻抗匹配,将负载阻抗也设置为73.2 ?。随后进行端口积分线的设置。此处积分线为矩形下边缘中点到矩形上边缘中点。3)、设置辐射边界条件 要在仿真软件中计算分析天线的辐射场,必须先设置辐射边界条件。本次设计中采用辐射边界和天线的距离为1/4个工作波长。这里,我们先创建一个沿着Z轴放置的圆

实验五对称振子天线的设计与仿真

实验五对称振子天线的设计与仿真 、实验目的 1. 设计一个对称振子天线 2. 查看并分析该对称振子天线的反射系数及远场增益方向 、实验设备 装有HFSS 软件的笔记本电脑一台 三、实验原理 1、电流分布 对于从中心馈电的偶极子,其两端开路,故电流为零。工程上通常将其电流分布近似为正弦分布。 假设天线沿z 轴放置,其中心坐标位于坐标原点,如图所示,则长度为l 的偶极子天线的电流分布为:I(z)=Imsink(l-|z|) ,其中Im是波腹电流,k波数。对半波偶极子而言l= λ/4. 则半波偶极子的电流分布,可以写成:I(z)=Imsin (π/2 -kz ) =Imcos ( kz )。 首先明白一点:半波偶极子天线就是对称阵子天线。 2、辐射场和方向图 已知半波偶极子天线上的电流分布,可以利用叠加原理来计算半波偶极子天线的辐射场。 式中,

称为半波偶极子的方向性函数。 3、方向系数: 对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。一臂的导线半径为,长度为I 。两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=21。对称振子的 长度与波长相比拟,本身己可以构成实用天线。在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布,忽略振子损耗。根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心店对称; 超过半波长就会出现反相电流。在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z) ,长度为dz 的电流元件串联而成。利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。 四、实验内容 利用HFSS软件设计一个近似理想导体平面的UHF 对称振子天线。 中心频率为,采用同轴线馈电,并考虑平衡馈电的巴伦结构。最后得到反射系数和二维辐射远场仿真结果。 五、实验步骤 . 建立新工程 了方便建立模型,在Tool>Options>HFSS Options 中讲Duplicate Boundaries with geometry 复选框选中。 2. 将求解类型设置为激励求解类型: (1)在菜单栏中点击HFSS>Solution Type 。 (2)在弹出的Solution Type 窗口中 (a)选择Driven Modal 。 (b)点击OK按钮。 3. 设置模型单位 (1)在菜单栏中点击3D Modeler>Units 。 (2)在设置单位窗口中选择:in 。

RFID偶极子天线设计与仿真

泉州师范学院 毕业论文(设计) 题目 RFID偶极子天线设计与仿真 物理信息工程学院电子信息科学与技术专业 07 级1班学生姓名连劲松学号 070303044 指导教师余燕忠职称副教授 完成日期 2011年4月 教务处制

RFID偶极天线的设计和分析 物理信息工程学院电子信息科学与技术专业 070303044 连劲松 指导教师:余燕忠副教授 【摘要】:RFID偶极天线因其具有结构简单且效率高的优点,且可以设计成适用于全方向通讯的RFID 应用系统,已成为RFID标签天线应用最广泛的天线结构。本文基于Ansoft HFSS平台上,主要对RFID中常用的不同结构的偶极天线进行分析与设计,并且分析影响天线性能的因素,具有很强的实用性。 【关键词】:射频识别;偶极天线;RFID标签

目录 摘要 (1) 0.引言 (3) 1.RFID的发展状况 (3) 1.1发展历史 (3) 1.2国内外研究现状 (4) 2.RFID的理论基础 (4) 2.1RFID的工作原理 (4) 2.2RFID系统中的天线的作用 (5) 3.RFID系统中的天线类型 (5) 3.1线圈天线 (5) 3.2缝隙(微带贴片)天线 (7) 3.3偶极子天线 (7) 4. 本文任务要求 (8) 5.偶极子天线仿真设计与分析 (8) 5.1半波偶极子天线 (8) 5.2弯折偶极子天线 (11) 5.3折合偶极子天线 (15) 5.4变形偶极子天线 (17) 6.影响偶极子天线工作性能的因素 (19) 7.总结 (20) 7.1设计中出现的问题及处理 (20) 7.2设计感想 (20) 参考文献 (21) 致谢 (22)

半波偶极子实验报告

邢台学院 实验报告 课程名称电磁波与天线技术 实验项目 2 偶极子和单极子天线设计授课教师 专业班级 实验时间 学号 学生姓名 系部数学与信息技术学院2015~2016学年度第1学期

●实验学时:4 ●实验目的及要求: 1、掌握偶极子和单极子天线的几个基本参数; 2、使用HFSS设计半波偶极子天线。 3、使用HFSS设计单极子天线。 ●实验环境: 1、Windows操作系统 2、PC连接到Internet 实验容及步骤: 1、新建设计工程。 2、添加和定义设计变量。 3、设计建模。 4、求解设置。 5、设计检查和运行仿真计算。 6、HFSS天线问题的数据后处理。 ●实验结果及体会: 1、建立工程 菜单Project->Insert HFSS Design 2、设置求解模式 菜单HFSS->Solution Type->天线为Driven Modal 3、设置模型尺寸长度单位

菜单Modeler->Units->mm->OK 单位一般设置为毫米mm。 4、添加和定义设计变量。 5、设计建模 1)创建一个沿z轴方向放置的细圆柱体模型作为偶极子天线的一个臂2)通过沿着坐标轴复制,生成偶极子天线的另一个臂。 3)设置端口激励。 4)设置边界条件。

6、求解设置。 7、设计检查和运行仿真计算。 8、HFSS天线问题的数据后处理

1)S11扫频分析: 2)电压驻波比: 3)Smith圆图查看归一化输入阻抗: 4)输入阻抗: m1: m2:

5)方向图: 6)三维方向图: 体会:通过仿真软件对半波偶极子设计仿真,得到符合要求的半波偶极子天线。通过仿真得到了天线的回波损耗,电压驻波比,3D方向增益图等参数。从结果可以看出,当工作波长为100mm时,半波偶极子的谐振点在3Ghz

微带单极子

移动通信期末论文 题目:基于HFSS的微带单极子“美化”天线姓名:欧阳倩 学号:20131060189 序号: 33号 专业:通信工程 指导老师:申东娅 2016年6月30日

基于HFSS的微带单极子“美化”天线 摘要 单极子天线或称为直立天线是垂直于地面或导电平面架设的天线,已广泛应用于长、中、短波及超短波波段。半波偶极子天线和单极子天线是迄今为止应用较广泛的天线。这类天线所需成本极低,而且结构和加工都很简易,是目前为止众多学者的研究方向。本文首先介绍了微带单极子天线的基本原理及其结构,然后利用HFSS12.0仿真软件以矩形为基本图形对微带单极子天线进行了仿真与美化。通过观察S参数图,确定了天线大致的谐振点和带宽,研究天线的性能与激励端口尺寸之间的关系,还研究了天线接地面面积与天线性能之间的关系,并找出最佳参数,设计出符合要求,性能完好的超宽带“美化”天线。 关键词:天线微带单极子天线HFSS美化天线

第一章引言 单极子天线十几年发展迅速,随着其技术的改进,使得单极子天线在实际生活中应用越来越广。 目前,为了满足现在通讯设备,科研和天线的朝向几个方面发展,即,体积小,宽带和多波段操作,只能控制模式的需求。单极子天线因其辐射能力强、波长短、高度低、结构简单、易于使用、携带方便、牢固可靠,常被用于制作无线局域网的天线系统。单极子天线不算天线家族的鼻祖,事实上,它产生于水平天线之后。由于水平天线的长波和中波波段,波长较长,天线的架设高度受到限制,受地面的影响,天线的辐射能力弱,而且在此波段主要采取地面传播,造成水平极化波的衰减远大于垂直极化波。为了解决上面的问题人们在长波与中波波段主要适用垂直地面的直立天线,即单极子天线。 所谓“美化天线”,也可称为“伪装天线”,即在不增大传播损耗的情况下,通过各种手段对天线的外表进行伪装、修饰来达到美化的目的,既美化了城市的视觉环境,也减少了居民对无线电磁环境的恐惧和抵触,同时也延长了天线的使用寿限,保证通信的质量。 第二章 HFSS软件仿真 3.2 仿真部分 3.1 设计要求 在所给附录参考图样中,选择一个图样,或类似、或变形的图样,主要在10GHz 以下频段,设计一个微带单极子“美化”天线。微带厚度 1.6mm, 介电常数 4.4。 3.2原始模型 这个美化天线的初始方向是一个机器人,其身体构造大体分为4个矩形,将四个大矩形连接合并之后进行了简单的修饰加工,总体效果如下:

半波偶极子天线的HFSS

半波偶极子天线的HFSS仿真设计 Xxxxxxxxxxxxxxxxxxx 一、实验目的: 1.以一个简单的半波偶极子天线设计为例,加深对对称阵子天线的了解; 2.熟悉HFSS软件分析和设计天线的基本方法及具体操作; 3.利用HFSS软件仿真设计以了解半波振子天线的结构和工作原理; 4.通过仿真设计掌握天线的基本参数:频率、方向图、增益等。 二、实验步骤: 本次实验设计一个中心频率为3GHz的半波偶极子天线。天线沿着Z轴放置,中心位于坐标原点,天线材质使用理想导体,总长度为0.48λ,半径为λ/200。天线馈电采用集总端口激励方式,端口距离为0.24mm,辐射边界和天线的距离为λ/4。 1、添加和定义设计变量 参考指导书,在Add Property对话框中定义和添加如下变量: 2、设计建模 1)、创建偶极子天线模型 首先创建一个沿Z轴方向放置的细圆柱体模型作为偶极子天线的一个臂,其底面圆心坐标为(0,0,gap/2),半径为dip_radius,长度为dip_length,材质为理想导体,模型命名为Dipole,如下:

然后通过沿着坐标轴复制操作生成偶极子天线的另一个臂。此时就创建出了偶极子的模型如下:

2)、设置端口激励 半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面,并设置端口平面的激励方式为集总端口激励。该矩形面需要把偶极子天线的两个臂连接起来,因此顶点坐标为(0,-dip_radius,-gap/2),长度和宽度分别为2*dip_radius和gap。如下: 然后设置该矩形面的激励方式为集总端口激励。由之前的理论分析可得,半波偶极子天线的输入阻抗为73.2?,为了达到良好的阻抗匹配,将负载阻抗也设置为73.2 ?。随后进行端口积分线的设置。此处积分线为矩形下边缘中点到矩形上边缘中点。 3)、设置辐射边界条件 要在仿真软件中计算分析天线的辐射场,必须先设置辐射边界条件。本次设计中采用辐射边界和天线的距离为1/4个工作波长。这里,我们先创建一个沿着Z轴放置的圆

文献综述 单极子天线设计

成绩: 西安建筑科技大学 毕业设计 (论文)文献综述 院(系):信息与控制工程学院 专业班级:电子0901 毕业设计 : 论文方向 综述题目:基于HFSS的单极子天线设计 学生姓名:戴伟策 学号: 090640133 指导教师:杨放 2012年 3月18日

基于HFSS的单极子天线设计 摘要:单极子天线用来发射和接收固定频率的信号,通常用于短波超短波频段。虽然在平时的测量中都使用宽带天线,但在场地衰减和天线系数的测量中都需要使用偶极子天线和单极子天线。随着近年计算机技术的发展,出现了很多仿真软件,这些工具使工程人员能对设计出来的天线进行仿真。本文介绍了HFSS软件,以及基于HFSS的单极子天线的仿真设计。 关键词:单极子天线;HFSS; 1、前言 天线(antenna)是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。最早的发射天线是H.R.赫兹在1887年为了验证J.C.麦克斯韦根据理论推导所作关于存在电磁波的预言而设计的。它是两个约为30厘米长、位于一直线上的金属杆 其远离的两端分别与两个约40厘米2的正方形金属板相连接 靠近的两端分别连接两个金属球并接到一个感应线圈的两端 利用金属球之间的火花放电来产生振荡。当时 赫兹用的接收天线是单圈金属方形环状天线 根据方环端点之间空隙出现火花来指示收到了信号。G.马可尼是第一个采用大型天线实现远洋通信的 所用的发射天线由30根下垂铜线组成 顶部用水平横线连在一起 横线挂在两个支持塔上。这是人类真正付之实用的第一副天线。自从这副天线产生以后 天线的发展大致分为四个历史时期. ①线天线时期:在无线电获得应用的最初时期 真空管振荡器尚未发明 人们认为波长越长 传播中衰减越小。因此 为了实现远距离通信 所利用的波长都在1000米以上。在这一波段中 显然水平天线是不合适的 因为大地中的镜像电流和天线电流方向相反 天线辐射很小。H.C.波克林顿在1897年建立了线天线的积分方程 证明了细线天线上的电流近似正弦分布。由于数学上的困难 他并未解出这一方程。后来E.海伦利用δ函数源来激励对称天线得到积分方程的解。同时 A.A.皮斯托尔哥尔斯提出了计算线天线阻抗的感应电动势法和二重性原理。R.W.P.金继海伦之后又对线天线作了大量理论研究和计算工作。将对称天线作为边值问题并用分离变量法来求解的有

单极子天线 论文 电子版

单极子天线 电波传播与天线冉强2012302700050 摘要:单极子天线用来发射和接收固定频率的信号,通常用于短波超短波频段。虽然在平时的测量中都使用宽带天线,但在场地衰减和天线系数的测量中都需要使用偶极子天线和单极子天线。随着近年计算机技术的发展,出现了很多仿真软件,这些工具使工程人员能对设计出来的天线进行仿真。本文介绍了FEKO软件,以及基于FEKO的单极子天线的仿真设计。 关键词:单极子天线;FEKO。 引言 1.1单极子天线简介 天线(antenna)是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。 单极子(Monopole)天线或称为直立天线是垂直于地面或导电平面架设的天线,已广泛应用于长、中、短波及超短波波段。其基本原理结构如图1.1 所示,其由长为h 的直立振子和无限大地板组成。地面的影响可用天线的镜像来代替,这样单极子天线就可等效为自由空间内臂长为 2h的对称振子。当然,这样的等效仅对地面上的半空间

等效,原因是地板以下没有辐射场。 图1.1单极子天线及其等效 在长波波段,大地接近理想导电体,电磁能量主要以地波形式在地面和电离层低层所限制的空间内传播;在中波波段,距离较近时也是以地波形式传播。夜间,在距天线一定距离的环形区域中,同时存在强度大体上相近的天波和地波,两者互相干扰从而产生严重的衰落现象。为了防止衰落,应设法降低高仰角( 超过55度) 的辐射。虽然短波以天波传播为主,但对于几十公里的近距离通信,仍主要采用地波传播的方式。 在地波传播中,水平极化波的衰减远大于垂直极化波。因此,使用垂直天线是有利的。对于接近地面的超短波移动通信,要求沿地面方向产生最大辐射。一般情况下,也要采用产生垂直极化场的单极子天线。在长、中波波段,单极子天线的主要问题是天线的高度往往受到限制。 例如工作于波长为1000米的电台,天线架设高度100 米,以波长衡

半波偶极子天线的HFSS

半波偶极子天线的H F S S The Standardization Office was revised on the afternoon of December 13, 2020

半波偶极子天线的HFSS仿真设计 Xxxxxxxxxxxxxxxxxxx 一、实验目的: 1.以一个简单的半波偶极子天线设计为例,加深对对称阵子天线的了解; 2.熟悉HFSS软件分析和设计天线的基本方法及具体操作; 3.利用HFSS软件仿真设计以了解半波振子天线的结构和工作原理; 4.通过仿真设计掌握天线的基本参数:频率、方向图、增益等。 二、实验步骤: 本次实验设计一个中心频率为3GHz的半波偶极子天线。天线沿着Z轴放置,中心位于坐标原点,天线材质使用理想导体,总长度为λ,半径为λ/200。天线馈电采用集总端口激励方式,端口距离为,辐射边界和天线的距离为λ/4。1、添加和定义设计变量 参考指导书,在Add Property对话框中定义和添加如下变量: 2、设计建模 1)、创建偶极子天线模型

首先创建一个沿Z轴方向放置的细圆柱体模型作为偶极子天线的一个臂,其底面圆心坐标为(0,0,gap/2),半径为dip_radius,长度为 dip_length,材质为理想导体,模型命名为Dipole,如下: 然后通过沿着坐标轴复制操作生成偶极子天线的另一个臂。此时就创建出了偶极子的模型如下:

2)、设置端口激励 半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面,并设置端口平面的激励方式为集总端口激励。该矩形面需要把偶极子天线的两个臂连接起来,因此顶点坐标为(0,-dip_radius,-gap/2),长度和宽度分别为2*dip_radius和gap。如下:

1半波偶极子

附录: \ 3D模型 回波损耗(S11)

电压驻波比(VSWR) Smith圆图

输入阻抗 增益方向图

三维增益方向图

半波偶极子天线 一、实验目的 1.熟练使用HFSS软件。 2.掌握半波偶极子天线的原理。 二、实验原理 此次设计为一个中心频率为3GHz的半波偶极子天线,天线沿z轴放置,天线材质使用理想导体,总长度为0.48λ,半径为λ/200.天线馈电采用集总端口激励方式,端口距离为0.24mm,辐射边界和天线的距离为λ/4.模型图如下: 1.电流分布 对于从中心馈电的偶极子天线,其两端为开路,故电流为零。假设将偶极子天线沿z轴放置,其中心位于坐标原点,则长度为l的偶极子天线的电流分布可以表示为: I0是波腹电流;k是波数,且k=2π/λ;l是偶极子天线一个臂的长度。对于半波偶极子天线而言,长度l=λ/4。将参数代入上式可得半波偶极子天线的电流分布为: 下图为分析模型图: 2.辐射场和方向图 已知半波偶极子天线上的电流分布,可以利用叠加原理来计算半波偶极子天线的辐射场。经计算得半波偶极子天线的辐射场为:

加上方向特性,半波偶极天线的远区辐射电场为: 式中:称为半波偶极子天线的方向性函数。 根据远区场的性质,可以求得半波偶极子天线的磁场为: 根据方向性函数可以绘出半波偶极子天线的归一化场强方向图,在H平面(θ=90°)极坐标方向图是一个圆。在E平面(ψ为常数)中,辐射场强会随着角度θ的变化而变化,θ=±90°方向上场强最大,θ=0°和θ=180°方向上场强为零。 3.方向性系数 从半波偶极子天线的方向性函数可以计算出半波偶极子天线的功率方向性系数为: 以分贝表示为: 4.辐射电阻 天线的平均功率密度可以用平均坡印廷矢量表示: 半波偶极子天线的辐射功率则为: R r表示辐射电阻,计算可得辐射电阻为:R r=73.2Ω。 三、实验步骤 1、新建设计工程 a.运行HFSS并新建工程 b.设置求解类型 c.设置模型长度单位 2、添加和定义设计变量

相关文档
最新文档