软件体系结构设计与常用体系结构模型
软件体系结构

软件体系结构引言软件体系结构是指在软件系统中,对系统整体结构进行组织和设计的过程。
一个合理的软件体系结构能够帮助开发者降低系统的复杂度,提高系统的可维护性和可扩展性。
本文将介绍软件体系结构的基本概念和常用的体系结构模式,以及如何进行软件体系结构设计。
软件体系结构的基本概念软件体系结构是一个抽象的概念,用于描述软件系统中各个组件之间的关系和交互方式。
它主要由以下几个基本概念组成:1.组件(Component):组件是软件系统中的一个独立的功能单元,可以由一个或多个模块(Module)组成,实现特定的功能。
2.接口(Interface):接口定义了组件之间的通信方式和消息传递方式。
一个组件可以提供多个接口供其他组件使用。
3.关系(Relationship):组件之间的关系可以是依赖关系(Dependency)、关联关系(Association)、聚合关系(Aggregation)和组合关系(Composition)等。
这些关系将多个组件链接起来,形成一个组织结构。
4.架构风格(Architectural Style):架构风格定义了软件系统的整体结构的模式和约束。
常见的架构风格包括层次结构(Layered)、客户端-服务器(Client-Server)、发布-订阅(Publish-Subscribe)等。
常用的软件体系结构模式在进行软件体系结构设计时,可以借鉴一些常用的体系结构模式。
下面介绍几种常见的模式:1.层次结构(Layered):层次结构将软件系统划分为若干层,每一层负责特定的功能。
上层的组件可以调用下层的组件,反之则不行。
这种模式可以降低系统的复杂度和耦合度,提高系统的可维护性。
2.客户端-服务器(Client-Server):客户端-服务器模式将软件系统划分为客户端和服务器两个部分。
客户端负责与用户进行交互,而服务器负责处理客户端的请求并返回结果。
这种模式可以实现系统的分布式部署,提高系统的可伸缩性。
软件开发中的软件体系结构和设计研究和应用

软件开发中的软件体系结构和设计研究和应用软件开发中的软件体系结构和设计研究和应用1. 引言软件体系结构和设计是软件开发过程中的重要环节,它们起着指导和规范开发过程、减少系统错误和故障的作用。
本文将介绍软件体系结构和设计的概念、研究内容和应用情况。
2. 软件体系结构软件体系结构是软件系统的整体结构和组件之间的关系,它包括了系统的组织方式、组件的职责和关系、系统的行为和性能特性等。
软件体系结构的设计需要考虑系统的可扩展性、灵活性、可维护性、可重用性等方面的要求。
常见的软件体系结构模式有分层结构、客户端-服务器结构、发布订阅结构等。
3. 软件设计软件设计是指根据软件功能和需求对软件进行分析、概念化、详细设计和建模的过程。
在软件设计阶段,开发人员需要确定系统的模块划分、接口设计、算法设计等。
良好的软件设计能够提高系统的可维护性、可理解性和可扩展性。
常用的软件设计方法有结构化设计、面向对象设计和面向服务设计。
4. 软件体系结构和设计的研究内容软件体系结构和设计的研究内容主要包括以下几个方面:(1) 组织和管理软件系统:研究如何将系统划分为若干模块,并定义模块之间的关系和接口。
(2) 软件体系结构模式:研究常用的软件体系结构模式,如面向对象、分布式、并行等,以及它们的特点和适用领域。
(3) 软件设计原则和方法:研究通用的软件设计原则和方法,如高内聚低耦合、单一职责原则、开闭原则等,以及如何根据具体需求选择合适的设计方法。
(4) 软件设计模式:研究常用的软件设计模式,如单例模式、工厂模式、观察者模式等,以及它们的应用场景和使用方法。
(5) 软件质量保证:研究如何通过软件体系结构和设计来保证系统的质量,包括性能、可靠性、安全性等方面的要求。
5. 软件体系结构和设计的应用情况软件体系结构和设计的研究成果在实际软件开发中得到了广泛应用。
它们对于大型软件系统的开发和维护起到了重要的指导作用。
比如,在分布式系统开发中,研究人员通过软件体系结构和设计的方法来解决系统的可扩展性、容错性等问题;在移动应用开发中,研究人员通过软件设计模式和原则来提高应用的用户体验和性能。
10种常见的软件体系架构模式分析以及它们的用法、优缺点

10种常见的软件体系架构模式分析以及它们的用法、优缺点有没有想过要设计多大的企业规模系统?在主要的软件开发开始之前,我们必须选择一个合适的体系结构,它将为我们提供所需的功能和质量属性。
因此,在将它们应用到我们的设计之前,我们应该了解不同的体系结构。
根据维基百科中的定义:
架构模式是一个通用的、可重用的解决方案,用于在给定上下文中的软件体系结构中经常出现的问题。
架构模式与软件设计模式类似,但具有更广泛的范围。
在本文中,将简要地解释以下10种常见的体系架构模式,以及它们的用法、优缺点。
一. 分层模式
这种模式也称为多层体系架构模式。
它可以用来构造可以分解为子任务组的程序,每个子任务都处于一个特定的抽象级别。
每个层都为下一个提供更高层次服务。
一般信息系统中最常见的是如下所列的4层。
•表示层(也称为UI层)•应用层(也称为服务层)•业务逻辑层(也称为领域层)•数据访问层(也称为持久化层)
使用场景:•一般的桌面应用程序•电子商务Web应用程序
二. 客户端-服务器模式
这种模式由两部分组成:一个服务器和多个客户端。
服务器组件将为多个客户端组件提供服务。
客户端从服务器请求服务,服务器为这些客户端提供相关服务。
此外,服务器持续侦听客户机请求。
使用场景:•电子邮件,文件共享和银行等在线应用程序
三. 主从设备模式
这种模式由两方组成;主设备和从设备。
主设备组件在相同的从设备组件中分配工作,并计算最终结果,这些结果是由从设备返回的结果。
使用场景:•在数据库复制中,主数据库被认为是权威的来源,并且要与之同步•在计算。
软件体系结构设计模式

软件体系结构设计模式软件体系结构设计模式是为了解决在软件开发中遇到的常见问题而提出的一种设计思想和方法。
它们是一些被广泛接受和验证的指导原则,可以帮助开发人员设计出易于维护、可扩展、可重用和灵活的软件系统。
本文将介绍几种常见的软件体系结构设计模式。
一、分层模式(Layered Pattern):分层模式是将软件系统划分为若干个层次,每个层次对应不同的功能和责任。
这种模式可以提高系统的可维护性,减少耦合度,使系统更易于扩展和修改。
分层模式一般分为三个层次:表示层、业务逻辑层和数据访问层。
表示层负责与用户交互,展示数据;业务逻辑层负责处理业务逻辑,实现系统功能;数据访问层负责与数据库进行交互,进行数据的读写操作。
二、管道过滤器模式(Pipes and Filters Pattern):管道过滤器模式是一种将数据流按照一定的顺序传递和处理的模式。
数据通过一系列的过滤器,最终产生期望的结果。
管道过滤器模式将任务分解为一系列独立的步骤,每个步骤通过一个单独的过滤器来完成。
每个过滤器只处理特定类型的数据,将结果传递给下一个过滤器。
这种模式可以提高系统的可复用性和可扩展性,便于构建复杂的数据处理流程。
三、客户端-服务器模式(Client-Server Pattern):客户端-服务器模式是一种将软件系统划分为客户端和服务器两个部分的模式。
客户端负责向服务器发送请求,服务器负责处理请求并返回结果。
客户端-服务器模式可以用于实现分布式系统,将系统的负载分散到多台服务器上,提高系统的可扩展性和性能。
同时,通过将客户端和服务器解耦,可以使系统更易于维护和修改。
四、发布-订阅模式(Publish-Subscribe Pattern):发布-订阅模式是一种将消息发送方(发布者)和消息接收方(订阅者)解耦的模式。
发布者将消息发送到消息队列或消息总线,订阅者从中获取感兴趣的消息进行处理。
发布-订阅模式可以实现系统的解耦和异步通信。
体系结构设计模型的表示方法

体系结构设计模型的表示方法体系结构设计模型的表示介绍体系结构设计模型是建立软件系统架构的关键步骤之一。
在设计过程中,如何准确地表示和展示系统的架构是十分重要的。
本文将介绍几种常用的体系结构设计模型的表示方法。
1. UMLUML(统一建模语言)是一种常用的软件工程建模语言,用于表示和描述系统的架构。
UML提供了多种图表,如用例图、类图、组件图、部署图等,能够很好地表示系统的结构和关系。
•用例图:用于描述系统功能和用户之间的交互。
•类图:用于描述系统中的类和它们之间的关系。
•组件图:用于描述系统中的模块和它们的依赖关系。
•部署图:用于描述系统的物理架构和部署方案。
2. 架构图架构图是一种更高层次的表示方法,它能够直观地展示系统的组成部分和它们之间的关系。
常见的架构图包括:•静态结构图:用于表示系统的静态组成,如层次结构图、模块图、包图等。
•动态行为图:用于表示系统的动态行为,如时序图、活动图等。
•部署图:用于描述系统的物理架构和部署方案。
3. 代码注释代码注释是一种简单而直接的体系结构表示方法。
通过在代码中添加注释,可以解释和说明代码的结构和设计思路。
代码注释可以采用各种规范和工具,如Javadoc、XML注释等。
4. 文档文档是另一种常用的体系结构表示方法。
通过编写详细的文档,可以描述系统的组成部分、接口细节、设计原理等,从而帮助人们理解和使用系统。
5. 绘图工具绘图工具是一种辅助工具,可以帮助开发人员创建和编辑各种类型的图表。
常见的绘图工具有Visio、Draw.io、Lucidchart等,它们提供了丰富的图形库和编辑功能,能够高效地创建和修改系统架构图。
总结在体系结构设计过程中,合适的表示方法能够更好地帮助开发人员理解和描述系统的架构。
本文介绍了几种常用的体系结构设计模型的表示方法,包括UML、架构图、代码注释、文档和绘图工具。
开发人员可以根据实际需求选择合适的表示方法,从而更好地设计和开发软件系统。
2024年软考系统架构设计师知识点

2024年软考系统架构设计师是国家职业资格认证中的一项考试,主要考察考生在系统架构设计方面的理论知识和实际能力。
以下是该考试的知识点概述:一、软件工程基础知识:1.软件工程的基本概念、原理和方法;2.软件需求分析和规格说明的方法和工具;3.软件开发过程及其中的各个阶段;4.软件测试和维护的方法和工具。
二、软件体系结构设计:1.软件体系结构的基本概念和原则;2.软件体系结构的组成模块和关系;3.软件体系结构的设计和选择方法;4.常用的软件体系结构风格和模式。
三、软件设计原理:1.软件设计的基本原则和方法;2.面向对象设计的基本概念和方法;3.设计模式的基本概念和应用;4.UML(统一建模语言)的基本语法和建模方法。
四、软件架构设计与分析:1.软件架构的定义和分类;2.软件架构设计的基本原则和方法;3.软件架构的评估和选择方法;4.软件架构的演化和变更管理。
五、服务导向架构(SOA)与云计算:1.服务导向架构的基本概念和原则;2.SOA的设计和实施方法;3.云计算的基本概念和技术;4.云计算与软件架构设计的关系和应用。
六、分布式系统与并行计算:1.分布式系统的基本概念和特点;2.分布式系统的设计原则和方法;3.并行计算的基本概念和原理;4.并行计算与软件架构设计的关系和应用。
七、面向服务的软件设计和开发:1.面向服务的软件开发方法和原则;2. Web服务的基本概念和技术;3.XML(可扩展标记语言)和SOAP(简单对象访问协议)的使用;4. Web服务安全与验证机制。
八、软件质量保证与测试设计:1.软件质量保证的基本概念和原则;2.软件测试的基本概念和方法;3.软件测试的各个阶段和方法;4.软件测试工具的使用和选择。
九、软件配置管理和变更控制:1.软件配置管理的基本概念和原则;2.软件配置项和配置管理工具的使用;3.软件版本控制和追踪;4.软件变更控制和评估。
以上是2024年软考系统架构设计师考试的主要知识点,考生在备考过程中应该对这些知识点进行深入学习和掌握,并结合实际案例进行实践和实际应用。
精品PPT课件--第9章软件体系结构与设计模式

9.1 软件体系结构的基本概念
• 体系结构的重要作用
体系结构的重要作用体现在以下三个方面 : (1)体系结构的表示有助于风险承担者(项目干系
层次结构具有以下优点: (1)支持基于抽象程度递增的系统设计,使设计者可以把
一个复杂系统按递增的步骤进行分解。 (2)支持功能增强,因为每一层至多和相邻的上下层交
互,因此,功能的改变最多影响相邻的内外层。
9.2 典型的体系结构风格
(3)支持复用。只要提供的服务接口定义不变,同一层的 不同实现可以交换使用。这样,就可以定义一组标准 的接口,从而允许各种不同的实现方法。
9.1 软件体系结构的基本概念
2.风格
风格是带有一种倾向性的模式。同一个问题可以有不同 的解决问题的方案或模式,但我们根据经验,通常会强烈 倾向于采用特定的模式,这就是风格。
每种风格描述一种系统范畴,该范畴包括: (1)一组构件(如数据库、计算模块)完成系统需要的某
种功能; (2)一组连接件,它们能使构件间实现“通信”、“合作”
个对象的表示,而不影响其他对象。 (2)设计者可将一些数据存取操作的问题分解成一些交互
的代理程序的集合。
9.2 典型的体系结构风格
其缺点如下: (1)为了使一个对象和另一个对象通过过程调用等进行
交互,必须知道对象的标识。只要一个对象的标识 改变了,就必须修改所有其他明确调用它的对象。 (2)必须修改所有显式调用它的其他对象,并消除由此 带来的一些副作用。例如,如果A使用了对象B,C 也使用了对象B,那么,C对B的使用所造成的对A 的影响可能是料想不到的。
软件体系结构(3):软件体系结构模型

Terminal
Connection Services
Terminal
Connection Services
Controller
Numbering Plan
Controller
Numbering Plan
华南农业大学信息学院
第2章 软件体系结构建模 ◇ 逻辑视图
2.2 “4+1”视图模型
对于规模更大的系统来说,体系结构级中包含数十甚至数百个 类 。
华南农业大学信息学院
第2章 软件体系结构建模 ◇ “4+1”模型概述
2.2 “4+1”视图模型
Kruchten在1995年提出了“4+1”的视图模型。
“4+1”视图模型从5个不同的视角包括逻辑视图、进 程视图、物理视图、开发视图和场景视图来描述软件 体系结构。 每一个视图只关心系统的一个侧面,5个视图结合在 一起才能反映系统的软件体系结构的全部内容。
场景可以看作是那些重要系统活动的抽象,它使四 个视图有机联系起来,从某种意义上说场景是最重要的 需求抽象。在开发体系结构时,它可以帮助设计者找到 体系结构的构件和它们之间的作用关系。同时,也可以 用场景来分析一个特定的视图,或描述不同视图构件间 是如何相互作用的。 场景可以用文本表示,也可以用图形表示。
华南农业大学信息学院
网 络 七 层 协 议 体 系 结 构 图
第2章 软件体系结构建模
2.1 软件体系结构建模概述
◇ 软件体系结构建模的种类
◎ 动态模型
动态模型是对结构或框架模型的补充,研究系统的 “大颗粒”的行为性质。 例如,描述系统的重新配置或演化。动态可以指系统 总体结构的配置、建立或拆除通信通道或计算的过程。
软件体系结构的风格和设计模式等

1.软件体系结构的性质、研究意义和目标是什么?性质:计算机体系结构是程序员所看到的计算机的属性,即概念性结构与功能特性。
强调整体与部分,部分与部分的关系;研究系统构成的方法学;提倡多角度研究系统。
为什么研究软件体系结构?软件系统要满足一定的需求(功能和质量)。
随着软件系统的日益复杂,公众对软件的要求已不局限于功能上的满足,而是更加注重质量。
软件的质量受到软件体系结构的限制,或者说体系结构的选择受到要达到的质量特征的影响。
软件体系结构是软件系统的高层结构,高度抽象,超越算法和数据结构,试图在软件需求与软件设计之间架起一座桥梁,解决结构和需求向实现平坦过渡。
现在软件产生的问题:◎软件成本日益增长◎开发进度难以控制在软件开发过程中,用户需求变化等各种意想不到的情况层出不穷,令软件开发过程很难保证按预定的计划实现,给项目计划和论证工作带来了很大的困难。
◎软件质量差缺乏工程化思想的指导,程序员以自己的想法去代替用户对软件的需求,软件设计带有随意性,很多功能只是程序员的“一厢情愿”而已。
◎软件维护困难特别是在软件使用过程中,原来的开发人员可能因各种原因已经离开原来的开发组织,使得软件几乎不可维护2. 软件体系结构风格是描述某一特定应用领域中系统组织方式的惯用模式。
体系结构风格反映了领域中众多系统所共有的结构和语义特性,并指导如何将各个模块和子系统有效地组织成一个完整的系统。
管道-过滤器风格:缺乏交互性,常用于通信领域和编译器事件驱动风格:易于完成并发多任务,具有良好的交互性,但对计算机系统的控制能力弱,很难共享数据。
分层风格:系统分成许多层,每层为上层服务,同时获取下层的服务。
典型应用是网络协议。
仓库风格:数据单元被共享。
常用于专家系统,如自然语言理解和模式识别。
3.3 客户/服务器风格C/S体系结构定义了工作站如何与服务器相连,以实现数据和应用分布到多个处理机上。
C/S体系结构有三个主要组成部分:数据库服务器、客户应用程序和网络。
软件工程中的软件体系结构与设计模式

软件工程中的软件体系结构与设计模式软件工程是一门涉及软件开发、维护、测试和管理的学科。
在软件工程的实践中,软件体系结构和设计模式是两个重要的概念。
本文将探讨软件体系结构与设计模式在软件工程中的应用和重要性。
一、软件体系结构软件体系结构是指软件系统的整体结构和组成部分之间的关系。
它描述了软件系统的组织方式、模块划分和模块之间的通信方式。
软件体系结构的设计对于软件系统的可维护性、可扩展性和可重用性具有重要影响。
在软件体系结构的设计中,常用的模式包括层次结构、客户端-服务器模式和发布-订阅模式等。
层次结构将软件系统划分为多个层次,每个层次都有特定的功能。
客户端-服务器模式将软件系统划分为客户端和服务器两个部分,客户端发送请求,服务器处理请求并返回结果。
发布-订阅模式中,发布者发布消息,订阅者接收消息。
软件体系结构的设计需要考虑多个因素,如系统的可靠性、性能、安全性和可维护性等。
一个好的软件体系结构应该能够满足系统的需求,并且易于理解和维护。
二、设计模式设计模式是在软件设计中常见问题的解决方案。
它们是经过验证的、可重用的设计思想,可以提高软件的可维护性和可扩展性。
设计模式可以分为三类:创建型模式、结构型模式和行为型模式。
创建型模式用于对象的创建,包括工厂模式、单例模式和原型模式等。
结构型模式用于对象之间的组合,包括适配器模式、装饰器模式和代理模式等。
行为型模式用于对象之间的通信,包括观察者模式、策略模式和命令模式等。
设计模式的应用可以提高软件系统的灵活性和可维护性。
通过使用设计模式,开发人员可以将系统的不同部分解耦,使其更易于修改和扩展。
此外,设计模式还可以提高代码的可读性,减少重复代码的编写。
三、软件体系结构与设计模式的关系软件体系结构和设计模式是紧密相关的概念。
软件体系结构提供了软件系统的整体框架,而设计模式提供了解决具体问题的方法。
在软件体系结构的设计中,设计模式可以用于解决不同层次和模块之间的通信问题。
软件架构设计中的五层体系结构

软件架构设计中的五层体系结构随着计算机技术的不断发展,软件系统的规模越来越大,复杂度也越来越高,因此在软件系统的开发过程中,软件架构的设计显得尤为重要。
软件架构定义了软件系统的组织结构,包括软件系统的组件、模块、接口、数据流等等,是指导软件系统设计和开发的基石。
软件架构设计中的五层体系结构是一种基于分层思想的软件架构设计模式,被广泛应用于大型软件系统。
该体系结构分为五个层次,每个层次负责处理不同的任务和功能,各层之间协同工作,形成一个完整的软件系统。
下面将详细解释五个层次及其功能。
第一层:用户界面层用户界面层是软件系统与用户之间的接口,负责接收用户的输入请求,并向用户展示软件系统的输出信息。
用户界面层通常包括下面两个部分:1.1 用户界面管理器用户界面管理器是负责响应用户界面的请求,生成和显示用户界面的用户界面组件,如按钮、文本框等。
用户界面管理器还可以帮助用户进行数据输入验证,保证数据的完整性和正确性。
1.2 应用程序编程接口应用程序编程接口(API)是用户界面层与下一层——业务逻辑层之间的桥梁,将用户界面的请求传递给业务逻辑层。
API还可以将业务逻辑层返回的数据展示给用户界面层。
第二层:业务逻辑层业务逻辑层是软件系统的核心,负责处理软件系统的业务逻辑,即实现软件系统的功能。
业务逻辑层通常包括下面两个部分:2.1 业务逻辑模型业务逻辑模型是软件系统中实现业务逻辑的代码和算法集合,是业务逻辑层的核心。
业务逻辑模型需要和其他模块进行交互,因此需要和数据库模型进行配合。
2.2 数据访问模型数据访问模型负责与数据库进行通信,将业务逻辑层操作的数据存储到数据库中,并从数据库中读取数据。
数据访问模型还需要对数据库进行管理和维护,保证数据库的稳定性和安全性。
第三层:数据访问层数据访问层是负责管理和维护数据库的模块,其功能是通过数据访问接口向上层提供一定的数据访问功能,同时向下层提供对数据库的操作。
数据访问层通常包括下面两个部分:3.1 数据库访问接口数据库访问接口提供对外的数据访问API,向上层提供数据库的访问功能。
软件体系结构建模的种类

软件体系结构建模的种类: 结构模型, 框架模型, 动态模型, 过程模型,功能模型"4+1"视图模型:1.逻辑视图:逻辑视图主要支持系统的功能需求,即系统提供给最终用户的服务。
2.开发视图:开发视图也称模块视图,主要侧重于软件模块的组织和管理。
3.进程视图:进程视图侧重于系统的运行特性,主要关注一些非功能性的需求。
强调并发性、分布性、系统集成性和容错能力,以及从逻辑视图中的主要抽象如何适合进程结构。
4.物理视图:物理视图主要考虑如何把软件映射到硬件上,它通常要考虑到系统性能、规模、可靠性等。
5.场景:场景可以看作是那些重要系统活动的抽象,它使四个视图有机联系起来,从某种意义上说场景是最重要的需求抽象。
体系结构核心模型由5中元素组成:构件、连接件、配置、端口和角色。
经典的体系结构风格数据流风格:批处理序列;管道/过滤器。
◎调用/返回风格:主程序/子程序;面向对象风格;层次结构。
◎独立构件风格:进程通讯;事件系统。
◎虚拟机风格:解释器;基于规则的系统。
◎仓库风格:数据库系统;超文本系统;黑板系统。
◎其他(如适应性软件系统的体系结构风格、面向Agent的研究、网格计算、Web服务等)过滤器的活动可通过以下三种方式激活:后续构件从过滤器中取出数据;前序构件向过滤器推入数据;过滤器处于活跃状态,不断从前序构件取出、并向后续部件推入数据。
软件体系结构描述方法:图形表达工具、模块内连接语言、基于软构件的系统描述语言、软件体系结构描述语言软件体系结构描述语言ADL是在底层语义模型的支持下,为软件系统的概念体系结构建模提供了具体语法和概念框架。
基于底层语义的工具为体系结构的表示、分析、演化、细化、设计过程等提供支持。
其三个基本元素是:构件、连接件、体系结构配置。
主要的体系结构描述语言有Aesop、MetaH、C2、Rapide、SADL、Unicon和Wright等,尽管它们都描述软件体系结构,却有不同的特点。
软件体系结构总结考点

软件体系结构总结考点1.软件体系结构的概念和原则:-什么是软件体系结构,它与软件设计的区别是什么?-软件体系结构的设计原则是什么?-软件体系结构的目标是什么?2.软件体系结构的重要特性:-模块化:将系统划分为独立的模块,每个模块负责一个特定的功能。
-可扩展性:系统可以方便地进行功能扩展,无需对已有模块进行大规模修改。
-可维护性:系统的模块分离清晰,使得修改和维护变得更加容易。
-可重用性:系统中的模块可以被重复使用,在其他项目中节省开发时间和成本。
-可靠性:系统能够提供高质量和稳定的服务,具有高度的可靠性。
3.常见的软件体系结构模式:-分层体系结构:将系统划分为多个层次,每个层次负责特定的功能。
-客户端-服务器体系结构:将系统划分为客户端和服务器,客户端发起请求,服务器提供服务并返回结果。
-MVC体系结构:将系统划分为模型、视图和控制器三个部分,分别负责数据、界面和逻辑处理。
-微服务体系结构:将系统划分为多个小型的、独立的服务,每个服务负责一个特定的业务功能。
4.软件体系结构的评估和选择:-如何评估软件体系结构的有效性和适用性?-如何选择最适合项目需求和条件的软件体系结构?-软件体系结构的选择与项目规模、团队规模有何关系?5.软件体系结构的设计和实现:-如何进行软件体系结构的设计和建模?-有哪些常用的软件体系结构设计工具和方法?-如何将软件体系结构转化为具体的代码实现?6.软件体系结构的演化和维护:-软件体系结构在系统演化和维护过程中的作用是什么?-如何在系统需求发生变化时进行软件体系结构的演化?-如何进行软件体系结构的重构和迁移?软件体系结构是软件开发过程中的关键环节,对于确保系统的质量和可持续发展至关重要。
掌握软件体系结构的基本原理、常见模式和设计方法,以及评估和演化的技巧,能够帮助开发人员构建出高质量且易于维护和扩展的软件系统。
软件工程的六个常用模型及模型的选择

软件工程的六个常用模型及模型的选择目录软件工程的六个常用模型及模型的选择 (1)软件生命周期: (1)能力成熟度模型(CMM):(5个等级,等级越高软件开发能力越强) (1)瀑布模型: (1)V模型: (2)原型模型(原型化模型、快速原型模型): (3)增量模型: (4)螺旋模型: (5)喷泉模型: (6)如何选择软件过程模型: (6)软件生命周期:问题定义(项目计划报告)→可行性研究(可行性研究报告)→需求分析(需求规格说明书)→总体设计(总体设计说明书)→详细设计(详细设计说明书)→编码阶段(源程序)→测试(软件测试报告)→维护(软件维护说明)能力成熟度模型(CMM):(5个等级,等级越高软件开发能力越强)1、初始级(有能力的人和个人英雄主义,管理无章)2、可重复级(有基本项目管理,有章可循)3、已定义级(过程标准化)4、量化管理级(量化管理)5、优化级(持续的过程改进)瀑布模型:定义:瀑布模型是将软件生存周期的各项活动规定为按固定顺序而连接的若干阶段工作,形如瀑布流水,最终得到软件产品。
模型:软件开发过程与软件生命周期一致,也称经典生命周期模型,实际应用时是带反馈的。
缺点:1、每个阶段的划分固定,阶段之间产生大量的文档,极大的增加了工作量2、开发风险大:线性开发,用户只有等到整个过程将结束时才能看到成果3、早期错误发现晚:错误一般在测试阶段才能发现4、不适应需求变化:不能适应需求不明确和需求变化适应范围:适用于系统需求明确且稳定的、技术成熟、工程管理比较严格的场合,如军工、航天、医疗。
V模型:定义:瀑布模型的变种,由于其模型构图形似字母V,所以又称软件测试的V 模型。
模型:顶端(编码)左边(设计分析(可行性研究→需求分析→总体设计→详细设计→编码))右边(测试(单元测试→系统测试→验收测试→运行维护))缺点:V模型仅仅把测试过程作为在需求分析、系统设计及编码之后的一个阶段,忽视了测试对需求分析,系统设计的验证,需求的满足情况一直到后期的验收测试才被验证。
软件体系结构设计

软件体系结构设计软件体系结构设计是软件开发中至关重要的一步。
它涉及到整个软件系统的框架和结构,决定了软件的可靠性、可拓展性和可维护性。
本文将讨论软件体系结构设计的重要性、常用的软件体系结构模式以及一些设计原则和最佳实践。
一、软件体系结构设计的重要性软件体系结构设计对于软件系统的稳定性和可维护性起着至关重要的作用。
一个好的软件体系结构能够将系统划分为多个独立的模块,每个模块都有明确的职责和接口,便于团队协作和后续的扩展。
同时,良好的软件体系结构还能提高系统的可测试性、可靠性和可维护性,便于解决bug和添加新功能。
二、常用的软件体系结构模式1. 分层结构分层结构是最常见的软件体系结构模式之一。
它将软件系统划分为多个层次,每个层次都有自己的功能和职责。
通常包括表示层、业务逻辑层和数据访问层。
这种模式使得系统各个层之间的依赖性降低,提高了系统的可维护性和可扩展性。
2. 客户端-服务器模式客户端-服务器模式将软件系统的功能划分为客户端和服务器两部分。
客户端负责与用户的交互,而服务器则处理客户端的请求并返回结果。
这种模式使得软件系统的吞吐量和响应时间得到了提高,适用于大规模分布式系统。
3. MVC模式MVC(Model-View-Controller)模式是一种常用的软件体系结构模式。
它将软件系统划分为三个部分:模型(Model)、视图(View)和控制器(Controller)。
模型负责处理数据逻辑,视图负责展示数据给用户,控制器负责调度模型和视图之间的交互。
这种模式降低了代码的耦合性,易于扩展和维护。
三、设计原则和最佳实践1. 单一职责原则每个模块或类应该有且只有一个单一的功能或职责。
这有助于减少代码的复杂性,提高系统的可维护性。
2. 开闭原则软件体系结构应该对扩展开放,对修改关闭。
这意味着在系统需要添加新功能时,不需要修改现有的代码,而是通过扩展已有的模块或添加新的模块来实现。
3. 依赖倒置原则高层模块不应该依赖于低层模块,而是通过抽象来解耦。
软件体系结构知识点概要

软件体系结构知识点概要软件体系结构是指一个软件系统内各个组件之间的关系和组织方式,是软件系统的基础架构,用于定义系统的整体结构以及各个组件的功能和职责。
软件体系结构决定了系统的稳定性、可扩展性、可维护性和可重用性,是软件开发过程中非常重要的一部分。
需求分析阶段是确定软件系统的用途和功能需求,包括对用户需求、系统约束和业务流程等方面的分析。
在需求分析阶段,需要对系统的功能和性能进行明确的规划,对于不同的系统需求,可能需要采用不同的体系结构模式。
架构设计阶段是根据需求分析的结果,选择合适的体系结构模式和技术,进行系统的整体设计。
常用的体系结构模式包括层次结构模式、客户端-服务器模式、发布-订阅模式、管道-过滤器模式等。
在架构设计阶段,需要考虑系统的性能、可靠性、安全性、可扩展性等方面的要求,并根据这些要求进行设计决策。
评审阶段是对架构设计进行评审,确保设计的合理性和可行性。
评审包括对系统的功能、性能、安全性等方面的评价,并对设计的技术和模式进行验证。
评审的目的是发现和解决设计中的问题,减少软件开发过程中的风险。
验证阶段是对已经实现的系统进行测试和验证,确保系统的功能和性能的符合需求。
验证可以采用黑盒测试和白盒测试等方法,验证的结果可以反馈给设计人员,以便进行修正和优化。
在软件体系结构的设计中,还需要考虑到一些重要的设计原则和概念。
首先,模块化原则是指将系统拆分为若干个独立的模块,每个模块具有明确定义的职责和功能。
模块之间通过接口进行通信,实现模块的解耦和独立开发,同时也方便了系统的维护和扩展。
其次,高内聚低耦合是指模块内部的组件之间具有较强的相关性,而模块之间的依赖关系较弱。
高内聚能够提高模块的复用性和可维护性,低耦合能够减少模块之间的依赖和影响,提高系统的灵活性和可扩展性。
另外,分层架构是一种常用的体系结构模式,将系统分解为若干个层次,每个层次完成特定的功能。
分层架构提供了清晰的界面和抽象层,可以降低系统的复杂性,提高系统的可维护性和可扩展性。
八大体系结构模式

八大体系结构模式八大体系结构模式是指在软件工程领域中常用的八种软件系统设计架构模式,它们是:1. 分层架构模式(Layered Architecture):将系统划分为若干层次,每一层都有特定的功能和责任,上层依赖于下层,实现了系统的分离和解耦。
2. 客户端-服务器架构模式(Client-Server Architecture):将系统划分为客户端和服务器两个部分,客户端发送请求,服务器响应并处理请求,实现了逻辑的分布和协作。
3. MVC架构模式(Model-View-Controller Architecture):将系统划分为模型(Model)、视图(View)和控制器(Controller)三个部分,模型负责数据管理,视图负责展示,控制器负责协调模型和视图的交互。
4. 微服务架构模式(Microservices Architecture):将系统划分为一组小型的、独立部署的服务,每个服务独立运行,通过轻量级通信机制进行交互,实现了系统的高内聚和低耦合。
5. 事件驱动架构模式(Event-Driven Architecture):通过事件的产生、传递和处理来驱动系统的运行,各个组件根据事件的发生和变化进行响应,实现了系统的松耦合和灵活性。
6. 领域驱动设计模式(Domain-Driven Design):将系统的核心业务逻辑抽象为领域模型,并基于领域模型进行软件系统的设计与开发,强调对领域知识和业务规则的建模。
7. 服务导向架构模式(Service-Oriented Architecture):将系统划分为一组松耦合的、可重用的服务,通过服务之间的交互来实现系统功能,提高系统的灵活性和可扩展性。
8. 响应式架构模式(Reactive Architecture):根据系统的负载和需求变化,动态地进行资源分配和重新配置,以保证系统的高性能和高可用性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
THREE
详例应用
3
仓库管理系统的软 件体系结构模型
随着企业的规模的扩大,信息管理 对企业的发展起到越来越重要的作 用。某家电零售商为了提高仓库管 理的效率,避免花费大量时间手工 进行库存的盘点、统计,所以要实 现信息化管理仓库库存。所以这就 需要开发一款仓库管理软件来实现 商家库存管理
功能需求:
体系结构设计是设计过程的初始阶段。 表现为设计和需求工程过程之间的桥梁。 通常是与一些系统描述活动同时进行的。 体系结构设计的输出的一个描述就是软件体 系结构。
软件体系结构的相关概念
软件体系结构是一个软件系统的 基本组织,它体现在构件、构件 间的相互关系以及构件与环境的 关系中;它还包括指导系统设计 和进化的原则。
实例-某管理系统的容器体系结构模型
管理模式——中心数据存储 具体项目的管理模式——客户软件
2 分层体系结构模型
组成部分: (1)数据服务层:存储数据和提供基本数据服务。
(2)应用接口层:对应存储过程接口,用来维护服务器中数据的一致性和完整性。
(3)应用层:把用户需求转化为针对特定服务器的基本功能。 (4)用户界面层:唯一与用户的交互点。 特点: 1)层与层之间的相对独立性 相对独立,每一层只与其上面的层打交道,无需了解其他 层的语义模型在分层模型中,用户界面层、应用层、应用接口层和数据服务层。 2)适用于Internet/Intranet环境 应用层完成客户端管理、维持与多个服务器的链 接,负责与数据服务层建立稳定的链接,完成复杂的管理。 3)便于集成管理 在模型中,分布式应用管理程序通过数据传输层与分层模型集成在 一起,成为系统不可分割的一部分。 4)通用性 层分布式模型不仅为开发分布式GIS提供了一个框架,而且有助于更清楚地 理解分布式系统体系结构的本质。
6、基于事件驱动模型--广播模型
在集中式控制模型中,控制决策通常取决于系统的状态 变量值。 事件驱动模型是通过外部产生的事件来驱动系统。 子系统在事件处理器中注册器感兴趣的事件。当事件处 理器检测到事件,查阅事件记录,然后将命令传送给所 有与此事件有关的子系统,子系统收到命令做相应处理。
优缺点
优点: 进化较为简单。新的子系统通过在事件处理器中注册事 件来达到集成。一个子系统可以在不知道其他子系统的 名字和位置的情况下激活其他子系统。(隐式调用)
在模型中,分布式应用管理程序通过数据传输层与分 层模型集成在一起,成为系统不可分割的一部分。 4)通用性
4层分布式模型不仅为开发分布式GIS提供了一个框架,
而且有助于更清楚地理解分布式系统体系结构的本质。
实例-云计算分层体系架构
(1)云客户端——用户界面层 是直接面向客户的人机接口。 (2)云应用——应用接口层 在软件结构上服务器端采用云计算。 (3)云平台——应用层 基于云基础设施,将计算平台或解决方案作为一项服务。 (4)云基础设施——应用层 计算机基础设施的交付使用,典型的表现为一个平台虚拟化 环境。 (5)服务器层——数据服务层 由针对云服务的交付而特别设计的 计算机硬件和计算机软件 组成的。
体系结构设计决策
体系结构设计决策包括对应用类型的决策、系统分布的决策、 所使用的体系结构类型的决策以及对体系结构应该如何记录和 评估的决策
体系结构设计决策
1 对于要开发的系统,是否存在一个一般性的应用体系结构可 以拿来当模板? 2 系统将如何分配到多个处理器上? 3有哪个或哪几个体系结构模式或者风格适合本系统? 4 有哪些基本方法可以用来构成该系统? 5 如何将系统中的结构单元分解为模块? 6 应该使用什么样的策略来控制系统中单元的操作? 7 如何评估体系结构设计? 8 如何记录系统体系结构?
中法计141
第三组
体系结构设计与常 用的体系结构模型
成员:陈晓雅 程茜茜 崔雪 邓祎迪 杜思琦 范珊珊
主要 内容
1 第一部分 体系结构设计
2 第二部分 体系结构模型
3
第三部分 详例应用
ONE
体系结构设计
1
软件设计
软件设计是将软件需求转换为软件 表示的过程,也是一个建模过程, 以一系列迭代的步骤建立不同的视 图来描述系统。
系统分析与设计
首先, 针对不同人员( 如:商场管理员、采购(入库)员、出库员、和仓库 管理员) 应在不同的权限下完成指定的操作, 并能控制库存业务的流程; 再次, 针对库存管理涉及用户较多的特点, 为保证系统的安全性, 系统应提 供灵活的人员权限设置 最后, 系统的设计应在满足库存 管理要求的基础上, 以界面直观, 操作简 单为原则。
1. 容器体系结构模型
组成部分: (1)数据中心:用于表示当前状态的中心数据结构。 (2)客户软件:用于在数据存储中心存储的数据上进行操 作的一些独立的部件组合
特点: 容器体系结构模型是基于一个共享数据库的系统模型,该模 型适合于数据由一个组件产生而有其他组件使用的情形。 体系结构为该类型的系统例子如管理信息系统(MIS)、 CAD系统、CASE工具集、可服用组件库等。
缺点: 子系统不知道是否或什么时候事件将会被处理。当一个 子系统产生一个事件,它不知道哪个子系统与改事件有 关。若多个不同的子系统注册了相同的事件,就会发生 冲突
实例
应用 网络管理系统一般有一个事件服务器,处 理被管理网络和网管系统内部发生的所有 事件。其他的管理工具如故障管理、性能 管理和配置管理等工具,作为事件服务器 的客户,在服务器上注册与自己有关的事 件。当相关事件发生时,相应管理工具的 过程自动被调用。
体系结构模型
软件系统的体系结构要给予特定的体系结构模型
TWO
体系结构模型
2
体系结构模型
一个软件系统是由若干个组成部分,按照 一定的组织结构形式构成的.这个组织结 构形式从概念上就是一个总体性框架,它 表达了软件系统各个组成部分之间的关联 关系以及控制系统设计和进化的一组原则. 软件体系结构技术中研究的首要问题是: 部件的规格定义和体系结构的建模.
软件体系结构并非是可执行的软 件,它是一种设计表示,通过该 表示使得软件体系结构师能够分 析其所完成的设计是否满足软件 需求,以减少软件构造过程中存 在的风险。
体系结构设计步骤
1. 设计准备 2. 确定影响系统设计的 约束因素 3. 确定设计策略 4. 系统分解与设计 5. 撰写体系结构设计文 档 6. 设计评审
软件体系结构设计原则
在大规模软件开发的过程中,软件体系结 构设计起着举足轻重的作用,用它来指导 整个开发过程,可以准确满足需求并充分
提高软件系统的重用性和可维护性.
一个软件系统的体系结构设计的好不好, 可以用合适性、 结构稳定性、可扩展性和可复用性等特 征来评估。
体系结构表示
1. 常用非形式化的方块图来描述体系结构
2. 非形式化的方块图既没有给出系统组件之间的关系类型, 也没有显示出组件可见的外部特性,非常抽象。
3. 有利于不同层次的系统参与人员进行交流与沟通。
每个子系统在图中用一个矩形表示,子系统间的关系用带 箭头的连线表示,关系可能包含数据流,“使用”和“被 使用”关系,或一些其他类型的依赖关系。
体系结构的模式
优缺点
优点: 1、通过按照一定的方式(自顶向下、对象描述、层次分解等)对 问题进行分解,有利于复杂问题的分析和解决 2、支持基于增量式抽象设计,这就允许把一个复杂问题分成一系 列增量的步骤来完成 3、系统功能容易增强。系统可以通过增加或修改模块、对象、层 次的功能来实现系统功能的增强。 4、支持部件的重用。
软件工程师可以在给定的体系结构类型中使用许多种不同的体 系结构风格和模式,每个模式描述了一个系统类别,它包含: 一组完成系统所需功能的构件,一组使构件间通信、协调及合 作的连接件,定义如何集成构件以构成系统的约束条件,使设
计者能够理解 性能方面 2 信息安全性方面 3 系统安全性方面 4 可用性方面 5 可维护性方面
容器体系结构模型的优缺点
• 能高效的共享数据,无需在组件之间进行数据交换。 • 组件一定要与容器的数据模型一致。大量信息都按照一致的数据模型生成。 • 生产数据的组件不需要关心数据如何被其他组件使用。 • 备份、保密性、访问控制、错误回复等活动都是容器管理员的职责,客户
程序主要集中在自己的功能上。不同的组件对这些活动的要求不同,而容 器模型迫使所有的组件使用相同的策略。 • 容器中出现问题会影响整个系统。 • 是系统的静态结构,不能展现系统运行时的组织。
负责管理它组的执行。调用-返回模型(顺序执行)、 管理者模型(并行执行)
2、基于事件的控制:广播模型、中断驱动模型
自上而下的调用,控制始于控制层次的顶层,往往只 有一个控制线程
集中式模型--调用-返回模型
组成系统的部件是各个功能模块、层次或对象,连接器是各个 部件之间的调用关系。
该模型体现的是部件之间调用与被调用的关系,系统有各个部 件通过他们之间的调用与返回方式传递信息构成一个有机的整 体,从而实现系统的功能。 调用与返回模型通常有3种形式:主、子调用模型、面向对象 模型和层次模型。
分层体系结构模型的优缺点
1)层与层之间的相对独立性 相对独立,每一层只与其上面的层打交道,无需了解其
他层的语义模型在分层模型中,用户界面层、应用层、应用 接口层和数据服务层。 2)适用于Internet/Intranet环境
应用层完成客户端管理、维持与多个服务器的链接, 负责与数据服务层建立稳定的链接,完成复杂的管理。 3)便于集成管理
早期采用结构化设计方法实现的面向问题的系统是主、 子调用模型的应用,系统由主程序、子程序构成,并且 子程序集合成模块,这种系统主要体现为由一个主控过 程控制着系统的运行。用于美国军方的A-7E机载系统就 采用了主、子调用结构模型。 面向对象模型: 飞行模拟器系统的设计 层次模型: 典型应用有分层的通信协议,例如:TCP协议
“4+1”视图 模型