空间电压矢量调制SVPWM技术详解
SVPWM的原理讲解

SVPWM的原理讲解SVPWM(Space Vector Pulse Width Modulation)是一种基于空间矢量的脉宽调制技术,用于控制交流电机的三相逆变器。
它在电机控制中广泛应用,具有高效、低失真和高精度的优点。
本文将从原理、工作原理和优点三个方面对SVPWM进行详细介绍。
一、原理SVPWM的基本原理是将三相电压分解为alpha轴和beta轴的两个独立分量,然后根据alpha和beta的大小和相位差计算得到一个空间矢量,最后根据空间矢量的方向和大小来确定控制电压波形。
通过合理的调节控制电压的大小和频率,可以实现对电机的精确控制。
二、工作原理1. 坐标变换:将三相电压转换为alpha轴和beta轴的分量,通过如下公式计算得到alpha和beta:alpha = 2/3*Va - 1/3*Vb - 1/3*Vcbeta = sqrt(3)/3*Vb - sqrt(3)/3*Vc2. 空间矢量计算:根据alpha和beta的大小和相位差计算得到空间矢量。
空间矢量的方向和大小决定了逆变器输出电压的形状和频率。
3.脉宽调制:根据空间矢量的方向和大小来确定脉冲的宽度和频率。
通常,采用时间比较器和斜坡发生器来实现脉冲宽度调制,使得逆变器输出的脉冲宽度能够跟随空间矢量的变化。
4.逆变器控制:将调制好的脉宽信号通过逆变器输出到交流电机。
逆变器通过控制脉冲宽度和频率来改变输出电压的形状和频率,从而实现对电机的精确控制。
三、优点1.高效:SVPWM技术能够将三相电压转换为整数变化的脉宽信号,减少了功率器件的开关次数,提高了逆变器的转换效率。
2.低失真:SVPWM技术能够通过精确控制脉冲宽度和频率来改变输出电压的形状和频率,减小了电机输出的谐波失真,提高了电机的运行效果和负载能力。
3.高精度:SVPWM技术能够实现对电机的精确控制,通过调整输出电压的波形和频率,可以实现电机的恒转矩和恒转速控制,提高了电机的控制精度和稳定性。
SVPWM的原理和法则推导和控制算法详细讲解

SVPWM的原理和法则推导和控制算法详细讲解SVPWM(Space Vector Pulse Width Modulation)是一种三相不对称多电平PWM调制技术。
其原理是将三相电压转换为空间矢量信号,通过调制的方式控制逆变器输出电压,以实现对三相电机的控制。
下面将详细介绍SVPWM的原理、法则推导以及控制算法。
一、原理:SVPWM的原理在于将三相电压分解为两相,即垂直于矢量且相互垂直的两个分量,直流坐标分量和交流坐标分量。
其中,直流坐标分量用于产生直流电压,交流坐标分量用于产生交流电压。
通过对直流和交流坐标的调制,可以生成所需的输出电压。
二、法则推导:1.将三相电压写成直流坐标系下的矢量形式:V_dc = V_d - 0.5 * V_a - 0.5 * V_bV_ac = sqrt(3) * (0.5 * V_a - 0.5 * V_b)2. 空间矢量信号通过电源电压和载波进行调制来生成输出电压。
其中,电源电压表示为空间矢量V。
根据配比原则,V_dc和V_ac分别表示空间矢量V沿直流和交流坐标的分量。
V = V_dc + V_ac3.根据法则推导,导出SVPWM的输出电压:V_u = 1/3 * (2 * V_dc + V_ac)V_v = 1/3 * (-V_dc + V_ac)V_w = 1/3 * (-V_dc - V_ac)三、控制算法:1. 设定目标矢量Vs,将其转换为直流坐标系分量V_dc和交流坐标系分量V_ac。
2.计算空间矢量的模长:V_m = sqrt(V_dc^2 + V_ac^2)3.计算空间矢量与各相电压矢量之间的夹角θ:θ = arctan(V_ac / V_dc)4.计算换向周期T和换相周期T1:T=(2*π*N)/ω_eT1=T/6其中,N为极对数,ω_e为电机的角速度。
5.根据目标矢量和夹角θ,确定目标矢量对应的扇区。
6.根据目标矢量和目标矢量对应的扇区,计算SVPWM的换相角度β和占空比:β=(2*π*N*θ)/3D_u = (V_m * cos(β) / V_dc) + 0.5D_v = (V_m * cos(β - (2 * π / 3)) / V_dc) + 0.5D_w=1-D_u-D_v以上步骤即为SVPWM的控制算法。
空间矢量SVPWM讲解

现实考虑
易于计算机实现
形成开关信号, 控制变换器
挖掘SVPWM优势
数字实现方式
扇区确定
Vγ1>0,则A=1,反之A=0;
V γ 2>0,则B=1,反之B=0;
V γ3 >0,则C=1,反之C=0。
N =A+2B+4C
当N=3时,Uref位于第Ⅰ扇区; 当N=1时,Uref位于第Ⅱ扇区; 当N=5时,Uref 位于第Ⅲ扇区; 当N=4时,Uref 位于第Ⅳ扇区; 当N=6时,Uref 位于第Ⅴ扇区; 当N=2时,Uref 位于第Ⅵ扇区。
当N=3时,Uref位于第Ⅰ扇区; 当N=1时,Uref位于第Ⅱ扇区; 当N=5时,Uref 位于第Ⅲ扇区; 当N=4时,Uref 位于第Ⅳ扇区; 当N=6时,Uref 位于第Ⅴ扇区; 当N=2时,Uref 位于第Ⅵ扇区。
Ⅱ
Ⅲ
Ⅰ
Ⅳ
Ⅵ
Ⅴ
开关矢量时间确定
表Ⅰ 矢量作用时间分配
扇区
Ⅰ
Ⅱ
Ⅲ
Ⅳ
Ⅴ
Ⅵ
N
3
1
5
4
传统PWM技术一般通过将三角载波和
调制函数波比较获得相应脉冲波形
cos(t 30 ) 0 t 60
3 cost
60 t 120
uA
a
c os (t c os (t
150 ) 210 )
120 t 180 180 t 240
3 cost
240 t 300
cos(t 30 )
旋转向量
U UA UB UC
3
U 2
m
(sin
t,
sin
t
2 3
, s in
SVPWM的原理讲解以及应用过程中的推导与计算

SVPWM的原理讲解以及应用过程中的推导与计算SVPWM(空间矢量调制技术),是一种电机调速技术,通过在三相电流中引入一个辅助电流,将三相电流分解为一个基础正弦波电流和一个辅助电流,然后根据基础正弦波电流和辅助电流的大小和相位关系,控制电机输出的磁场方向和大小。
SVPWM可以提高电机的效率和控制精度,并减小电机的振动和噪音。
1.电机模型分析:首先,对电机进行建模和分析。
通过将电机抽象为一个旋转矢量图,分析电机的磁场分布和电流控制。
2.空间矢量图:根据电机模型分析,可以得到电机的矢量图。
矢量图用于描述电机的磁场方向和大小,有助于理解电机的运行原理。
3.矢量控制:根据矢量图,可以控制电机的磁场方向和大小。
通过控制电流矢量的大小和相位关系,可以控制电机的输出磁场。
4.空间矢量调制:SVPWM通过将电流矢量分解为一个基础正弦波电流和一个辅助电流,再根据它们的大小和相位关系,控制电机的输出磁场。
辅助电流可以用来改变电机的输出磁场方向,基础正弦波电流用来控制电机的输出磁场大小。
5.SVPWM计算:为了实现SVPWM,需要对电流进行计算和控制。
首先,根据需要的输出磁场向量,计算出对应的辅助电流和基础正弦波电流。
然后,根据电机的控制策略,计算出实际的电流指令。
在计算辅助电流和基础正弦波电流时,可以采用矢量旋转和空间矢量分解的方法。
通过将输出磁场向量进行数学运算和变换,可以得到电流矢量的大小和相位。
具体的计算过程可以按照以下步骤进行:1.确定需要的输出磁场向量的大小和相位。
2.将输出磁场向量进行矢量旋转和变换,得到一个新的矢量。
矢量旋转和变换的具体方法可以根据电机的控制策略和转子位置来确定。
3.将新的矢量分解为一个基础正弦波电流和一个辅助电流。
辅助电流用于改变输出磁场的方向,基础正弦波电流用于控制输出磁场的大小。
4.根据基础正弦波电流和辅助电流的大小和相位关系,计算出实际的电流指令。
根据电机的控制策略,可以使用速度环、电流环等控制器来计算输出的电流指令。
电压空间矢量PWM(SVPWM)控制技术

高压直流输电(HVDC)
适用于高压直流输电系统的电压调节 和电流控制。
电机控制
用于无刷直流电机(BLDC)、永磁 同步电机(PMSM)等电机的控制。
不间断电源(UPS)
用于不间断电源系统的电压调节和能 量转换。
智能电网
用于智能电网中的分布式电源接入和 能量调度。
电压空间矢量PWM(SVPWM)的特点
高电压输出
高效节能
易于数字化实现
降低谐波干扰
能够实现高电压的输出, 适用于高压直流输电
(HVDC)等应用场景。
通过优化PWM脉冲宽度 和角度,实现更高的电 压输出和更低的损耗。
基于数字信号处理(DSP)等 数字技术,实现SVPWM算法
的快速计算和控制。
通过优化PWM脉冲的形 状和角度,降低对电网
电磁干扰
SVPWM控制技术产生的 电磁干扰较小,对周围环 境的影响较小。
04
电压空间矢量 PWM(SVPWM)控制优 化策略
电压空间矢量分配优化
考虑电机参数
根据电机的具体参数,如电感、 电阻等,优化电压空间矢量的分 配,以提高控制精度和响应速度。
降低谐波影响
通过优化电压空间矢量的分配,降 低PWM控制过程中产生的谐波, 减小对电机和整个系统的负面影响。
电压空间矢量 PWM(SVPWM) 控制技术
目录
• 电压空间矢量PWM(SVPWM)技 术概述
• 电压空间矢量PWM(SVPWM)控 制算法
• 电压空间矢量PWM(SVPWM)控 制性能分析
目录
• 电压空间矢量PWM(SVPWM)控 制优化策略
• 电压空间矢量PWM(SVPWM)控 制技术发展趋势
电流输出精度
SVPWM控制算法详解

SVPWM控制算法详解SVPWM(Space Vector Pulse Width Modulation)是一种基于空间矢量的脉宽调制技术,适用于三相交流电机的控制。
通过调节电机的电压矢量,SVPWM可以实现精确的电机控制。
下面将详细介绍SVPWM控制算法的原理与实现。
SVPWM算法的原理是通过合理的控制电机的电压矢量,使得电机的转矩和速度可以按照设定值精确控制。
SVPWM根据当前电机的运行状态,选择合适的电压矢量进行控制,并且在控制周期内根据设定值不断调整电压矢量的大小和方向。
在空间矢量分解中,SVPWM将三相交流电源的电流分解为两个矢量:直流分量和交流分量。
直流分量表示电流的平均值,而交流分量表示电流的波动部分。
通过对直流分量和交流分量进行分解,SVPWM可以确定电流矢量的大小和方向。
在电压矢量计算中,SVPWM根据电机的状态和设定值,选择合适的电压矢量。
电压矢量有6种组合方式,分别表示正向和反向的60度和120度的电压矢量。
通过选择合适的电压矢量,SVPWM可以确定电机的电压大小和方向。
在脉宽调制中,SVPWM根据电压矢量的大小和方向,通过调节脉冲宽度比例控制电机的输出电压。
脉冲宽度比例是控制电机输出电压关键的参数,通过合理的调整脉冲宽度比例,SVPWM可以实现精确的电机控制。
以三相交流电机为例,SVPWM控制算法可以实现精确的电机转矩和速度控制。
通过选择合适的电压矢量,SVPWM可以实现电机的正反转和转速调节。
同时,SVPWM算法还可以提高电机的效率和性能。
总结起来,SVPWM控制算法是一种基于空间矢量的脉宽调制技术,通过控制电机的电压矢量,实现精确的电机控制。
SVPWM算法通过空间矢量分解、电压矢量计算和脉宽调制等步骤,确定电机的电压大小和方向。
通过合理的控制策略和数学运算,SVPWM可以实现精确的电机转矩和速度控制。
空间电压矢量调制svpwm技术

空间电压矢量调制svpwm技术
《空间电压矢量调制SVPWM技术》是一种可以有效提高电机控制性能的先进技术。
由于其优越的性能,它广泛应用于工业自动化,家庭应用等领域中。
本文首先回顾了空间电压矢量调制SVPWM技术的概念和基本原理,然后探讨了其优越的性能,最后讨论了其发展前景。
空间电压矢量调制SVPWM技术是一种对电机驱动进行控制的先
进技术。
基于有限能量来控制电机,它能够有效调制电机的输出电压,使用最少的能量实现最接近实际电压的结果。
它利用两个非正弦波形,可以通过不同比例的混合形成空间三角形。
它也可以有效地抑制电机电流产生的噪声和振荡,提高电机控制性能。
空间电压矢量调制SVPWM技术具有许多优越的特性。
首先,它可以更有效地控制电机的输出电压,使用最少的能量实现最接近实际电压的结果。
此外,它还可以有效地抑制电机电流产生的噪声和振荡,从而提高电机控制性能。
最后,它可以实现高效率驱动,从而减少整体系统的能量消耗。
空间电压矢量调制SVPWM技术的发展前景非常光明。
在未来的应用中,它将被广泛应用于高性能电机驱动控制,家庭应用,工业自动化等领域,体现出重要的价值和社会效益。
综上所述,空间电压矢量调制SVPWM技术是一种可以有效提高电机控制性能的先进技术。
它具有更有效的电压调制能力,可有效抑制电机电流产生的噪声和振荡,并能够实现高效率驱动,前景非常广阔。
因此,空间电压矢量调制SVPWM技术将有力地帮助我们更好地控制多
功能电机,实现更好的控制性能,为未来的应用奠定坚实的基础。
SVPWM算法原理及详解

SVPWM算法原理及详解SVPWM(Space Vector Pulse Width Modulation)是一种用于交流电机驱动的高级PWM调制技术。
该技术可以有效地提高三相交流电机的转速控制精度,并降低谐波含量,从而实现高效能的电机驱动控制。
SVPWM基于矢量控制的思想,在空间矢量和时域之间建立起一个映射关系,从而决定三相电压的高低电平。
在SVPWM中,将输入电压看做一个旋转矢量,通过改变矢量的方向和幅值,来实现对电机的控制。
具体来说,SVPWM将电压空间矢量分解为两个分量:直流分量和交流分量,并通过控制这两个分量的比例和相位差来实现对电机的控制。
SVPWM的核心思想是将输入电压矢量按照一个特定的频率进行旋转,并根据电机当前的电角度来确定矢量的方向和幅值。
在SVPWM中,输入电压矢量可以分解为六个基本矢量,分别为0度、60度、120度、180度、240度和300度。
这六个基本矢量可以通过变换和组合得到任意方向和幅值的矢量,从而实现对电机的控制。
在SVPWM中,通过改变两个交流分量的比例和相位差来实现对电机的控制。
具体来说,将输入电压矢量分解为一个垂直于交流分量的直流分量和一个平行于交流分量的交流分量。
交流分量决定了电机的转速,而直流分量则决定了电机的转矩。
通过控制这两个分量的比例和相位差,可以实现对电机驱动的精确控制。
SVPWM的优点是具有较好的动态响应性能和高调制精度。
通过调整矢量的方向和幅值,SVPWM可以实现对电机的精确控制,并且可以在不同速度下保持较低的谐波含量。
此外,SVPWM还可以提高电机的功率因数,降低电机的损耗和噪音。
然而,SVPWM也存在一些限制。
首先,SVPWM需要较为复杂的运算,因此对控制器的计算能力要求较高。
其次,SVPWM对电机的参数误差和非线性影响较为敏感,需要进行较多的校正和补偿。
总结来说,SVPWM是一种基于矢量控制思想的高级PWM调制技术,通过改变矢量的方向和幅值来实现对电机的控制。
空间矢量_svpwm_调制_共模电压问题_概述说明以及解释

空间矢量svpwm 调制共模电压问题概述说明以及解释1. 引言1.1 概述本文旨在对空间矢量(SVPWM)调制技术中的共模电压问题进行全面概述和解释。
SVPWM是一种高性能的电力电子调制方法,被广泛应用于各个领域,如交流电机驱动、无线充电系统等。
然而,在SVPWM调制过程中,常常会出现共模电压问题,这会导致系统性能下降、噪声增加甚至设备损坏。
1.2 文章结构本文将分为五个主要部分来讨论空间矢量SVPWM调制中的共模电压问题。
首先,引言部分将介绍文章的背景和目的。
其次,在第二部分将对SVPWM调制原理进行详细介绍,并探讨其实现方法及应用领域。
第三部分将对共模电压问题进行概述,包括该问题的定义和背景以及影响因素的分析和解决方法综述。
接着,在第四部分将深入解释共模电压问题,包括其原因分析、特征和表现形式以及影响因素的详细解释。
最后,在第五部分给出主要观点总结,并展望未来可能的研究方向。
1.3 目的本文的目的是全面阐述和解释空间矢量SVPWM调制中的共模电压问题。
通过对该问题的概述和解释,读者将更加深入地理解共模电压问题对系统性能和设备稳定性的影响,并了解当前已有的解决方法。
同时,本文也旨在为未来相关研究工作提供指导和展望,以便进一步改善SVPWM调制技术在各个应用领域中的表现。
2. 空间矢量svpwm 调制2.1 原理介绍空间矢量PWM (Space Vector PWM, SVPWM) 是一种常用的控制技术,广泛应用于电力电子领域中的交流电机驱动系统。
它通过合理的结合和控制三个相位电压,可以实现对输出电压矢量的精确控制,从而实现对电机转速、转矩等参数的精确调节。
在空间矢量PWM 调制中,将三个相位电压作为一个整体来处理,并将其表示为一个空间矢量。
通过改变空间矢量的大小和方向,可以实现逆变器输出电压的调节。
2.2 实现方法空间矢量PWM 的实现方法主要包括如下几步:步骤一:将输入的参考信号转换为空间矢量;步骤二:根据当前所处的扇区以及参考信号与各个零序位置的关系,确定最接近参考信号方向的两个基本矢量;步骤三:根据最接近参考信号方向的两个基本矢量以及预设比例因子,计算得到最终需要输出的三相电压;步骤四:通过逆变器将计算得到的三相电压转换为供给电机的交流电。
SVPWM电压矢量控制

期望电压空间矢量的合成
按6个有效工
作矢量将电压
矢量空间分为
对称的六个扇
区;每个扇区对
应
3
图527 电压空间矢量的6个扇区
期望电压空间矢量的合成
基本电压空间矢量
u1 u2
的线性组合构成期望的
电压矢量 u s
期望输出电压矢量
与扇区起始边的夹角
图528 期望输出电压矢量的合成
期望电压空间矢量的合成
在一个开关周期 T0
u 2 的作用时间 t 2
u 1 的作用时t1 T0
u1
t2 T0
u2
t1 T0
2
U 3
d
t2 T0
2U 3
d
e
j
3
图528 期望输出电压矢量的合成
期望电压空间矢量的合成
由正弦定理可得
t1 T0
23Ud
sin( )
t2 T0
23Ud
sin
us
sin 2
解得
3
3
t1
2usT0 sin( )
Ud
3
t2
2usT0 sin
Ud
零矢量的作用时间 t0T0t1t2
期望电压空间矢量的合成
两个基本矢量作用时间之和应满足
t1 t22 u s[sin ( ) sin]2 u sc o s( ) 1
T 0 U d 3
U d 6
当
6
t1 t2 T0
输出电压矢量最大幅值
u
、
0
u
7
基本电压空间矢量图
图524 基本电压空间矢量图
正六边形空间旋转磁场
6个有效工作矢量 u1 u 6
SVPWM算法详解_已标注重点_

SVPWM算法详解_已标注重点_Space Vector Pulse Width Modulation (SVPWM)是一种高性能的PWM调制技术,它通过合理地改变电压矢量的幅值和相位来控制三相逆变器输出电压的波形,从而实现对电机的精确控制。
以下是对SVPWM算法的详细解析,并标注了重点。
1.SVPWM基本原理SVPWM算法的基本原理是通过合理地选择电压矢量的幅值和相位,使得逆变器输出的电压矢量合成后的波形尽可能贴近所需的电压波形。
SVPWM将电压空间矢量分为了七个扇区,每个扇区由两个最近邻的标准矢量和一个零矢量组成。
2.SVPWM算法步骤a.确定电机的转速和电压矢量的大小,计算出所需的矢量角度θm。
b.将θm转换为电流矢量的角度θα和θβ,这需要对θm进行正弦和余弦变换。
c.计算出电流矢量的幅值iα和iβ,这需要通过电流的大小和电机的特性得出。
d.将iα和iβ分解为三个分量:iα_d、iβ_d和i0,其中iα_d 和iβ_d是两个正交轴上的电流分量,i0是零序分量。
e.根据电流分量iα_d、iβ_d和i0,可以计算出空间矢量的幅值和相位。
f.计算出三个最近邻的标准矢量和一个零矢量,这些矢量分别位于不同的扇区。
g.根据所需的电流分量和空间矢量的幅值,可以计算出各个标准矢量的幅值和相位。
h.通过插值计算出最终的电压矢量。
3.SVPWM算法的优点a.SVPWM算法实现了绝对最优的波形质量,可实现较低的失真和较高的电机效率。
b.由于SVPWM算法能够使得电机电流和电压保持正弦波形,因此可以减小电机的损耗和噪音。
c.SVPWM算法具有较高的控制精度和响应速度,可以实现准确的电机控制。
d.SVPWM算法可用于控制各种类型的电机,包括交流电机、直流电机和步进电机等。
4.SVPWM算法的应用a.SVPWM算法广泛应用于各种类型的电机控制系统,包括工业驱动、电力系统、电动汽车等领域。
b.SVPWM算法可以用于电机的速度闭环控制、位置闭环控制和扭矩闭环控制等。
svpwm过调制原理

svpwm过调制原理SVPWM过调制原理随着电力电子技术的发展,矢量控制成为交流电机控制中的重要方法之一。
在矢量控制中,SVPWM(空间矢量脉宽调制)是一种常用的调制技术。
本文将介绍SVPWM过调制的原理和应用。
一、SVPWM原理SVPWM是一种基于空间矢量理论的调制技术,它通过调节三相电压的幅值和相位来控制电机的输出。
其基本原理是将三相电压分解为两个正弦波电压和一个直流电压,通过改变正弦波电压的幅值和相位,可以实现对电机的精确控制。
SVPWM的过调制原理是在正常的SVPWM控制基础上,通过增大矢量图中的调制幅度,使得电机输出的电压和电流超过额定值,从而提高电机的输出功率。
具体来说,过调制就是在正常SVPWM的基础上,增加额外的矢量,使得电机的输出矢量可以超过正常范围。
这样一来,电机的输出功率可以得到进一步提升。
二、SVPWM过调制的实现SVPWM过调制的实现主要包括以下几个步骤:1. 选择合适的调制比率:调制比率是指过调制时额外矢量和基本矢量的比值。
通过合理选择调制比率,可以确保过调制时电机的输出电压和电流不超过额定值,从而保证系统的稳定运行。
2. 调整正弦波电压的幅值和相位:在正常SVPWM控制中,通过调整正弦波电压的幅值和相位来控制电机的输出。
在过调制中,通过增加矢量图中的额外矢量,调整正弦波电压的幅值和相位,使得电机的输出电压和电流超过额定值。
3. 监测电机的输出功率:在过调制过程中,需要实时监测电机的输出功率,确保电机的输出不会超过额定值。
如果输出功率超过额定值,需要及时调整调制比率或正弦波电压的幅值和相位。
三、SVPWM过调制的应用SVPWM过调制技术在电力电子领域有着广泛的应用。
主要体现在以下几个方面:1. 电机驱动:SVPWM过调制可以提高电机的输出功率,适用于需要提高电机性能的应用场合,如高速电机驱动、重载电机驱动等。
2. 变频器控制:SVPWM过调制可以提高变频器的输出功率,适用于变频器在高负载条件下的控制。
说明svpwm调制技术的基本原理和推导流程

SVPWM调制技术的基本原理和推导流程一、引言SVPWM(Space Vector Pulse Width Modulation)是一种常用于交流电机驱动系统中的调制技术。
它通过控制电压矢量的合成方式,实现对电机电压的精确控制,从而实现对电机输出转矩和速度的控制。
本文将介绍SVPWM的基本原理和推导流程,并深入探讨其在电机驱动系统中的应用。
二、SVPWM的基本原理SVPWM是一种综合了空间矢量理论和PWM调制原理的调制技术。
其基本原理是将三相电流控制转换为三相电压控制,通过改变电压矢量的合成方式来控制电机的输出。
具体原理如下:1.将三相电流转换为空间矢量:将三相电流变换成一个空间矢量,表示为一个旋转矢量。
该空间矢量由两个独立的矢量分量组成,一个是等幅值的正序矢量,表示直流分量,另一个是相位延迟120°的负序矢量,表示交流分量。
2.合成电压矢量:通过改变正序和负序矢量的合成方式,得到与期望输出转矩和速度匹配的合成电压矢量。
合成电压矢量的方向和幅值决定了所控制的三相电机的输出状态。
3.PWM调制:根据合成电压矢量,使用PWM技术对电机供电进行调制。
将合成电压矢量转换为适合驱动三相电机的高频脉冲信号,控制电机的输出转矩和速度。
三、SVPWM的推导流程下面将以三相三线制逆变器为例,推导SVPWM的具体流程:1. 定义输入信号假设三相三线制逆变器的输入信号为:正向序列的期望电流 (I_{ref}) 和方向(θ_{ref}),负向序列的相位(θ_{ref}-120°) 和(θ_{ref}-240°)。
2. 转换为空间矢量根据输入信号,将正向序列的电流 (I_{ref}) 和相位(θ_{ref}) 转换为空间矢量表示。
正向序列的空间矢量为:[V_{ref_α} = I_{ref} cos(θ_{ref})] [V_{ref_β} = I_{ref} sin(θ_{ref})]负向序列的空间矢量为:[V_{ref_{-β}} = I_{ref} sin(θ_{ref}-120°)] [V_{ref_{-α}} = I_{ref} cos(θ_{ref}-120°)]3. 合成电压矢量将正向序列的空间矢量(V_{ref_α}) 和(V_{ref_β}) 与负向序列的空间矢量(V_{ref_{-β}}) 和 (V_{ref_{-α}}) 进行合成,得到合成电压矢量(V_{ref_1})、(V_{ref_2}) 和 (V_{ref_0}):[V_{ref_1} = V_{ref_α} + V_{ref_{-β}}] [V_{ref_2} = V_{ref_β} +V_{ref_{-α}}] [V_{ref_0} = - V_{ref_1} - V_{ref_2}]4. 对合成电压矢量进行坐标变换将合成电压矢量的α、β 坐标系转换为直角坐标系,得到合成电压矢量的(V_{ref_x}) 和 (V_{ref_y}):[V_{ref_x} = V_{ref_2}] [V_{ref_y} = V_{ref_1} - V_{ref_0}]5. 计算电压矢量的幅值和角度根据合成电压矢量的 (V_{ref_x}) 和 (V_{ref_y}),计算合成电压矢量的幅值(V_{ref}) 和相位角(θ_{ref}):[V_{ref} = ] [θ_{ref} = ()]6. 计算每个扇区的占空比根据合成电压矢量的相位角(θ_{ref}),判断它在哪个扇区内,并计算该扇区的占空比:•扇区1:(0° θ_{ref} < 60°)占空比:–T1:(d = )–T2:(0)–T0:(1 - d)•扇区2:(60° θ_{ref} < 120°)占空比:–T1:(-d = -)–T2:(d + 1)–T0:(0)•扇区3:(120° θ_{ref} < 180°)占空比:–T1:(d = )–T2:(1)–T0:(d + 1)•扇区4:(180° θ_{ref} < 240°)占空比:–T1:$-d = -$–T2:(0)–T0:(1)•扇区5:(240° θ_{ref} < 300°)占空比:–T1:(d = )–T2:(0)–T0:(1 - d)•扇区6:(300° θ_{ref} < 360°)占空比:–T1:(-d = -)–T2:(d + 1)–T0:(0)7. 实现PWM调制根据每个扇区的占空比,使用PWM技术对电机供电进行调制,生成适合电机驱动的高频脉冲信号。
svpwm控制原理

svpwm控制原理SVPWM控制原理。
SVPWM(Space Vector Pulse Width Modulation)是一种现代化的电力电子变流技术,它可以有效地控制交流电机的输出电压和频率,提高电机的运行效率和性能。
本文将介绍SVPWM控制原理及其在电力电子领域的应用。
1. SVPWM基本原理。
SVPWM是一种基于空间矢量的脉冲宽度调制技术,它通过对电压矢量进行合理的选择和组合,实现对交流电机的精确控制。
在SVPWM控制中,电压矢量被分解为两个正弦交流电压和一个直流电压,然后根据电机的控制要求,通过调节这两个正弦交流电压的幅值和相位差,从而实现对电机的精确控制。
2. SVPWM控制步骤。
SVPWM控制一般包括以下几个步骤:(1)电压矢量选择,根据电机的工作状态和控制要求,选择合适的电压矢量。
(2)矢量间接近,通过改变两个正弦交流电压的幅值和相位差,使得电压矢量尽量接近所选的目标矢量。
(3)脉冲宽度调制,根据矢量间接近的结果,计算出对应的脉冲宽度,然后通过PWM技术将脉冲宽度信号转换为实际的控制信号。
(4)输出电压控制,根据脉冲宽度信号,控制逆变器输出的电压矢量,实现对电机的精确控制。
3. SVPWM的优点。
相比传统的PWM技术,SVPWM具有以下几个优点:(1)输出电压波形质量高,SVPWM可以生成接近正弦波的输出电压,减小了电机的谐波失真,提高了电机的运行效率。
(2)电流响应快,SVPWM可以实现对电机电流的快速响应,提高了电机的动态性能和控制精度。
(3)输出功率密度高,SVPWM可以实现对逆变器输出功率的最大利用,提高了电机的功率密度和效率。
4. SVPWM在电力电子领域的应用。
SVPWM技术已经广泛应用于各种类型的交流电机驱动系统中,包括感应电机、永磁同步电机、交流伺服电机等。
同时,SVPWM也被应用于各种类型的逆变器系统中,如风力发电逆变器、光伏逆变器、电动汽车逆变器等。
在这些应用中,SVPWM可以提高系统的稳定性、可靠性和效率,满足不同领域的控制要求。
svpwm原理

svpwm原理SVPWM原理。
SVPWM(Space Vector Pulse Width Modulation),中文名为空间矢量脉宽调制,是一种在电力电子变流器中广泛应用的控制技术。
它通过对三相电压的调制,实现对三相交流电机的精确控制,被广泛应用于工业驱动、风力发电、电动汽车等领域。
本文将对SVPWM的原理进行详细介绍。
SVPWM的原理基于空间矢量调制技术,其核心思想是将三相交流电压转化为一个平面空间矢量,通过对空间矢量的合理控制,实现对三相电机的精确控制。
在SVPWM中,通过对矢量的合理选择和调制,可以实现对输出电压的精确控制,从而实现对电机的精确控制。
SVPWM的原理可以简单地分为三个步骤,矢量构建、矢量选择和PWM生成。
首先,矢量构建阶段是将三相交流电压转化为一个平面空间矢量。
在这个阶段,需要对三相电压进行坐标变换,将其转化为一个平面矢量。
通过对矢量的合理构建,可以得到一个平面矢量图,用来表示三相电压的大小和相位关系。
其次,矢量选择阶段是选择合适的矢量,用来实现对输出电压的精确控制。
在这个阶段,需要根据控制要求,选择合适的矢量,用来实现对输出电压的控制。
通过对矢量的合理选择,可以实现对输出电压的精确控制,从而实现对电机的精确控制。
最后,PWM生成阶段是根据选择的矢量,生成相应的PWM信号,用来驱动电机。
在这个阶段,需要根据选择的矢量,生成相应的PWM信号,通过对PWM信号的合理调制,可以实现对输出电压的精确控制,从而实现对电机的精确控制。
总的来说,SVPWM的原理是通过对三相电压的合理构建、选择和调制,实现对三相电机的精确控制。
通过对空间矢量的合理控制,可以实现对输出电压的精确控制,从而实现对电机的精确控制。
在实际应用中,SVPWM技术具有精度高、噪音低、效率高等优点,被广泛应用于工业驱动、风力发电、电动汽车等领域。
随着电力电子技术的不断发展,SVPWM技术将会得到更广泛的应用和推广,为电力电子领域的发展带来新的机遇和挑战。
空间电压矢量调制SVPWM技术详解

∫ ∫ ∫ ∫ T
0 U ref dt =
U T x
0
xdt
+
U T x + T y
Tx
ydt
+
U d t T
*
Tx +Ty 0
或者等效成下式:
(1-5)
U ref * T = U x * Tx + U y * Ty + U 0 * T0
(1-6)
其中,Uref 为期望电压矢量;T 为采样周期;Tx、Ty、T0 分别为
− 3 Udc
3U dc
11 1
U7
0
0
0
0
0
0
图 1-3 给出了八个基本电压空间矢量的大小和位置
其中非零矢量的幅值相同(模长为 2Udc/3),相邻的矢量间隔 60°,而 两个零矢量幅值为零,位于中心。在每一个扇区,选择相邻的两个电
压矢量以及零矢量,按照伏秒平衡的原则来合成每个扇区内的任意电
压矢量,即:
尽可能避免在负载电流较大的时刻的开关动作,最大限度地减少开关
损耗。
一个开关周期中空间矢量按分时方式发生作用,在时间上构成一
个空间矢量的序列,空间矢量的序列组织方式有多种,按照空间矢量
的对称性分类,可分为两相开关换流与三相开关换流。下面对常用的
序列做分别介绍。
第 6 页 共 19 页
1.2.1 7 段式 SVPWM
我们以减少开关次数为目标,将基本矢量作用顺序的分配原则选
定为:在每次开关状态转换时,只改变其中一相的开关状态。并且对
零矢量在时间上进行了平均分配,以使产生的 PWM 对称,从而有
效地降低 PWM 的谐波分量。当 U4(100)切换至 U0(000)时,只需改 变 A 相上下一对切换开关,若由 U4(100)切换至 U7(111)则需改变 B、C 相上下两对切换开关,增加了一倍的切换损失。因此要改变电
电压空间矢量PWMSVPWM控制技术或称磁链跟踪控制技术课件

电压空间矢量的线性组合
(1)线性组合公式
可根据各段磁链增量的相位求出所需的 作用时间 t1和 t2 。在上图中,可以看出
us
t1 T0
u1
t2 T0
u2
us
cos
jus
s in
(6-49)
(2)相电压合成公式 根据式(6-39)用相电压表示合成电压
空间矢量的定义,把相电压的时间函数和 空间相位分开写,得
u1 存在的时间为 /3,在这段时间以 后,工作状态转为 110,和上面的分析
B uBO’
u2 -uCO’
相似,合成空间矢
量变成图中的 u2 , 它在空间上滞后于
uAO’
A
u1 的相位为 /3 弧 度,存在的时间也
是 /3 。
C
(d)每个周期的六边形合成电压空间矢量
依此类推,随着逆
变器工作状态的切换, 电压空间矢量的幅值
• 电压空间矢量的扇区划分
为了讨论方便起见,可把逆变器的一个 工作周期用6个电压空间矢量划分成6个区 域,称为扇区(Sector),如图所示的Ⅰ、 Ⅱ、…、Ⅵ,每个扇区对应的时间均为/3 。
由于逆变器在各扇区的工作状态都是对 称的,分析一个扇区的方法可以推广到其 他扇区。
• 电压空间矢量的6个扇区
这样,根据各个开关状态的线电压表达式可以推出.代 入式(6-49), 有
us
t1 T0
u1
t2 T0
u2
t1 T0
Ud
t2 T0
Ude jπ
3
U
d
t1 T0
t2 T0
e jπ
3
Ud Tt10
t2 T0
cos π 3
变频调速svpwm技术的原理_算法与应用

变频调速-SVPWM技术的原理、算法与应用引言变频调速(Variable Frequency Drive, VFD)是一种将电机转速与输出频率相匹配的控制技术,广泛应用于工业生产中。
在变频调速技术中,Space Vector Pulse Width Modulation (SVPWM) 是一种常用的调制算法,它能够通过调节电压和频率来实现电机的精确控制。
本文将介绍SVPWM技术的原理、算法及应用。
原理SVPWM技术基于矢量控制原理,通过调整电压的大小和相位来控制电机转速。
其基本原理如下:1.矢量空间分解:将三相电压转换为一个大小和方向均可调节的矢量。
这个矢量可以由相量分解法等转换得到。
2.矢量生成:根据所需的电机状态,通过矢量合成算法生成一个控制电压矢量。
生成的矢量包含了相应的大小和相位信息。
3.矢量调制:将生成的矢量转换为三相电压信号,用于驱动电机。
矢量调制通常采用PWM技术,将矢量电压信号转换为脉冲宽度调制(PulseWidth Modulation, PWM)信号。
4.PWM波形生成:通过对调制后的电压信号进行PWM调制,获得电机驱动所需的波形信号。
常见的PWM调制方法有SVPWM、SPWM等。
算法SVPWM算法是一种将参考矢量与实际电机状态进行比较的控制算法。
它通过将矢量和电机状态比较,并调整控制电压以使其接近所需的矢量,从而控制电机速度。
SVPWM算法的具体步骤如下:1.矢量分解:将输入的三相电压信号转换为矢量表示。
常用的方法有相量分解法、Park变换等。
2.矢量合成:根据所需的电机状态,将矢量合成为一个控制电压矢量。
合成的矢量包含了相应的大小和相位信息。
3.矢量选择:选择最接近合成矢量的有效矢量。
这个有效矢量将作为PWM调制的参考。
4.PWM调制:根据选择的有效矢量进行PWM调制,生成对应的PWM信号用于驱动电机。
SVPWM算法能够实现电机速度的精确控制,并具有响应速度快、效率高等优点,因此被广泛应用于各种工业应用中。
空间矢量脉宽调制 ( SVPWM )

空间矢量脉宽调制(SVPWM)一、空间矢量脉宽调制(SVPWM)定义空间矢量脉宽调制(SVPWM)技术被广泛应用于UPS/EPS、变频器等各类三相PWM逆变电源中。
SVPWM的主要思想是以三相对称正弦波电压供电时三相对称电动机定子理想磁链圆为参考标准,以三相逆变器不同开关模式作适当的切换,从而形成PWM波,以所形成的实际磁链矢量来追踪其准确磁链圆。
传统的SPWM方法从电源的角度出发,以生成一个可调频调压的正弦波电源,而SVPWM方法将逆变系统和异步电机看作一个整体来考虑,模型比较简单,也便于微处理器的实时控制。
空间矢量脉宽调制(SVPWM)二、空间矢量脉宽调制(SVPWM)特点1、在每个小区间虽有多次开关切换,但每次开关切换只涉及一个器件,所以开关损耗小。
2、利用电压空间矢量直接生成三相PWM波,计算简单。
3、逆变器输出线电压基波最大值为直流侧电压,比一般的SPWM逆变器输出电压高15%,具有母线电压利用率高的特点。
三、SVPWM、SPWM、PWM的区别PWM脉冲宽度调制(PWM),晶闸管工作在开关状态,晶闸管被触发导通时,电源电压加到电动机上;晶闸管关断时,直流电源与电动机断开;这样通过改变晶闸管的导通时间(即调占空比ton)就可以调节电机电压,从而进行调速。
对比SVPWM的产生原理可知,SVPWM本身的产生原理与PWM没有任何关系,只是形似。
SPWM正弦波脉宽调制,将正弦半波N等分,把每一等分的正弦曲线与横轴所包围的面积用一个与此面积相等的等高矩形脉冲来替代。
三角波载波信号Ut与一组三相对称的正弦参考电压信号Ura、Urb、Urc比较后,产生的SPWM脉冲序列波Uda、Udb、Udc作为逆变器功率开关器件的驱动控制信号。
逆变器输出电压的基波正是调制时所要求的正弦波,调节正弦波参考信号的幅值和频率就可以调节SPWM逆变器输出电压的幅值和频率。
SVPWM与SPWM的原理和来源有很大不同,但是他们确实殊途同归的。
SVPWM原理详解

SVPWM原理详解Space Vector Pulse Width Modulation(SVPWM),也称为矢量调制_PWM,是一种现代化的调制技术,广泛应用于三相变频器控制中。
SVPWM的原理是基于空间向量的概念,将三相交流电压转化为两个矢量信号,一个是独立的正向矢量(α轴),另一个是与其呈120度相位差的反向矢量(β轴)。
通过改变这两个矢量信号的幅度和位置,可以调节交流电压的大小和频率,从而实现对电机的速度和转矩进行控制。
在SVPWM中,先根据所需输出电压的幅值和相位差,计算出与之对应的矢量信号的幅值和相位。
然后将这些矢量信号与一个参考信号进行比较,得到一个用于调节PWM波形的控制信号。
基于这个控制信号,可以确定每一个PWM周期内不同时刻的占空比,从而控制三相电压输出。
具体来说,SVPWM的实现过程如下:1.确定电压矢量的转换关系:通过逆变器的输出相电压,可以将SVPWM转化为电压矢量。
常用的是三相三线系统,其中每一相电压都可以分解为正向矢量和反向矢量。
2.根据所需的输出电压,计算正向矢量和反向矢量的幅值和相位。
通过之间的线性插值,可以得到实际的矢量幅值和相位差。
3.将这些矢量信号与参考信号进行比较,得到一个控制信号。
控制信号是由两个相位误差组成的,一个是与正向矢量的相位差,另一个是与反向矢量的相位差。
4.通过控制信号,可以确定每个PWM周期内的占空比。
通过改变占空比的大小和位置,可以调节输出电压的大小和频率。
5.在每个PWM周期内,根据占空比的变化,调节三相电压的输出。
根据控制信号和电流反馈,可以采取相应的控制策略,例如电流环、速度环等。
然而,SVPWM也存在一些问题,例如计算复杂、实时性要求高、对硬件要求较高等。
因此,需要根据具体的应用场景和要求,选择适当的PWM 控制技术。
总之,SVPWM是一种基于空间向量的先进调制技术,通过改变矢量信号的幅值和相位,实现对交流电压的控制。
其原理详解包括确定电压矢量转换关系、计算正向矢量和反向矢量、比较矢量信号和参考信号、确定占空比、调节输出电压等步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 SVPWM 法则推导
三相电压给定所合成的电压向量旋转角速度为 ω = 2π f ,旋转 一 周 所 需 的 时 间 为 T = 1 / f ; 若 载 波 频 率 是 fS , 则 频 率 比 为
R = f S / f 。这样将电压旋转平面等 切 割 成 R 个 小 增 量 ,
亦 即 设 定 电 压 向 量 每 次 增 量 的 角 度 是 : g =
电压空间向量在第Ⅰ区的合成与分解
在两相静止参考坐标系(α,β)中, 令 Uref 和 U4 间的夹角是θ, 由正弦定理
第 5 页 共 19 页
可得:
T6 T4 π ⎧ | U | cos θ = | U | + | U | cos ref 4 6 ⎪ Ts Ts 3 ⎪ ⎨ ⎪| U | sin θ = T6 | U | sin π ref 6 ⎪ Ts 3 ⎩
假设 Um 为相电压有效值,f 为电源频率,则有:
⎧U A (t ) = U m cos(θ ) ⎪ ⎨U B (t ) = U m cos(θ − 2π / 3) ⎪U ( t ) = U cos(θ + 2π / 3) m ⎩ C
(1-1)
其中,θ = 2π ft , 则三相电压空间矢量相加的合成空间矢量 U(t) 就可以表示为:
第 2 页 共 19 页
U2(010)、 U3(011)、 U4(100)、 U5(101)、 U6(110)、 和两个零矢量 U0(000)、 U7(111) , 下 面 以 其 中 一 种 开 关 组 合 为 例 分 析 , 假 设
S x ( x = a, b, c) = (100) , 此 时
图 1-1 逆变电路
由于逆变器三相桥臂共有 6 个开关管, 为了研究各相上下桥臂不 同开关组合时逆变器输出的空间电压矢量,特定义开关函数
S x ( x = a, b, c) 为:
⎧1上 桥 臂 导 通 sx = ⎨ ⎩ 0下 桥 臂 导 通
(1-3)
(Sa、 Sb、 Sc)的全部可能组合共有八个, 包括 6 个非零矢量 Ul(001)、
T3 2
T7/2
T7/2
T3/2
T2/2
T0/2
第 7 页 共 19 页
Ts 0 0 0 1 1 0 0 0
Ⅳ区(180°≤θ≤240°)
…0-1-3-7-7-3-1-0…
0
0
1
1
1
1
0
0
0
1
1
1
1
1
1
0
T0/2
T1/2
T3/2
T7/2
T7/2
T3/2
T1/2
T0/2
Ts 0 0 1 1 1 1 0 0
第 4 页 共 19 页
1-3 所示的圆形。所以要产生三相正弦波电压,可以利用以上电压向 量合成的技术,在电压空间向量上,将设定的电压向量由 U4(100)位 置开始,每一次增加一个小增量,每一个小增量设定电压向量可以用 该区中相邻的两个基本非零向量与零电压向量予以合成, 如此所得到 的设定电压向量就等效于一个在电压空间向量平面上平滑旋转的电 压空间向量,从而达到电压空间向量脉宽调制的目的。
dθ = 2π / R = 2π f / f S = 2π TS / T
(1-7)
今假设欲合成的电压向量 Uref 在第Ⅰ区中第一个增量的位置, 如图 1-4 所示,欲用 U4、U6、U0 及 U7 合成,用平均值等效可得:
U ref ∗ TS = U 4 ∗ T4 + U 6 ∗ T6
(1-8)
图 1-4
表 1-1
Sa Sb Sc
开关状态与相电压和线电压的对应关系 线电压 相电压
Uca 0 0 0 Udc Udc Udc UaN 0
2 U dc 3 1 U dc 3 1 − U dc 3 2 − U dc 3 1 − U dc 3
矢量符号
Uab Ubc 0 0 Udc Udc Udc 0 UbN 0
第 6 页 共 19 页
1.2.1 7 段式 SVPWM
我们以减少开关次数为目标, 将基本矢量作用顺序的分配原则选 定为:在每次开关状态转换时,只改变其中一相的开关状态。并且对 零矢量在时间上进行了平均分配,以使产生的 PWM 对称,从而有 效地降低 PWM 的谐波分量。当 U4(100)切换至 U0(000)时,只需改 变 A 相上下一对切换开关,若由 U4(100)切换至 U7(111)则需改变 B、C 相上下两对切换开关,增加了一倍的切换损失。因此要改变电 压向量 U4(100) 、 U2(010) 、 U1(001) 的大小,需配合零电压向量 U0(000),而要改变 U6(110)、U3(011)、U5(100), 需配合零电压向量 U7(111)。这样通过在不同区间内安排不同的开关切换顺序, 就可以 获得对称的输出波形,其它各扇区的开关切换顺序如表 1-2 所示。
∫
T
0
U re f d t =
∫
Tx
0
U xdt +
∫
Tx +T y
Tx
U ydt +
∫
T
Tx +T y
* U0 dt
(1-5)
或者等效成下式:
U ref * T = U x * Tx + U y * T y + U 0 * T0
(1-6)
其中,Uref 为期望电压矢量;T 为采样周期;Tx、Ty、T0 分别为 对应两个非零电压矢量 Ux、Uy 和零电压矢量 U0 在一个采样周期的 作用时间;其中 U0 包括了 U0 和 U7 两个零矢量。式(1-6)的意义是, 矢量 Uref 在 T 时间内所产生的积分效果值和 Ux、Uy、U0 分别在时 间 Tx、Ty、T0 内产生的积分效果相加总和值相同。 由于三相正弦波电压在电压空间向量中合成一个等效的旋转电 压,其旋转速度是输入电源角频率,等效旋转电压的轨迹将是如 图
空间电压矢量调制 SVPWM 技术详解
SVPWM 是近年发展的一种比较新颖的控制方法, 是由三相功率 逆变器的六个功率开关元件组成的特定开关模式产生的脉宽调制波, 能够使输出电流波形尽 可能接近于理想的正弦波形。空间电压矢量 PWM 与传统的正弦 PWM 不同,它是从三相输出电压的整体效果出 发,着眼于如何使电机获得理想圆形磁链轨迹。 SVPWM 技术与 SPWM 相比较,绕组电流波形的谐波成分小,使得电机转矩脉动降 低,旋转磁场更逼近圆形,而且使直流母线电压的利用率有了很大提 高,且更易于实现数字化。下面将对该算法进行详细分析阐述。
Ua U dc Uc Ub N
图 1-2 矢量 U4(100)
⎧U ab = U dc ,U bc = 0,U ca = −U dc ⎪ ⎨U aN − U bN = U dc , U aN − U cN = U d c ⎪U + U + U = 0 bN cN ⎩ aN
(1-4)
求解上述方程可得:UaN=2Ud/3、UbN=-Ud/3、UcN=-Ud /3。同理可 计算出其它各种组合下的空间电压矢量,列表如下:
α轴
(1-9)
β轴
: 因为 |U4|=|U6|=2Udc/3 ,所以可以得到各矢量的状态保持时间为 所以可以得到各矢量的状态保持时间为:
π ⎧ ⎪T4 = mTS sin( − θ ) 3 ⎨ ⎪ ⎩ T6 = mTS sin θ
(1-10)
式中 m 为 SVPWM 调制系数, m = 3 U ref U dc 。(调制比 =调 制波基波峰值/载波基波峰值) 而零电压向量所分配的时间为: T7=T0=(TS-T4-T6)/2 或 T7=(TS-T4-T6) (1-12) (1-11)
Ⅴ区(240°≤θ≤300°)
…0-1-5-7-7-5-1-0…
0
0
0
1
1
0
0
0
0
1
1
1
1
1
1
0
T0/2
T1/2
T5/2
T7/2
T7/2
T5/2
T1/2
T0/2
Ts 0 1 1 1 1 1 1 0
Ⅵ区(300°≤θ≤360°)
…0-4-5-7-7-5-4-0…
0
0
0
1
1
0
0
0
0
0
1
1
1
1
0
0
T0/2
Ⅱ区(60°≤θ≤120°)
…0-2-6-7-7-6-2-0…
0
1
1
1
1
1
1
0
0
0
0
1
1
0
0
0
T0/2
T2/2
T6/2
T7/2
T7/2
T6/2
T2/2
T0/2
Ts 0 0 0 1 1 0 0 0
Ⅲ区(120°≤θ≤180°)
…0-2-3-7-7-3-2-0…
0
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
T0/2
T2/2
0 Udc Udc 0 0 0
第 3 页 共 19 页
1 1
0 1
1 1
U5 U7
Udc 0
0 0
Udc 0
1 U dc 3
2 − U dc 3
1 U dc 3
0
0
0
图 1-3 给出了八个基本电压空间矢量的大小和位置
其中非零矢量的幅值相同 (模长为 2Udc/3),相邻的矢量间隔 60°,而 两个零矢量幅值为零,位于中心。在每一个扇区,选择相邻的两个电 压矢量以及零矢量, 按照伏秒平衡的原则来合成每个扇区内的任意电 压矢量,即: