地震有哪些破坏作用

地震有哪些破坏作用
地震有哪些破坏作用

地震有哪些破坏作用

地震的直接灾害是指由于地震破坏作用(包括)导致房屋、工程结构、物品等物质的破坏,包括以下几方面:

⒈房屋修建在地面,量大面广,是地震袭击的主要对象。房屋坍塌不仅造成巨大的经济损失,而且直接恶果是砸压屋内人员,造成人员伤亡和室内财产破坏损失。

⒉人工建造的基础设施,如交通、电力、通信、供水、排水、燃气、输油、供暖等生命线系统,大坝、灌渠等水利工程等,都是地震破坏的对象,这些结构设施破坏的后果也包括本身的价值和功能丧失两个方面。城镇生命线系统的功能丧失还给救灾带来极大的障碍,加剧地震灾害。

⒊工业设施、设备、装置的破坏显然带来巨大的经济损失,也影响正常的供应和经济发展。

⒋牲畜、车辆等室外财产也遭到地震的破坏。

⒌大震引起的山体滑坡、崩塌等现象还破坏基础设施、农田等,造成林地和农田的损毁。

地震次生灾害大致可分为两大类:

一是社会层面的,如道路破坏导致交通瘫痪、煤气管道破裂形成的火灾、下水道损坏对饮用水源的污染、电讯设施破坏造成的通讯中断,还有瘟疫流行、工厂毒气污染、医院细菌污染或放射性污染等;

二是自然层面的,如滑坡、崩塌落石、泥石流、地裂缝、地面塌陷、砂土液化等次生地质灾害和水灾,发生在深海地区的强烈地震还可引起海啸。

今天

与风荷载相比,地震作用的破坏性更加严重。作为建筑物的根基,当地面发生振颤时,对于建筑物的破坏是可以想象的。与风荷载所不同的是,地震并非是一种直接的力学作用,而是在地面发生位移时,由于建筑物的惯性而形成的与地面的相对运动差,这种不协调就会对于建筑物形成严重的破坏——就像急刹车时,车上的人所形成的情况一样。 地震的形成与危害 地震是由于地壳内部发生错动等地质因素引起的地表振颤,地壳内发生地震的地方是震源,震源上方正对着的地面称为震中。震源垂直向上到地表的距离是震源深度。我们把地震发生在60公里以内的称为浅源地震;60-300公里为中源地震;300公里以上为深源地震;地震的震源深度不同,对于地面的影响也不同,越浅的震源,破坏性越大。目前有记录的最深震源达720公里。 震中及其附近的地方称为震中区,也称极震区,是一次地震发生时破坏力最大的地方。震中到地面上任一点的距离叫震中距离(简称震中

距)。震中距在100公里以内的称为地方震;在1000公里以内称为近震;大于1000公里称为远震。 地震时,在地球内部出现的弹性波叫作地震波。这就像把石子投入水中,水波会向四周一圈一圈地扩散一样。 地震波主要包含纵波和横波。振动方向与传播方向一致的波为纵波(P 波),振动方向与传播方向垂直的波为横波(S波),来自地下的横波能引起地面的剧烈的水平晃动,是地震时造成建筑物破坏的主要原因。 由于纵波在地球内部传播速度大于横波,所以地震时,纵波总是先到达地表,而横波总落后一步。这一点非常重要,使得纵波可以成为具有较大破坏力量的横波的预警。 地震作用发生的时间极短,甚至有人曾统计过,自古以来世界上有记录的大规模破坏性地震所发生的时间总和不超过一个小时。在我国唐山地震、海城地震中,主震所发生的时间不足一分钟,实际上仅仅几十秒钟。然而正是这几十秒钟所产生的地震能量形成了难以想象的破坏后果。 地球上的地震有强有弱。用来衡量地震强度大小的尺度有两种,震级与地震烈度。震级是衡量地震大小的一种度量。每一次地震只有一个震级。它是根据地震时释放能量的多少来划分的,国际通用震级标准称为“里氏震级”。

地震对工程结构的破坏及力学在工 程抗震方面的应用。 陈志丹 (地震科学系0950121班095012121) 【摘要】地震的破坏主要包括对地质环境的破坏和人工结构的破坏。前者主要包括地表破坏、滑坡、崩塌、泥石流等等。后者主要包括各种房屋、构筑物和交通、电力等生命线工程的破坏。本文主要讨论地震对工程结构的破坏。通过对地震发生机制的分析,特别是对强地震动的讨论,大致阐述地震对工程结构的破坏。然后对几种典型的工程结构,如砌体结构、钢筋混凝土结构、框架结构,进行粗略的力学分析,得出其在地震中的受损情况。最后结合现代力学的发展阐述了力学在工程抗震方面的应用。 【关键词】地震波强地震动工程结构工程抗震 1、地震发生机制。 地震是在内动力地质作用下,使地壳岩石之间发生相互作用,当积累起来的地应力超过岩石的承受极限时,岩石脆弱的地方发生突然断裂和错动,使长期积累的能量突然释放出来,并以地震波的形式向四周传播,使地面发生震颤。地震是能量的突然释放,地面的震颤是地震波传播的结果。地

震波按传播方式分为三种类型:纵波、横波和面波。纵波是推进波,地壳中传播速度为5.5~7千米/秒,最先到达震中,又称P波,它使地面发生上下振动,破坏性较弱。横波是剪切波:在地壳中的传播速度为3.2~4.0千米/秒,第二个到达震中,又称S波,它使地面发生前后、左右抖动,破坏性较强。面波又称L波,是由纵波与横波在地表相遇后激发产生的混合波。其波长大、振幅强,只能沿地表面传播,是造成建筑物强烈破坏的主要因素。 2、强地震动的影响。 强地震动是对工程结构有显著影响乃至造成结构破坏的地震动。震害调查和研究表明,强地震动是地震成灾的根本原因之一。强地震动可以通过强震仪进行观测,观测的主要物理量为加速度,能记录地震发生时的地面运动时间过程及结构的地震反映时间过程,为工程地震和结构抗震研究提供基础资料。强地震动主要包括地震动强度、地震动频谱和地震持续时间。表征地震动强度的常用参数是最大峰值或其等效值,如加速度峰值、速度峰值、位移峰值。地震的反映往往不取决于地震动的单个尖锐峰值,但受多种等效峰值的影响,如均方根加速度和有效峰值加速度。速度峰值反映了地震动中频分量的强度,常作为衡量地震动能量的物理量。位移峰值受地震动的低频分量的控制,与地下工程结构的地震

汶川地震中建筑破坏及相关问题讨论“5.12”汶川地震是我国唐山大地震后的又一次毁灭性大地震。此次地震具有以下特点:震级强,达到里氏8.0级;震源浅,深度约14km,属于浅源地震;烈度高,极震区达到11度,震中区域大都在9~11度,远远超过7度的设防烈度;持时长,最长持时接近300s,其中较大峰值的持时亦在120s左右;范围广,地震区断裂带总长300km,灾区面积44 万km2,其中,重灾区12.5万km2;次生灾害多,山体滑坡、塌方、滚石、泥石流等次生灾害造成了极大伤害;损失大,此次地震死亡6.92万人,失踪1.74万人,2314.3万间房屋损坏,652.5万间房屋倒塌,直接经济损失1.1万亿人民币。 此次地震发生后,本课程主讲教师刘伯权教授、叶艳霞副教授等奔赴灾区,参与了抗震救灾的调研工作(如图1、2),做出了一定贡献。 图1 刘伯权副校长在汶川灾区调研图2 建工学院师生赴宝鸡灾区核查灾情 1 地震成因 汶川地震发生在青藏高原东缘龙门山逆冲推覆构造带上,是由于南亚板块(印度板块)向北漂移与亚欧板块(扬子板块为其一部分)碰撞、挤压造成的。青藏高原的隆起源于南亚板块的挤压,而其边缘与扬子板块的挤压则形成了与四川盆地西部平原巨大高差的龙门山脉断裂带,如图3、4。两个板块边缘的断层由后山断裂(汶川2茂县断裂)、主中央断裂(映秀—北川断裂)、前山断裂(灌县—安县断裂)三条相互近于平行的北东向断裂组成,沿着龙门山脉的汶川—北川—青川一线分布,呈北偏东的走向一直沿伸到甘肃陇南和陕西汉中,在主断层周边分布着小的支系断层。 图3 汶川地震板块运动图图4 龙门山断裂带示意图 2建筑物破坏

历年破坏性地震震害特点及 震后建筑破坏规律的研究 摘要:论文主要阐述了地震的基本概念、震害特点和地震分类,着重阐述地震作用时对建筑物的破坏机理。论文以历年地震的资料为分析依据,对震害中建筑物的破坏分为非结构构件破坏和结构构件破坏进行讨论,同时结合在地震中表现良好的建筑的优势特点,最终提出了建筑物的防震减灾措施,并在文末对论文进行了总结。 关键词:地震,震级与烈度,建筑震害,防震减灾 前言 由于地震的特点为:突发性,破坏面积广,区域性强,具有续发性、多发性、灾难性、社会性和救灾艰巨性,使得地震成为危害人累最严重的的自然灾害之一。影响范围最广,震害最为严重的512汶川大地震造成了十余万人死亡,上百万人无家可归,也使国家经济文化的发展遭到重创。在地震频发的近几年,国内外各地质专家、地震研究专家一致认为地震发生的因素是多方面的,但是刘丹教授在自己的一篇文章中提到:造成人员伤亡的不是地震,而建筑物的不抗震是更大级别的地震。因此,提高建筑物的抗震性能才是治标治本的抗震减灾合适途径。 第一章历年地震 1.1地震的概述 地震又称地动、地振动,是地球内部结构发生急剧变化,产生的震波,从而在一定范围内引起地面振动的现象。地震是地球在运动和发展中产生的能量使地壳和地幔上层岩层产生了很大的应力集中,当应力集中超过某处岩石强度极限时,岩石遭到破坏,产生错动,将积累的应变能转化为波动能,形成构造地震。全球每年发生地震约五百五十万次。地震常常造成严重人员伤亡,能引起火灾、水灾、有毒气体泄漏,还可能造成海啸、滑坡、崩塌、地裂缝等次生灾害。 1.2历年地震震害情况分析 地震一旦发生,有时会造成无法想象的后果,尤其是对人们的生命财产安全

<地震工程> 课内容?历史地震回顾,地震烈度及其评定?地震动的观测和数据处理 ?地震动工程特征和地震动衰减?人造地震动和地震动的数值模拟?地基和基础的地震行为 ?地震危险性分析 <地震工程> 课内容?结构地震破坏的基本经验和主要工 程对策 ?抗震设防标准和设计地震动,抗震设计的基本原则和一般要求 ?地震作用、弹性抗震设计谱、非弹性抗震设计谱、分析方法、抗震理论、抗震验算 ●地震易损性 ●基于性态的抗震 ●地震损失估计 1

工程结构地震破坏的基本经验和主要工程对策 2

?地基和基础 ?平面、立面布置 ?防震缝 ?抗震结构体系 ?抗震结构的构件要求 ?抗震结构构件的连接 ?非结构构件 ?材料与施工 3

地基和基础 ?建于性质差别很大地基上或部分采用天然地基、部分采用桩基的,地震中结构遭到的破坏更为严重。 1985年自贡地震时,三层砖混结构的自贡新华印刷厂综合楼,基础穿过填土(原为水沟)座落在基岩上,震后遭到较重的破坏。自贡兴隆坳小学二层砖木结构教学楼,北檐墙埋深1.5—2.0m,置于填土上,南檐墙砌在岩石上,埋深0.5m,建成后不久西北墙角即下沉开裂,地震后除旧有裂缝扩宽外,其它部分也遭到很重破坏。 4

?唐山地震中,天津市宏观烈度为Ⅶ度,由于软土的影响,老旧的非刚性房屋,厂房、框架等自振周期较长的房屋地震反应较大,震害达到8度的程度,而刚性多层砖房的结构反应并未放大,仍然只有7度地震的平均震害程度。 ?在海城地震中,营口市大面积砂土液化,不同结构的震害差异明显,多层砖房相当于8度震害,烟囱相当于9度震害。 ?墨西哥地震中,墨西哥城中10-14层建筑的结构反应最大,破坏和倒塌也最严重。 ?这些震例表明,在选址时,应根据拟建工程的结构特性,通过宏观经验和计算分析来选择使结构地震反应较小的场地;或者说,应根据场地自振特性来布置适宜于建造的结构类型,以求结构的地震反应较小,从而减轻和避免地震的危害。 5

地震力作用下混凝土结构的破坏特点和抗震措施 地震灾害是人类面临的严重自然灾害之一。地震具有突发性的特点,至今可预报性仍然很低。强烈地震常造成人身和财产的巨大损失。我国属地震多发国家,需要考虑抗震设防的地域辽阔,因此研究结构的抗震性能在我国具有充分的必要性。 一、结构在地震下的主要特点 地震以波的形式从震源(地面上的相对位置称震中)向周围快速传播,通过岩土和地基,使建筑物的基础和上部结构产生不规则的往复振动和激烈的变形。结构在地震时发生的相应运动称为地震反应,包括位移、速度、加速度。同时,结构内部发生很大的内力(应力)和变形,当它们超过了材料和构件的各项极限值后,结构将出现各种不同程度的破坏现象,例如混凝土裂缝,钢筋屈服,显著的残余变形,局部的破损,碎块或构件坠落,整体结构倾斜,甚至倒塌等等。 在震中区附近,地面运动的垂直方向振动激烈,且频率高,水平方向振动较弱;距震中较远处,垂直方向的振动衰减快,其加速度峰值约为水平方向加速度峰值的1/2~1/3。因此,对地震区的大部分建筑而言,水平方向的振动是引起结构强烈反应和破坏的主要因素。钢筋混凝土结构在地震作用下受力性能的主要特点有: 1、结构的抗震能力和安全性,不仅取决于构件的(静)承载力,还在很大程度上取决于其变形性能和动力响应。地震时结构上作用的“荷载”是结构反应加速度和质量引起的惯性力,它不像静荷载那样具有确定的数值。变形较大,延性好的结构,能够耗散更多的地震能量,地震的反应就减小,“荷载”小,町能损伤轻而更为安全。相反,静承载力大的结构,可能因为刚度大、重量大、延性差而招致更严重的破坏。 2、屈服后的工作阶段——当发生的地震达到或超出设防烈度时,按照我国现行规范的设计原则和方法,钢筋混凝土结构一般都将出现不同程度的损伤。构件和节点受力较大处普遍出现裂缝,有些宽度较大;部分受拉钢筋屈服,有残余变形;构件表面局部破损剥落等。但结构不致倒塌。 3、“荷载”低周的反复作用——地震时结构在水平方向的往复振动,使结构的内力(主要是弯矩和剪力,有时也有轴力)发生正负交变。由于地震的时间不长且结构具有阻尼,荷载交变的反复次数不多(即低周)。所以,必须研究钢筋混凝土构件在低周交变荷载作用下的滞回特征。 4、变形大——地震时结构有很大变形。例如桥墩的侧向位移等。一方面对结构本身产生不利影响,如柱的二阶(P—A)效应,增大附加弯矩,甚至引起失稳或倾覆,构造缝相邻结构的碰撞等;另一方面造成非结构部件的破损,桥梁上部结构的脱落等破坏。故抗震结构设计时要控制其总变形。

相关主题
相关文档
最新文档