水源井液位流量在线监测监控系统

水源井液位流量在线监测监控系统
水源井液位流量在线监测监控系统

水位远程监测系统方案

水位远程监测系统 方案

水位远程监测系统方案上海智达电子有限公司

目录 一、客户需求....................................................................................2二、方案概述....................................................................................2三、系统组成....................................................................................2 3.1控制中心主站 (3) 3.2通讯网络....................................................................................3 3.3现场主要监测设备 (3) 四、地下水位监测系统主要特点 (4) 五、系统软件功能及特点 (5) 5.1功

能..........................................................................................5 5.2特点..........................................................................................6六、主要硬件设备概述 (9) 6.1G P R S无线通讯设备 (10) 6.2水资源控制器 (11) 6.3水位计 (14) 6.4室外专用监测箱 (16) 6.5开关电源 (17)

远程液位监控系统

远程液位监控系统 已被用于一些时间在自来水厂,泵站和污水处理系统应用到远程水箱水位监测的遥测。在偏僻的地方有无线监控能力是无价的。如果您正在寻找方面的信息,这样一个系统,确保供应商有经验,在主题和能够创建定制的软件,如果需要的话。 由于遥测技术的发展,并成为成本效益,许多其他行业的远程监控开关。尽快将所有水箱水位监测遥控器。 向远程监控,快速移动的一些功能包括: 液位监测 罐区液位监控 液化石油气储罐控制与仪器仪表 液化石油气储罐自动化 液化石油气罐车装货/卸货 驱动程序的控制下交付系统 一个人的油轮装载系统 但应用是无止境的。 切换到遥测等行业的一个有趣的例子是食品行业。为研究提供新的见解中的反式脂肪的烹调油对我们的健康行动,一些食品厂正在向零反式脂肪的烹调油。从操作的角度的变化,似乎无害的,但事实并非如此。零反式脂肪的烹调油生产重型浮球液位监测系统的油脂积累,他们下沉。其后果是非常不准确的水箱水位读数。针对此问题的解决办法是使用水箱水位远程监测系统。在这种情况下,有没有一个浮动的需要;传感器位于顶端的录音通过超声的准确

水平。 然而,另一种应用是在燃料行业的供应商坦克的远程监控。事实上有需要允许优化,这在庞大的储蓄和高效率的交货与不同厂商的完整地图。 远程水平监测工作如何做? 该系统主要有四个要素: 传感器 RTU(远程终端单元) 通讯 遥测软件 看起来,每个业务需要,选择适当的设备简单,可以是一个挑战。 传感器:传感器应用在不同岗位上的功能取决于外部的坦克(典型位置是顶部和底部)。它是能够收集到水箱水位和其他参数,使用超声和霍尔效应等技术方面的信息。传感器带有一个附件系统,通常由电池供电,在一些偏远地区的太阳能发电机添加,以保持电池充电。RTU的远程终端单元收集由传感器捕获的信息,组织和传输信号的通信设计中的中心枢纽。RTU是在标准的系统,也连接到传感器的硬件。使用无线技术的频谱很宽的和最佳的解决方案,将取决于区位条件。从Wi-Fi,卫星,几乎所有的环境有一个工作的解决方案。 通讯:通讯设备在枢纽方面的工作。它通常是一个连接到PC的硬件。这部分设备收集的信息,并在软件界面的帮助下,信号中的信息,我们可以读翻译。通信设备的主要内容之一是频率(多久采取的措施和传输)。高端设备,允许用户选择的设置。 遥测软件:管理软件能够利用通信设备提供的信息,并创建易于理解的象形图像。这种方式,

管道水流量计算公式

管道水流量计算公式 A.已知管的内径12mm,外径14mm,公差直径13mm,求盘管的水流量。压力为城市供水的压力。 计算公式1:1/4∏×管径的平方(毫米单位换算成米单位)×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s) 计算公式2:一般取水的流速1--3米/秒,按1.5米/秒算时: DN=SQRT(4000q/u/3.14) 流量q,流速u,管径DN。开平方SQRT。 其实两个公式是一样的,只是表述不同而已。另外,水流量跟水压也有很大的关系,但是现在我们至少可以计算出大体的水流量来了。 备注:1.DN为Nomial Diameter 公称直径(nominal diameter),又称平均外径(mean outside diameter)。 这是缘自金属管的管璧很薄,管外径与管内径相差无几,所以取管的外径与管的内径之平均值当作管径称呼。 因为单位有公制(mm)及英制(inch)的区分,所以有下列的称呼方法。 1. 以公制(mm)为基准,称 DN (metric unit) 2. 以英制(inch)为基准,称NB(inch unit) 3. DN (nominal diameter) NB (nominal bore) OD (outside diameter) 4. 【例】 镀锌钢管DN50,sch 20 镀锌钢管NB2”,sch 20 5. 外径与DN,NB的关系如下: ------DN(mm)--------NB(inch)-------OD(mm) 15-------------- 1/2--------------21.3 20--------------3/4 --------------26.7 25-------------- 1 ----------------33.4 32-------------- 1 1/4 -----------42.2 40-------------- 1 1/2 -----------48.3 50-------------- 2 -----------60.3 65-------------- 2 1/2 -----------73.0 80-------------- 3 -----------88.9 100-------------- 4 ------------114.3 125-------------- 5 ------------139.8 B.常用给水管材如下:

水文地质钻孔抽水试验主要步骤演示教学

第一步:抽水试验孔点位的确定 凡是有基坑开挖的区域都要进行抽水试验,通过抽水试验得到水文地质参数,为基坑支护设计及 基坑降水设计提供参数。 抽水试验类型的确定,为求得含水层的渗透系数和抽水降落漏斗的影响范围,应用多孔抽水试验 (一个主孔,三个观测孔) 主孔位置的确定,一个是要考虑基坑开挖的位置,另外一个是要考虑含水层的厚度,如果含水层 厚度太薄(这个需要结合以前的勘察资料来确定,参考),那就要另外选择主孔的位置了。 第二步:水文孔地质勘查 查明主抽水孔的地层分布,查明含水层厚度及起止深度,孔深的确定是要将含水层(砂层)打穿,以本工程为例,含水层主要是⑩1-3层的砂,那么在打地质勘察孔的时候就要将该层砂打穿,进入 下面粘土层5m左右。 根据含水层的厚度确定观测孔的位置。首先是观测孔走向的问题,当布置一条观测线(三个观测 孔在一条观测线上)时,观测线要垂直于地下水流向布置。以本工程为例一般是南北走向布置。 观测孔距主孔的距离,根据冶金工业水文地质勘查规范,“要求第一个观测孔距主孔的距离应该避开三维流的影响”(大约是1.6倍的含水层厚度)第二个观测孔距第一个观测孔的距离是1.6倍的含水层厚度,第三个观测孔距主孔的距离不宜太远,要保证在主孔降水的同时,观测孔的水 位也有下降,本工程基本都控制在50-80m的距离。 确定了观测孔的位置后要分别进行地质勘查,查明地层的分布,控制观测孔孔深的条件和主孔的 相同。 第三步:材料的准备 在抽水试验过程中涉及的材料主要有主孔井管(需订做)、观测孔井管(包括实管和虑管)、滤料(要考虑滤料的级配问题,砂不能太细也不能太粗,一开始搞的时候没有经验,滤料用的是像大豆大小的均匀石子,这样就没有起到滤料的作用)、粘土(起隔水作用)、滤网、水泵(要结合承压水含水层的厚度及含水量确定泵的功率,本工程采用175QJ-20型深井潜水泵进行抽水)、电测水位仪(实际上就是万用电表改装的)、发电机(注意功率的选择,不要太大了,那样很不合算的,我们做第一组的时候,一天油费都得1000块,后来换成小了功率的了)、水箱(测流 量用,当然最理想的还是用堰箱,截面有梯形的、矩形的等)、水管接头(调出水和回水用的)。 详细的说一下主抽水孔井管的制作,我们项目用的抽水孔井管直径219mm,壁厚4mm,上部为实管,中间为过滤器,过滤器下部为长1.0m-2.0m沉淀管。上部实管的长度(从过滤器顶端一直到高出地面30公分左右都是实管)和过滤器(过滤器的长度和含水层厚度相同)的长度要根据主孔的地质勘查资料来确定。比如主孔的地层如下:0-5.6m为粘性素填土、5.6-8.7m为砂性素填土(透镜体)、8.7-9.8m为粘土、9.8-15.1m为⑩1-3含粘性土中粗砂(这一层就为承压水含水层)、15.1m-17.6m为粘土,根据上述地层,井管的尺寸为实管(0.3m+9.8m)、虑管(15.1-9.8m=5.3m)、

基于MCGS组态软件的PID液位控制

2008年8月第14卷第3期 安庆师范学院学报(自然科学版) Journal of Anqing Teachers College (Natural Science Edition )Aug.2008Vol.14No.3基于MCGS 组态软件的PID 液位控制 吴文进,张 杰 (安庆师范学院物理与电气工程学院,安徽安庆246133) 摘 要:以T HJ -2高级过程控制实验装置为基础,采用串级PID 控制方法设计建立了双容水箱的数学模型,构成 了以上水箱液位为副参数、下水箱液位为主参数的液位串级控制系统,在组态软件MCGS 中进行了实现,实验测试结果 表明,系统实现了对过程参数的无稳态误差控制,具有良好的稳态性能和动态性能。 关键词:液位;串级控制;PID 控制;组态软件 中图分类号:TP273 文献标识码:A 文章编号:1007-4260(2008)03-0050- 04 图1 双容水箱 0 引言 液位控制问题是工业生产过程中的一类常见问题,例如在饮料、食品加工、溶液过滤、化工生产等多种行业的生产加工过程中都需要对液位进行适当的控制。通过液位的检测与控制,可以了解容器中的原料 半成品或成品的数量,以便调节容器内的输入输出物料的平衡,保证生产过程中各环节的物料搭配得当[1]。通过控制计算机可以不断监控生产的运行过程,即时显示容器的液位,保证产品的质量和数量。本文将以T HJ -2高级过程控制实验装置为基础,采用串级PID 控制方法来设计液位控制方案,并利用MC GS 组态软件来实现计算机监控,使控制系统具有良好的稳态性能和动态性能。 1 被控对象建模 图1是两个串联单容水箱构成的双容 水箱,其输入量为调节阀1产生的阀门开 度变化△u ,而输出量为第二个水箱的液 位增量△h 2。文献[2,3]中详细推出了双 容水箱的传递函数: G (S )= △H 2(S )△U (S )=K T 1T 2S 2+(T 1+T 2)S +1=K 13K 2 (T 1s +1)(T 2s +1)(1)其中K 1和K 2为两个水箱的传递系数。 设计中通过实验方法测定被控对象上水箱和下水箱在输入阶跃信号后的液位响应曲线和相关参数。使用MA TL AB 软件对实验数据进行处理,根据最小二乘法原理对响应曲线进行最佳拟合,得到其多项式的表达式,在MA TL AB 的Workspace 中可以查看到上水箱的响应曲线拟合函数为: y =-0.0000000019246t 4+0.0000024978t 3-0.0011930t 2+0.25874t +0.14011(2) 下水箱的响应曲线拟合函数为:y =-0.000000000009974t 4+0.000000049862t 3-0.00010593t 2+0.10967t -0.29475 (3)对于上水箱,t 一次项的系数为0.25874,即函数在零点处(t =0)的切线斜率为k =0.25874。利用切线法,算出传递函数,其开环传递函数为: 3收稿日期:2007-09-14 作者简介:吴文进,男,安徽安庆人,安庆师范学院物理与电气工程学院讲师,硕士。

水库水位监测系统

水库水位监测系统 一、系统概述 水库水位监测系统适用于水利管理部门远程监测水库的水位、降雨量等实时数据,同时支持远程图像监控,唐山平升水库水位监测系统为保障水库的适度蓄水和安全度汛提供了准确、及时的现场信息。 水库水位监测系统做到了水库水雨情的实时监测、实现了水库的信息化管理,在保护人民生命、财产安全方面发挥了重大作用。 二、系统拓扑图 DATA-9201 DATA-9201

三、系统特点: ●《水文监测数据通信规约(SL651-2014)》 ●《四川省水文测报系统技术规约(SCSW008-2011)》 ●《特殊区域水文、水资源数据安全采集系统RTU追加测试》 ●《水文自动测报系统设备遥测终端机(SL 180-2015)》 ●全国工业产品生产许可证 ●《水文实时监测管理系统》软件著作权证书 ●《水文实时监测管理系统》软件产品登记证书 四、系统功能 ●水库分布位置、现场设备运行状态。 ●水位、降雨量、设备电池电压等实时数据。 ● GPRS/CDMA通信时,支持定时、越限或远程手动拍照。 ●光纤/ADSL/3G/4G通信时,支持视频实时监控。 ●水位/降雨量超限或现场设备故障时,自动报警 ●自动向责任人手机发送报警短信。 ●自动统计水位、降雨量的时、日、月、年数据报表。 ●自动生成水位、降雨量、电池电压等过程分析曲线。 ●监测中心服务器和现场终端双向存储历史数据。 ●现场终端可存储不少于一年的历史数据记录。

五、水库水位监测系统现场展示

水库水位监测终端 水库水位监测终端DATA-9201 一、产品特点 ◆通过国家水利部“水文监测数据传输规约(SL651-2014)、水文遥测终端机(SL 180-2015)、特殊区域水文/水资源数据安全采集系统RTU追加测试”等权威检测;获得“全国工业产品生产许可证”。 ◆核心监测设备选用DATA-6311型低功耗测控终端,GPRS实时在线平均电流≤10mA,功耗仅为同类产品的1/10,大大减少太阳能供电设备成本并降低施工难度。 ◆数据传输误码率:≤10-6 。 ◆通过对输入输出引线采取多级隔离、在安装时外配避雷针等多种措施,最大限度避免雷击对设备的损坏。 二、产品功能 ◆实时采集水库水位、降雨量和现场设备电池电压、运行状态、箱门开关状态等信息,并可扩展闸位、水质、流量等监测功能。 ◆现场显示监测数据,支持人工置数,支持历史记录本地下载功能。 ◆通过GPRS网络远程传送监测数据和照片;兼容自报式、查询应答式等多种数据上报方式,采用自报式时支持定时上报和越限自动加报功能。

下水箱液位控制系统

摘要 液位控制是常见的工业过程控制之一,它广泛运用于水塔、锅炉、高层建筑水箱、罐、工业化工槽等受压容器的液位测量。随着科技的进步,人们对生产的控制精度要求越来越高,所以提高液位控制系统的性能显得十分重要。 本文介绍了一种基于组态软件WinCC和西门子STEP 7的下水箱液位控制系统的设计过程。控制对象为实验室的水箱液位设备,采用以太网进行通讯,用软件完成了系统硬件配置,实现了任意液位高度的手动/自动调节。在系统远程监控方面,利用WinCC软件进行了远程监控界面的设计,通过对液位数据的采集、处理、输出处理,实现了对液位高度的实时监控、自动/手动的无扰切换、报警显示等功能。 关键词:液位控制;实时监控;以太网;WinCC软件

Abstract The level control is one of the common industrial process control, it is widely used in cooling towers, boilers, high-rise buildings, water tanks, tanks, industrial chemical tank level measurement of the pressure vessel. With the advances in technology, production control accuracy requirements are high, so to improve the performance of the liquid level control system is very important. This paper introduces a kind of based on Wincc configuration software and Siemens STEP 7 under the tank liquid level control system of the design process. This design uses the Ethernet communication, the software system hardware configuration, design and debugging of various modules of the ladder to achieve a any level of a high degree of manual / automatic adjustment. Wincc software system RMON RMON interface design, the level of data collection, processing, output processing, the liquid level in the real-time monitoring, automatic / manual bumpless switching, alarm display and other functions. Keywords: evel control;data collection;Siemens STEP 7;Wincc software

水的流量与管径的压力的计算公式

1、如何用潜水泵的管径来计算水的流量 Q=4.44F*((p2-p1)/ρ)0.5 流量Q,流通面积F,前后压力差p2-p1,密度ρ,0.5是表示0.5次方。以上全部为国际单位制。适用介质为液体,如气体需乘以一系数。 由Q=F*v可算出与管径关系。 以上为稳定流动公式。 2、请问流水的流量与管径的压力的计算公式是什么? 管道的内直径205mm,高度120m,管道长度是1800m,请问每小时的流量是多少?管道的压力是多少,管道需要采用多厚无缝钢管? 问题补充: 从高度为120米的地方用一根管道内直径为205mm管道长度是1800米放水下来,请问每个小时能流多少方水?管道的出口压力是多少?在管道出口封闭的情况下管道里装满水,管道底压力有多大 Q=[H/(SL)]^(1/2) 式中管道比阻S=10.3*n^2/(d^5.33)=10.3*0.012^2/(0.205^5.33)=6.911 把H=120米,L=1800米及S=6.911代入流量公式得 Q=[120/(6.911*1800)]^(1/2) = 0.0982 立方米/秒= 353.5 立方米/时 在管道出口封闭的情况下管道里装满水,管道出口挡板的压力可按静水压力计算: 管道出口挡板中心的静水压强P=pgH=1000*9.8*180=1764000 帕 管道出口挡板的静水总压力为F: F=P*(3.14d^2 /4)=1764000*(3.14*0.205^2 /4)=58193.7 牛顿 3、管径与流量的计算公式 请问2寸管径的水管,在0.2MPA压力的情况下每小时的流量是多少?这个公式是如何计算出来的? 流体在水平圆管中作层流运动时,其体积流量Q与管子两端的压强差Δp,管的半径r,长度L,以及流体的粘滞系数η有以下关系: Q=π×r^4×Δp/(8ηL) 4、面积,流量,速度,压力之间的关系和换算方法、 对于理想流体,管道中速度与压强关系:P + ρV2/2 = 常数,V2表示速度的平方。 流量=速度×面积,用符号表示 Q =VS 5、管径、压力与流量的计算方法 流体在一定时间内通过某一横断面的容积或重量称为流量。用容积表示流量单位是L/s或 (`m^3`/h);用重量表示流量单位是kg/s或t/h。 流体在管道内流动时,在一定时间内所流过的距离为流速,流速一般指流体的平均流速,单位

水库水位监测系统

雷达水库水位监测GPRS远传系统 一、概述 我公司研发的“水位远程监控系统”,已广泛的应用于大坝、河流河道、水库、水力发电厂、环境水文、地下水水位、水池水位监测等。该系统能够实时在线监测水库、河流的液位高度、雨量等参数。系统采用集散式控制结构,通过高精度传感器及高敏感器件遥测水库水位及雨量信息。经过计算机分析处理,通过GPRS模块把水位数据及工况传回监控中心实时监控。供工程技术人员实时掌握水位动态,为决策提供依据。 二、设计原则 1) 适用性:由于客户现场要求特殊,要求考虑距离监控中心较远(70~80公里),尽量选取一种技术成熟、可靠性高的传输方案。 2) 实用性:功能强大、用户界面友好、报表、趋势图等功能齐全,日常维护简单方便。在保证满足应用的同时,又要体现出GPRS网络系统的先进性,充分考虑网络应用的现状和未来发展趋势。

3) 灵活性和扩展性:根据未来应用的需求和变化,应具备充分的接入能力和可扩展性,我们采用一种标准化接口,如以后系统改造增加I/O接口组态方便容易,设点成本很低,包括以后带宽的扩展以及监控点移位的可扩展性,最大程度地减少对网络架构和现有设备的调整。 4) 兼容性和经济性:对于设备就绪以后,一定要考虑以后的扩展需要,并且能够最大限度地保证以后对现有资源的可用性和连续性,最大限度地降低网络系统的总体投资。 三、系统组成 系统只要有监控中心、通信网络、终端设备、测量设备、供电系统等组成。 1.监控中心: 主要硬件:服务器、客户端和GPRS数据传输模块。 主要软件:操作系统软件、数据库软件、水位监测系统软件、防火墙软件。2.通信网络:中国移动公司GPRS网络。

水箱液位控制系统

水箱液位控制及MATLAB仿真实现报告

目录 水箱液位控制及MATLAB仿真实现报告 (1) 目录 (2) 摘要 (3) 水箱液位控制系统原理 (4) 水箱液位控制系统的数学模型 (4) (一)确定过程的输入变量和输出变量 (4) (二)水箱液位控制系统的算法: (5) (三)水箱液位控制系统的MATLAB/simulink的仿真: (6) (四)结果分析: (7) 总结 (9)

摘要 在人们生活和工业生产等诸多领域中经常涉及到液位和流量的控制系统问题,因此液面高度是工业控制过程中的一个重要参数,特别是在动态的过程下,采用合适的方法对液位进行检测、控制,能收到很好的效果。PID控制是目前采用最多的控制方法。 本文介绍了双容水箱中控制液位的控制技术以及使用matlab仿真软件去进行液位仿真,通过PID控制实现液位的自动控制,用matlab软件建立数学模型,再写出液位控制的PID算法进行数据模拟,最后实现水箱液位通过计算机技术自动控制。通过matlab软件仿真实现了液位的实时测量和监控。 系统通过matlab仿真对实验所得的参数和仿真数据与曲线进行分析,总结参数变化对系统性能的作用。 关键字:PID控制液位控制 matlab仿真算法

水箱液位控制系统原理 控制系统由四个基本环节组成,即被控对象、侧量传送装置、控制装置和执行装置: 水箱液位控制系统的数学模型 (一)确定过程的输入变量和输出变量 流入水箱的流量Q1是输入变量,流出水箱的流量L2取决于液位L和水箱出水阀门的开度,Q2为输出变量,被控对象是水箱,故系统控制模型图如下:

(二) 水箱液位控制系统的算法: Q 1:水箱流入量 Q 2:水箱流出量 A :水箱截面积 u :进水阀开度 f :出水阀开度 h :水箱液位高度 h0:水箱初始液位高度 K1:阀体流量比例系数 假设f 不变,系统初始态为稳态,H 0=2m ,K 1=10,A=10m 2。 则由物料平衡得: dt dh A Q Q * 21=- u k Q *11= h k Q *12=

抽水试验方案

一任务来源 大连地铁三十里堡隧道区间结构施工受到本线第四系孔隙潜水影响,需求取该层地下水水文地质参数。 二试验目的 通过现场试验获取试验特性曲线,选择适合水文地质条件的计算公式求取水文地质参数,为确定基坑降排水设计方案提供可靠依据,合理优化施工降水方案,保护水资源。 三试验任务 al+pl)粉质粘土层进行带拟针对第四系全新统冲洪积层(Q由于试验场地条件限制,4观测孔的单井抽水试验。试验场区位置及试验井孔平面布置见附图一。 四试验工作布置 (一)水文地质钻探工作 共布置抽水试验孔1眼,井深暂定33m,实际中钻至震旦系石灰岩终孔,井径Φ600mm,管径Φ219mm(井结构见附图二);抽水专门观测孔2眼,井深暂定33m,实际中钻至震旦系石灰岩终孔,井径Φ600mm,管径Φ400mm(井结构见附图二),6m间距布设1眼,20m间距布设1眼。 (二)抽水试验 利用单孔抽水带多个观测孔进行的抽水试验,可精确求取水文地质参数。本次试验在钻孔成井后,利用单孔抽水,同时观测2眼观测井,稳定时间分别为8、16小时,小落程出水量为大落程出水量的1/2—2/3。 (三)抽水试验观测频率、精度要求及全部试验工作时间 1.抽水试验技术要求 抽水试验的布置应满足国家现行规范的规定,同时应观测水位和水量;抽水稳定延续时间不小于8H。抽水结束后应进行恢复水位观测直至稳定。 2.静水位观测 每小时观测一次,三次所测水位相同或4小时内水位相差不超过2厘米,即为静止水位。. 3.抽水试验稳定标准 动水位无持续上升或下降趋势,若有观测孔则以距抽水主孔最远端的观测孔判定;同时考虑区域该时段的自然水位变化情况,若与区域自然水位变化一致,同样判定稳定。 4.水跃值的确定

基于单片机的水箱液位监测控制系统设计论文毕设论文

摘要 液位监测系统在很多的地方都会用到,例如在工厂的生产当中,液位控制是否得当就会影响生产产品的质量和美观,在生活当中,我们离不开水的利用,常常需要对水箱或水塔水位的监测,液位监测系统也与我们的生活息息相关,它关系着我们生活的品质和效率,所以我们要对液位进行连续的监测和控制。 本文的设计的是利用AT89C51单片机实现对水箱液位监测,通过分析领域条件下,在其系统中通过液位变送器获取信息(4-20mA),其采集电流太小而不容易测量,所以需要用放大电路对其放大,通过处理后,由模数转换变换为二进制数传入单片机,它可以对数据进行实时的处理。并在本文的软件设计当中介绍了本次系统的电路原理图和软件编写时所需的流程图,然后通过显示电路把采集到的液位高度值显示给我们。 最后通过Keil C51软件编写出本次系统所需要的程序,同时在Proteus软件里进行仿真,实现了对液位监测。通过该设计的运用,满足了间接测量,自动的控制及其管理的目的。 关键词:单片机;液位控制;Proteus仿真

Abstract Liquid level monitoring system are used in many places, such as in the production of the factory, liquid level control properly will affect the production of products, the quality and appearance, in the life, we can use of water, often need to the water tank or water tower water level monitoring, liquid level monitoring system is closely related with our life, it relates to the quality and efficiency of our lives, so we have to continuously monitor and control the liquid level. The design is implemented by AT89C51 SCM of water level monitoring, through the analysis of field conditions and in the system through the liquid level transmitter (20mA) to obtain information, the current collection is too small and not easily measured, so it is necessary to amplifier circuit for amplifying the, through processing, by the modulus transform as a binary number of incoming MCU, it can real time of data processing. And in the design of software in this article introduced flow chart of the system circuit schematic diagram and software compiling, and through the display circuit the collected liquid height values are shown to us. At last, the program of the system is written by C51 Keil, and the simulation is carried out in the Proteus software, and the liquid level monitoring is realized. Through the application of this design, it can meet the indirect measurement, and the purpose of the control and management. Keywords:SCM; liquid level control; Proteus simulation

水流量计算公式

水管网流量简单算法如下: 自来水供水压力为市政压力大概平均为0.28mpa。 如果计算流量大概可以按照以下公式进行推算,仅作为推算公式, 管径面积×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s)=流量如果需要准确数据应按照下文进行计算。 水力学教学辅导 第五章有压管道恒定流 【教学基本要求】 1、了解有压管流的基本特点,掌握管流分为长管流动和短管流动的条件。 2、掌握简单管道的水力计算和测压管水头线、总水头线的绘制,并能确定管道的压强分布。 3、了解复杂管道的特点和计算方法。 【容提要和学习指导】 前面几章我们讨论了液体运动的基本理论,从这一章开始将进入工程水力学部分,就是运用水力学的基本方程(恒定总流的连续性方程、能量方程和动量方程)和水头损失的计算公式,来解决实际工程中的水力学问题。本章理论部分容不多,主要掌握方程的简化和解题的方法,重点掌握简单管道的水力计算。 有压管流水力计算的主要任务是:确定管路过的流量Q;设计管道通过的流量Q所需的作用水头H和管径d;通过绘制沿管线的测压管水头线,确定压强p沿管线的分布。 5.1 有压管道流动的基本概念 (1)简单管道和复杂管道 根据管道的组成情况我们把它分为简单管道和复杂管道。直径单一没有分支而且糙率不变的管道称为简单管道;复杂管道是指由两根以上管道组成管道系统。复杂管道又可以分

为串联管道、并联管道、分叉管道、沿程泄流管和管网。 (2) 短管和长管 在有压管道水力计算中,为了简化计算,常将压力管道分为短管和长管: 短管是指管路中水流的流速水头和局部水头损失都不能忽略不计的管道; 长管是指流速水头与局部水头损失之和远小于沿程水头损失,在计算中可以忽略的管 道为,一般认为( )<(5~10)h f %可以按长管计算。 需要注意的是:长管和长管不是完全按管道的长短来区分的。将有压管道按长管计算,可以简化计算过程。但在不能判断流速水头与局部水头损失之和远小于沿程水头损失之前,按短管计算不会产生较大的误差。 5.2简单管道短管的水力计算 (1)短管自由出流计算公式 (5—1) 式中:H 0是作用总水头,当行近流速较小时,可以近似取H 0 = H 。 μ称为短管自由出流的流量系数。 (5—2) (2)短管淹没出流计算公式 (5—3) 式中:z 为上下游水位差,μc 为短管淹没出流的流量系数 (5—4) 请特别注意:短管自由出流和淹没出流的计算关键在于正确计算流量系数。我们比较短管自由出流和淹没出流的流量系数(5—2)和(5—4)式,可以看到(5—2)式比(5—4)式在分母中多一项“1”,但是计算淹没出流的流量系数μc 时,局部水头损失系数中比自由出流多一项管道出口突然扩大的局部水头损失系数“1”,在计算中不要遗忘。 (3)简单管道短管水力计算的类型 简单管道短管水力计算主要有下列几种类型: 1)求输水能力Q:可以直接用公式(5—1)和(5—3)计算。 2)已知管道尺寸和管线布置,求保证输水流量Q 的作用水头H 。 这类问题实际是求通过流量Q 时管道的水头损失,可以用公式直接计算,但需要计算管流速,以判别管是否属于紊流阻力平方区,否则需要进行修正。 3)已知管线布置、输水流量Q 和作用水头H ,求输水管的直径 d 。 j h g v ∑+22 02gH A c Q μ=ζλμ∑++= d l 11 z g A c Q 2μ=ζλμ∑+=d l c 1

机井抽水试验方案

1)大型河渠交叉建筑物抽水试验 按《水利水电工程钻孔抽水试验规程》(SL320-2005)进行。 由地质人员根据试验区的地下水分布、流向及埋藏条件,含水层的岩性结构,颗粒组成,成层特性、含水层的厚度及透水性与富水性的定量估算进行抽水试验设计。 设计宜包括下列内容: 试验目的、试验方案及试验段的选择,抽水孔、观测孔结构,成孔工序,过滤器型号规格以及安装要求。 抽水设备与试验测试工具的技术要求,现场试验技术与试验记录要求。渗透系数计算方法与计算公式的选择,相关水文地质条件分析的要求。 本渠段大型河渠交叉建筑物抽水试验一般只进行单孔试验,多个含水层需要进行分层抽水时,抽水孔段的结构类型应根据各个试验含水层的厚度分别确定,并应对试验含水层和相邻含水层的隔水层或相对隔水层采取止水隔离措施。 当含水层厚度不大于15m时,宜采用完整井抽水,当含水层厚度大于15m时,可采用非完整孔抽水。 完整孔抽水,其过滤器长度宜为含水层厚度的0.9倍以上,非完整孔抽水,其过滤器长度和位置,应根据拟选用公式的适用条件确定。 非均质层状含水层,当其单层厚度不小于3m时,可采用非完整孔进行分段抽水,过滤器置于单层中部,长度宜不大于1/3单层厚度,当单层厚度小于3m时,不宜进行分段抽水试验。 抽水试验的基本技术要求: 松散含水层抽水孔中的过滤器外壁应设置测压管,其有眼部分长度应与抽水孔过滤器一致。

在试验各次降深中,抽水吸水管口均应放在同一深度。从承压水层中抽水,吸水管口宜放在含水层顶板以上适当位置,从潜水含水层中抽水,吸水管口宜放在最大降深动水位以下0.5~1.0m处。 抽水孔和观测孔中的静水位和动水位、动水位和出水量均应同步进行观测。 试验停止后,应立即进行恢复水位观测,并应在抽水停止后第1min,2min、3min、4min、6min、8min、10min、15min、20min、30min、40min、50min、60min、80min、100min、120min各观测一次,以后每隔30min观测一次。试验过程中,应对附近可能受影响的孔、井和泉、地表水体等进行水位或流量观测。 试验时,宜在每段抽水开始前和抽水结束前各测一次水温,同时各取一组水样进行水质分析。 现场工作 抽水孔、观测孔的孔位应由地质、钻探人员共同现场确定,松散含水层抽水孔孔径不小于200cm。并应采用跟管法钻进。试验孔段不应使用泥浆和植物胶冲洗液钻进。进行地下水位观测。 试验孔段均宜取1~3组试样进行颗分试验。设备安装、洗孔、试验抽水和观测静水位应按规程进行。 试验一般进行3次降深,以在抽水孔测压管内测得的降深为准,各次降深间的差值宜相等。且单次降深不宜小于0.5m,潜水含水层中抽水孔最大降深不应大于含水层厚度的0.3m,承压水层中抽水动水位不宜降到含水层顶板以下。 试验时抽水开始后的第5min、10min、15min、20min、30min、40min、50min、60min,宜各观测一次动水位和出水量,

单容水箱液位控制系统的设计

单容水箱液位控制系统辨识 一、单容水箱液位控制系统原理 单容水箱液位控制系统是一个单回路反馈控制系统,它的控制任务是使 水箱液位等于给定值所要求的高度;并减小或消除来自系统内部或外部扰动 的影响。单回路控制系统由于结构简单、投资省、操作方便、且能满足一般 生产过程的要求,故它在过程控制中得到广泛地应用。图 1-1为单容水箱液 位控制系统方块图。 当一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数的 选择有着很大的关系。合适的控制参数,可以带来满意的控制效果。反之, 控制器参数选择得不合适,则会导致控制质量变坏,甚至会使系统不能正常 工作。因此,当一个单回路系统组成以后,如何整定好控制器的参数是一个 很重要的实际问题。一个控制系统设计好以后,系统的投运和参数整定是十 分重要的工作。图1-2是单容液位控制系统结构图 GK-07 图i-i 单容水箱液位控制系统的方块图 系统由原来的手动操作切换到自动操作时,必须为无扰动,这就要求调 节器的输出量能及时地跟踪手动的输出值,并且在切换时应使测量值与给定 值无偏差存在。图1-2是单容水箱液位控制系统结构图。 一般言之,具有比例(P )调节器的系统是一个有差系统,比例度3的大 小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。比例积分 电帖泵2 04 上水箱

(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数3, Ti选择合理,也能使系统具有良好的动态性能。 图1-2单容液位控制系统结构图 比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如图1-3中 二、单容水箱液位控制系统建模 2.1液位控制的实现 液位控制的实现除模拟PID调节器外,可以采用计算机PID算法控制。首先由差压传感器检测出水箱水位;水位实际值通过单片机进行A/D转换,

管道流量计算公式

已知1小时流量为10吨水,压力为0.4 水流速为1.5 试计算钢管规格 题目分析:流量为1小时10吨,这是质量流量,应先计算出体积流量,再由体积流量计算出管径,再根据管径的大小选用合适的管材,并确定管子规格。(1)计算参数,流量为1小时10吨;压力0.4MPa(楼主没有给出单位,按常规应是MPa),水的流速为1.5米/秒(楼主没有给出单位,我认为只有单位是米/秒,这道题才有意义) (2)计算体积流量:质量流量m=10吨/小时,水按常温状态考虑则水的密度ρ=1吨/立方米=1000千克/立方米;则水的体积流量为Q=10吨/小时=10立方米/小时=2777.778立方米/秒 (3)计算管径:由流量Q=Av=(π/4)*d*dv;v=1.5m/s;得: d=4.856cm=48.56mm (4)选用钢管,以上计算,求出的管径是管子内径,现在应根据其内径,确定钢管规格。由于题目要求钢管,则: 1)选用低压流体输送用镀锌焊接钢管,查GB/T3091-2008,选择公称直径为DN50的钢管比较合适,DN50镀锌钢管,管外径为D=60.3mm,壁厚为 S=3.8mm,管子内径为d=60.3-3.8*2=52.7mm>48.56mm,满足需求。 2)也可选用流体输送用无缝钢管D57*3.0,该管内径为51mm 就这个题目而言,因要求的压力为0.4MPa,选用DN50的镀锌钢管就足够了,我把选择无缝钢管的方法也介绍了,只是提供个思路而已。 具体问题具体分析。 1、若已知有压管流的断面平均流速V和过流断面面积A,则流量Q=VA 2、若已知有压流水力坡度J、断面面积A、水力半径R、谢才系数C,则流量Q=CA(RJ)^(1/2),式中J=(H1-H2)/L,H1、H2分别为管道首端、末端的水头,L 为管道的长度。 3、若已知有压管道的比阻s、长度L、作用水头H,则流量为 Q=[H/(sL)]^(1/2) 4、既有沿程水头损失又有局部水头损失的有压管道流量: Q=VA=A√(2gH)/√(1+ζ+λL/d) 式中:A——管道的断面面积;H——管道的作用水头;ζ——管道的局部阻力系数;λ——管道的沿程阻力系数;L——管道长度;d——管道内径。 5、对于建筑给水管道,流量q不但与管内径d有关,还与单位长度管道的水头损失(水力坡度)i有关.具体关系式可以推导如下: 管道的水力坡度可用舍维列夫公式计算i=0.00107V^2/d^1.3 管道的流量q=(πd^2/4)V 上二式消去流速V得: q = 24d^2.65√i ( i 单位为m/m ), 或q = 7.59d^2.65√i ( i 单位为kPa/m )

抽水试验

§4.1基本要求 掌握抽水试验的目的、分类、方法及抽水试验准备工作。 4.1.1 抽水试验的目的 (1) 确定含水层及越流层的水文地质参数:渗透系数K、导水系数T、给水度μ、弹性释水系数 μ*、导压系数a、弱透水层渗透系数K'、越流系数b、越流因素B、影响半径R等。(2) 通过测定井孔涌水量及其与水位下降(降深)之间的关系,分析确定含水层的富水程度、评 价井孔的出水能力。 (3) 为取水工程设计提供所需的水文地质数据,如影响半径、单井出水量、单位出水量、井间干 扰出水量、干扰系数等,依据降深和流量选择适宜的水泵型号。 (4) 确定水位下降漏斗的形状、大小及其随时间的增长速度;直接评价水源地的可开采量。 (5) 查明某些手段难以查明的水文地质条件,如确定各含水层间以及与地表水之间的水力联系、 边界的性质及简单边界的位置、地下水补给通道、强径流带位置等。 4.1.2 抽水试验分类 抽水试验主要分为单孔抽水、多孔抽水、群孔干扰抽水和试验性开采抽水。 (1)单孔抽水试验:仅在一个试验孔中抽水,用以确定涌水量与水位降深的关系,概略取得含 水层渗透系数。 (2)多孔抽水试验:在一个主孔内抽水,在其周围设置若干个观测孔观测地下水位。通过多孔抽水试验可以求得较为确切的水文地质参数和含水层不同方向的渗透性能及边界条件等。(3)群孔干扰抽水试验:在影响半径范围内,两个或两个以上钻孔中同时进行的抽水试验;通过干扰抽水试验确定水位下降与总涌水量的关系,从而预测一定降深下的开采量或一定开采定额下的水位降深值,同时为确定合理的布井方案提供依据。 (4)试验性开采抽水试验:是模拟未来开采方案而进行的抽水试验。一般在地下水天然补给量不很充沛或补给量不易查清,或者勘察工作量有限而又缺乏地下水长期观测资料的水源地,为充分暴露水文地质问题,宜进行试验性开采抽水试验,并用钻孔实际出水量作为评价地下水可开采 量的依据。 4.1.3 抽水试验的方法 单孔抽水试验采用稳定流抽水试验方法,多孔抽水、群孔干扰抽水和试验性开采抽水试验一般采用非稳定流抽水试验方法。在特殊条件下也可采用变流量(阶梯流量或连续降低抽水流量)抽水试验方法。抽水试验孔宜采用完整井(巨厚含水层可采用非完整井)。观测孔深应尽量与抽水孔一致。 4.1.4 抽水试验准备工作 (1) 除单孔抽水试验外,均应编制抽水试验设计任务书; (2) 测量抽水孔及观测孔深度,如发现沉淀管内有沉砂应清洗干净; (3) 做一次最大降深的试验性抽水,作为选择和分配抽水试验水位降深值的依据; (4) 在正式抽水前数日对所有的抽水孔和观测孔及其附近有关水点进行水位统测,编制抽水试验

相关文档
最新文档