光谱仪讲义

光谱仪讲义
光谱仪讲义

第一部分光谱仪的介绍一简介

1.产地:美国PPS公司生产(https://www.360docs.net/doc/e311866910.html,)

2.型号:unispec-SC(单通道)

3.技术规格:

4.特点:

·高精度光谱仪(无需要标定)

·内置光源

·重量轻便于野外携带(<2.5kg)

·抗震设计

·可选的掌上电脑带可替换存储卡

5.硬件介绍

a.unispec外壳:分光计系统,光源,电池,相关电子设备

·分光计:

·光源:由7.0W卤灯支持,

技术指标:电压:0-5V

电流:1.35A

色彩温度:2800K

使用寿命:<1500小时

·电池:铅酸电池(6V,3.4A)

充满:运行分光计:达35小时

开启光源:使用2~3小时

·其他电子设备:保险丝,暗电流分压计

b.光纤探头

我们主要使用的是反射光纤探头

反射光纤探头有两种类型

此外,还有吸收/发射光纤探头,吸收/发射潜入式探头。

c.样品固定器/光纤固定器

光纤固定器固定光纤探头端部后,使其与叶面成60度夹角

·标准夹:用于阔叶,和普通光纤探头配套使用

·微型夹:用于针叶,和微型光纤探头配套使用

·试验夹:

d.外接电源(6V,12A的铅酸电池):为了延长机器野外使用时间,大约与内置电源使用时间相当。

e.计算机:unispec是由一台计算机控制。任何一台安装windows3.1或以上版本的计算机(包括个人掌上电脑)上都可以运行。

f.此外,还有光纤延长线,视角调制管,参比板等

6.应用

·植物生理生态分析:光谱反射系数是冠层结构和植物生理的基本参数。叶绿素和氮含量都是叶生理的指示参数。新的光谱反射系数能够用做研究光合有效辐射的利用效率和胡萝卜素的含量。使用独特的微型光纤探头可以探测针形叶的反射系数。

·农作物冠层分析:利用检测光谱反射系数可以研究冠层变化和植物受不同的胁迫情况。

·检测植物状态:可量化检测如色素含量、光合作用的改变、早衰等参数。

·遥感:使用适当的探头,该仪器可以从飞机和高塔上进行遥感测量。

·大气科学:使用适当的探头,该仪器可以监测天空环境或大气吸收特性。

·工业应用和过程控制:光谱反射系数的测量能够用作检测颜色质量,如颜料、油漆、涂料、光源、塑料、纸等。

二硬件维护及故障处理

1.硬件维护:

a.内部卤灯光源:其1500小时的使用寿命是在90-120%的输出量的操作基础上达到的。

长期在较低设置下工作会降低灯的寿命。

当灯的使用后期,其光谱会发生改变,这是就需要更换。

b.电池:在低温下,电池的容量下降

避免“深度放电”,所以在完全放电之前,要及时充电。

完全放电的电池,要达到90%的电容量,须充电3小时以上。

c.保险丝:避免电池反接,短路等。

d.参比板:保持正面干净

用一块220-240金刚砂布(碳化硅)打磨,直到表面表面完全不被水沾湿,

在用清洁空气或氮气吹干,或自然干燥

e.光纤:勿弯,勿压,用完套上橡胶帽

2.故障处理;

a.更换卤光灯

b.更换电池

c.更换保险丝

d.光纤损坏只能更换

第二部分:光谱仪的应用

一光谱学基础及在生物中的应用

1.光谱学基础

光谱在自然界中是连续的,光谱仪是将连续的光谱分为256份进行测定,然后根据每种光质对应的波长,近似的计算相对应的光谱成分。

当光照射到叶片时,一部分被叶片吸收,一部分被反射,还有一部分透过叶片,植物各类色素都具有各自的特征吸收峰,水分也同样具有相应的特征吸收峰。所以光谱反射特征与植物叶片的色素含量、叶片的含水量都密切相关。

2. 生理和生态的研究中用到的光谱指数:

利用光谱进行分析时,将会使用到许多的指数,下面介绍较为常用的部分光合指数:

a.NDVI(Normalized difference vegetation index,植被归一化指数)

NDVI=(R750-R675)/ (R750+R675)

b.VI(vegetation index,植被指数)

VI=R750/R680

前两个指数与叶绿素的含量有很好的线性关系,常在遥感,植被制图中作为重要的指数c.Chl NDI(Chl mormalized difference index,叶绿素归一化指数)

Chl NDI=(R750-R705)/ (R750+R705)

它与叶绿素a与很强的相关性,而使用这个指数来估计叶绿素a的另外一个原因就是其他的一些指数都在估计是表现出一定程度的饱和。

d.PRI(photochemical reflectance index,光化学反射指数)

PRI=(R531-R570)/ (R531+R570)

先将叶片暗适应,测定PRI,然后将叶片暴露在强光下20min,完全是叶黄素组分氧化,测定PRI’,△PRI= PRI- PRI’就是叶黄素库的大小

PRI与净光合速率有很强的正相关性,例如,随着这海拔升高,PRI值降低,这意味着光合辐射利用率的降低

e.SIPI(structure-independent pigment index,光谱结构不敏感植被指数)

SIPI=(R800-R445)/ (R800+R680)

表明类胡萝卜素:叶绿素的高低(正相关)

f.WI(water index,含水量指数)

WI= R900/R970

与叶片水分的含量呈正相关

g.YI(yellowness index, 叶黄指数)

在介绍这一个指数之前,现介绍

光合曲线一阶导数:ρ(λ)=(R i+1-R i-1)/△λ

光合曲线二阶导数:ρ’(λ)=(ρ(λi+1)-ρ(λi-1))/△λ

YI=-10(Rλ+1-2R0+Rλ-1)/ (△λ)2

这个指数是通过计算600nm周围的反射光谱而得出植物叶在胁迫下的萎黄病情况。

h.λRE(red edge,红边位置)

λRE为680-750nm光谱一阶导数最大值的波长位置

由于叶绿素荧光的原因,红边位置与叶绿素的荧光具有很强的相关性,而且与浑浊度的相关系数小。叶绿素含量高,红光区域吸收增加,导致红边向长波移动。

二 unispec应用实例(一)

A evaluation of noninvasive methods to estimate foliar chlorophyll content

方法介绍:

1.材料

每天下午取10片叶子(纸皮桦,Betula papyrifera),首先,用光谱仪测量光谱曲线,

之后,将叶绿素提取,测量叶绿素的含量。

总共取100片叶子,这些叶子尽量包括更宽的叶绿素含量梯度,从黄色到墨绿色的都取了一些。

2.仪器

a.叶绿素含量的测定

手持式叶绿素仪:CCM-200,SPAD-502

b.光谱测定

光谱仪:Unispec spectral analysis system

3.光谱仪的使用:

Scan to average:6

Integration time:4ms

每叶测量5次

4.处理方法:

一阶导数

植被归一化指数

植被指数

叶绿素归一化指数

红边位置

叶黄指数

Chla: PSSRa= R800/R675

Chlb: PSSRb= R800/R650

5.提取叶绿素

结果:

1.叶绿素的实际测量值

2. CCM-200和SPAD-502测量值的对比(相关系数非常高)

3.光谱反射与叶绿素浓度的关系:

·随着叶绿素含量降低,光谱反射从500到700nm升高的非常明显

·红边的形状也随叶绿素含量的降低变化明显

·可见光范围内反射光谱与叶绿素的含量呈负相关

·总的叶绿素含量与在721-744nm的一阶微分值由很强的相关(R>0.95)

·叶绿素a:b与在632-672nm,678-691nm,704-750nm的一阶微分值由很好的相关 4.光谱指数与测量的叶绿素含量的关系:

·各种指数与总叶绿素含量,叶绿素a,叶绿素b的关系

·对比各种光合指数

讨论

1.对比几种测量方法的优劣:

·优点

·缺点

2.光谱指数的应用

·由于树叶结构的不同,光谱指数与叶绿素的关系可能有很大的不同,所以很难把所有不同的光谱指数直接应用于与不同结构的树种。

·其他一些研究结果

·叶黄指数虽然不能像其他的指数那样能有很好的指示性,但他或许可以得到更广的应用。

结论

对光谱仪用来估计叶绿素的效用做一个总结

Spectral reflectance and photosynthetic properties of Betula papyrifera leaves along an elevational gradient on Mt.Mansfield,Vermont,USA

方法介绍

1.材料

·纸皮桦

·反射光谱是在枝条取下4小时后进行的,这四小时是在暗室下存放的

2.光谱仪的使用:

预热20-30min

Scan to average:6

Integration time:65ms

每叶测量5次

3.光谱指数

·一阶导数

·植被归一化指数

·色素结构独立性指数

·叶绿素归一化指数

·红边位置

·光化学反射指数

4.光合作用的测量

LI-6400

5.统计方法

结果

·在三个不同的海拔带个光谱曲线有一些不同,尤其是在400nm和700nm出更为突出

·一阶光谱微分的不同能很好的帮助我们理解不同海拔带的光谱曲线的区别

·不同海拔的叶子的差异从各种光谱指数中得到更好的显示

·色素结构独立性指数随海拔的增加,表明类胡萝卜素:叶绿素a的增加

·光化学反射指数随海拔的降低,表示了叶黄素的变化

·由光响应曲线得出的光合参数也显示出随海拔变化的趋势

讨论

·本文所使用的所有指数的显示出随海拔增高,植物所受的胁迫越大

·对PRI,Chl NDI,λRE变化的生物学解释

·对光响应曲线的解释

·光合作用与PRI的相关性

结论

·环境胁迫的效应可以使用光谱探测出

·这些胁迫直接的和光合作用相关

三 unispec应用实例(二)

Response of NDVI, biomass, and ecosystem gas exchangeto long-term warming and fertilization in wet sedge tundra

研究方法:

1.研究对象:冻原

2.实验方法:

划分一些5*10 m的样方,分别用不同的处理方法,如:施P,施N,施N+P,保温等

然后每年测定NDVI,生物量,碳变动

3.光谱指数:

NDVI= (R800-R660)/ (R800+R660)

4.生物量的测量

5.碳变动利用LI-6200测定

6.统计:

·一元方差分析用来所测的变量在所有的处理方法中的不同

·线性回归是用来表示两边两的相关程度

结果

·NDVI和地上生物量在施N+P和保温+施N+P都显最高,而在遮阴处理的则最低

·不同处理的C变动也很明显

·所有不同的处理间所测定的数据,都表现出稳定,密切的相关性

讨论

1.对不同处理的反应

为了检验NDVI在监测大面积,及全球变化的有效性,我们对NDVI进行了大量分析·在这里,NDVI和地上生物量由密切的相关性

·NDVI与生态系统初级生产力密切相关,以及ER(ecosystem respiration)

·这里的所有研究有助于我们建立该地的生态系统光学特性和生态系统过程的关系模型,从而实现对此生态系统的大面积遥感监测

Optical properties of juniper and lentisk canopies in a coastal Mediterranean macchia shrubland

研究方法

1.研究对象

地中海沿岸典型生态系统,由刺柏,乳香树等组成

2.实验方法

·一两种主要的树种的冠层作为代表测定生态系统的光谱特性

·这两种树分别是刺柏和乳香树,同时也测定了地面的反射光谱

·每种树的叶绿素,含水量,叶片组织特性都作了研究

·冠层反射光谱由两个感应器获得,感应器放置高于冠层50cm

3.含水量:WI=R

900/R

970

结果

1.叶片的生物学特性

2.叶面积指数与冠层辐射通量的关系

3.冠层的反射光谱

讨论

1.本文的结果将有助于遥感监测的数据整合

2.对于叶面积指数和关曾辐射通亮的关系研究,将有助于建立该物种的光合模型

3.光谱曲线反映出乳香树的含水量要高于刺柏,这与实验室的结果相同

4.红边位置

第三部分 unispec使用界面介绍及操作方法

一连接硬件

1.连接标准夹与光纤探头:探头切勿伸入PVC管太多,螺丝不要拧得太紧。

2.连接光纤与主机:两分支分别与监测器输入口和光源输出口相连。

3.连接外接电池的连接:注意正负极(一般主机电源用完再使用外接电源),外接电源放在电池盒中直接使用

二进入unispec操作界面

1.打开电源,系统自动进入unispec操作界面(如没有,则进入操作界面的方法与windows 的相同)。

2.熟悉界面:菜单栏(窗体的顶部)

控制面板(窗体的右边)

数据显示区

3.菜单栏的介绍:

a.file:

*subtract two files__将两个文件的数据相减

Multiply two files__将两个文件的数据相乘

Divide two files__拆分文件(除)

Transform two files__根据公式(A*file1+B*file2+C)转换文件

Average files__求平均值

Derivetive of scan__计算导数

b.scans

c.view

d.indecs

e.setup

system parameters

·detector coefficients(仪器系数): 仪器校准有分光计的三个系数组成(A,B,C),它用一个2阶多项式表示了检测器像素数的排列(P)与波长的关系——波长=Ap2+Bp+C ·Beep: 每一次测量开/关是发出一种蜂鸣声

·dark current:暗电流修正自动地从所有后来的扫描结果中减去以前测定的暗电流值·serial port:端口设置

Measurement preferences

·integration time:定义检测器暴光的持续时间(4-3276ms)

·halogen source intensity:控制卤光灯电压(7-102%)

·scans to average:为单独测量扫描设定平均扫描次数

·reference calibration file:设置两种参比标准

·default data directory:默认数据目录

·auto save:自动存储

·auto scan delay:当使用auto scan功能后,定义两次扫描之间的时间间隔(0.5-86400s)

f.help

4.控制面板

Preferences (1): 对应于Setup – Measurement Preferences.

DataScan (2) : 对应于Scans – Data Scan.

OverlayScan (3): 对应于Scans – Overlay Scan.

DarkScan (4) : 对应于Scans – Dark Scan.

ReferenceScan (5): 对应于Scans – Reference Scan.

Cursor (6) :控制光标的开关

Raw Data On/off (7): 当打开时对应于 View – Raw. 当关闭时对应于 View –

Reflectance or View – Absorbance

Shutter Open/closed (8): 控制快门的开关

AutoScan Off/on (9): 对应于Scans – Auto Scan.

三扫描叶片

1.按1(键盘),设置参数:integration time(多设为4ms,国外有设为60ms的)

halogen source intensity(最好大于90%)

default data directory

enable auto save

scans to average(大于3次)

2.按2键进行一个初始扫描。

3.将白色的参比标准板放入叶夹中。按1键设置光源的光强为100%,然后点击Optimize integration time按钮。完成后,一个信息栏将显示操作结束的信息,点击这个信息栏中的OK,然后再点击测定对话框的OK。

4. 取出白色的参比标准板,然后按8键关闭快门。

5. 并用黑布遮盖叶夹,按4键进行暗扫描。

6. 按8键打开快门。将白色的参比标准板放入叶夹中,然后按5键进行参比扫描,完成后从叶夹中取出白色的参比标准板。

7. 将叶片样品放入叶夹中,然后按2键进行数据扫描。

8.冠层扫描

A.冠层扫描和叶片扫描大同小异,只是所连接硬件不同。

B.探头距目标的距离不同,所扫描的面积不同

C.当视角调制管完全插入直形光纤探头时,扫描角度为200

9.文件夹的管理

数据存储的文件夹的管理和在Windows环境下相同,可以随意进行删除,复制等操作。四数据导出及处理

1.将数据传入个人电脑:

a.在电脑上安装activesync软件

b.用USB数据传输线将光谱仪和电脑相连

c.启动光谱仪

d.点击“控制面板”(电脑上)中的“系统”,在“系统属性”的“硬件”中点击“添加

硬件向导”,搜索新硬件(有的机器上此步可省)

e.当计算机与光谱仪建立通讯时,activesync窗口的右侧图标呈绿色,这是就可以对光

谱仪上的数据进行操作了。有时如果图标没有变成绿色,可以重启电脑试一试。

2.数据处理:

a.安装Multispec5.1.5软件;

b.双击桌面上的Multispec5.1软件图标或者在“开始”菜单下的“程序”菜单中打开

Multispec5.1软件;

c.点击窗口中的“Unispec-new”按钮,在左侧窗口中找到保存数据的路径,依次点击

右侧窗口所要处理的每一个数据文件,使数据文件列表在中间的窗口中;

d.然后点击“File List OK”;

e.点击右下侧的“Do Operation”,显示保存文件的提示信息,将文件保存为“gp”;

f. 使用excel处理数据

g.也可以使用Multispec5.1继续处理。点击“process indices”,在左侧窗口中找到保

存数据的路径,选中文件“gp”,点击“indices”,设置指数公式

h.calculate

3.利用Excel的强大功能处理数据:

有些时候,单独利用Multispec5.1软件无法得到所有想得到的指数,这是我们可以求助Excel的宏功能来完成。

a.在Excel中打开数据文件“gp”

b.利用宏达到目的。

第四部分试验内容以及注意事项

一实验内容

1 实验目的

掌握UniSpec-SC光谱分析仪的使用方法;

了解UniSpec-SC光谱分析仪的应用。

2 实验设计方案

3 实验步骤

a. 采集数据

4人一组,在校园内选取植物,每种植物选3棵,每棵树选择健康、成熟、向阳的叶片10片,每个叶片测3个点,测量完及时导出数据。

建议:选取红松大树和小树,以便数据比较分析

b. 数据处理

将导出的数据经Multispec5.1.5软件计算Rλ,并用EXCEL进行数据处理,计算

mSR705、chlNDI、PRI、SIPI指数的值,并进行方差分析,提供图、表,给出结论。

5 分析讨论

6 思考题

探讨利用光谱仪测定与传统的实验室提取测定植物色素含量的优劣

二注意事项

1.安全问题

a.人身安全:不涉险,避免受伤

b.仪器安全:防水,防摔

2.仪器保养:

a.电池记得按时充电

b.仪器注意防潮

c.避免折坏光纤

d.保持参比板干洁

3.试验目的,方法

a.确定好实验目的,方法

b.参照前人经验,考虑实地环境,确定如何操作

c.实验进行过程中,视情况的变化,改进实验方案

4.样品采集

样品的采集与实验的目的相关

自主光栅光谱仪实验

自组式光栅光谱仪 一、实验目的 1、了解光栅的分光原理及主要特性; 2、了解光栅光谱仪的工作原理; 3、掌握利用光栅光谱仪进行测量的实验方法。 二、实验仪器 1低压汞灯及电源:2狭缝及固定调节架1个:0~2mm;3一维光栅及干板调节架1个;4、透镜及固定调节架3个(焦距f=60mm、焦距f=60mm、焦距f=200mm); 5、白板1个; 6、读数显微镜及固定调节架1个。 三、实验原理 本实验用的是透射光栅,是用光学玻璃片刻制而成的(如图5-11-1)。当光照射到光栅表面时,刻痕处不透光。只有在两刻痕之间的光滑部分,光才能通过,相当于一条狭缝,因此,光栅实际上是一密排、均匀而又平行的狭缝。设a为缝宽,b为刻痕宽度,d=a+b称为光栅常数。 由夫琅和费衍射理论,当波长为λ的平行光束垂直照射到光栅平面时,在每一狭缝处都产生衍射,但由于各缝发出的衍射波都是相干光,彼此又产生干涉。这样就会在光栅后面的屏上形成一系列被相当宽的暗区隔开的亮度大、宽度窄的明条纹,成为谱线(如图5-11-2)。 如图5-11-3所示,设S为位于透镜L1第一焦平面上的细长狭缝,G为光栅,光栅的常数为d,L1射出的平行光垂直地照射在光栅G上。透镜L2将与光栅法线成θ角的衍射光会聚于其第二焦平面上的Pθ点。由夫琅和费衍射理论知,相邻两缝对应点出射的光束之光程差为:? = (a + b)sinθ = d sinθ 当衍射角符合下列条件: d sinθ = kλ k = ±1, ± 2, ± 3, ..., ± n (5-11-1)

该衍射角方向的光将会得到加强,叫做主极大,形成明纹;其他方向的衍射光线或者完全抵消,或者强度很弱,几乎成暗背景。(5-11-1)式称为光栅方程,其中:λ为单色光波长,k称为光谱线的级数。在k=0的方向上可观察到中央极强,称为零级谱线,其它谱线则对称地分布在零级谱线的两侧,如图5-11-2所示。 图5-11-3 平行光通过光栅 当k=0时,任何波长的光均满足(5-11-1)式,亦即在θ = 0 的方向上,各种波长的光谱线重叠在一起,形成明亮的零级光谱;对于k 的其它数值,不同波长的光谱线出现在不同的方向上(θ的值不同),从而在不同的位置上形成谱线,称为光栅谱线。而与k的正负两组相对应的两组光谱,则对称地分布在零的光谱两侧。 若光栅常数d 已知,在实验中测定了某谱线的衍射角θ和对应的光谱级k ,则可由(5-11-1)式求出该谱线的波长λ;反之,如果波长λ是已知的,则可求出光栅常数d 。 四、实验内容 1、自组装置光栅光谱实验仪,实验装置图见图2所示。 光源发出的光经过60mm透镜会聚到狭缝上,光线经过狭缝(狭缝放置在200mm 透镜的前焦面上),从200mm透镜出来的光为平行光,再入射到光栅上。通过光栅衍射的光成像于60mm透镜的后焦平面上(实为无穷远处可调狭缝的像)。

W光栅光谱仪实验

光栅光谱仪实验 一 实验目的 1、了解光栅光谱仪的工作原理 2、掌握利用光栅光谱仪进行测量的技术 二 实验仪器 WDS8A 型组合式多功能光栅光谱仪,计算机, 氘灯、钠灯、汞灯等各种光源 三 实验原理 光谱仪是指利用折射或衍射产生色散的一类光谱测量仪器。光栅光谱仪是光谱测量中最常用的仪器,基本结构如图1所示。它由入射狭缝S1、准直球面反射镜M1、光栅G 、聚焦球面反射镜M2以及输出狭缝S2构成。 衍射光栅是光栅光谱仪的核心色散 器件。它是在一块平整的玻璃或金属材 料表面(可以是平面或凹面)刻画出一 系列平行、等距的刻线,然后在整个表 面镀上高反射的金属膜或介质膜,就构 成一块反射试验射光栅。相邻刻线的间 距d 称为光栅常数,通常刻线密度为每 毫米数百至数十万条,刻线方向与光谱 仪狭缝平行。入射光经光栅衍射后,相 邻刻线产生的光程差 (sin sin )s d αβ?=±,α为入射角, β为衍射角,则可导出光栅方程: (sin sin )d m αβλ±= (0.1) 光栅方程将某波长的衍射角和入射角通过光栅常数d 联系起来,λ为入射光波长,m 为衍射级次,取0,1,2,±±等整数。式中的“±”号选取规则为:入射角和衍射角在光栅法线的同侧时取正号,在法线两侧时取负号。如果入射光为正入射0α=,光栅方程变为sin d m βλ=。衍射角度随波长的变化关系,称为光栅的角色散特性,当入射角给定时,可以由光栅方程导出 cos d m d d βλβ=, (0.2) 复色入射光进入狭缝S1后,经M2变成复色平行光照射到光栅G 上,经光栅色散后,形成不同波长的平行光束并以不同的衍射角度出射,M2将照射到它上面的某一波长的光聚焦在出射狭缝S2上,再由S2后面的电光探测器记录该波长的光强度。光栅G 安装在一个转台上,当光栅旋转时,就将不同波长的光信号依次聚焦到出射狭缝上,光电探测器记录不同光栅旋转角度(不同的角度代表不同的波长)时的输出光信号强度,即记录了光谱。这种光谱仪通过输出狭缝选择特定的波长进行记录,称为光栅单色仪。 在使用单色仪时,对波长进行扫描是通过旋转光栅来实现的。通过光栅方程可以给出出射波长和光栅角度之间的关系(如图2所示) 2cos sin d m λψη=, (0.3) 图1光栅光谱仪示意图

光谱仪原理

光谱仪原理 光谱仪是将复杂的光分解成光谱线的科学仪器,一般主要由棱镜或衍射光栅等构成。光谱仪可以检测物体表面所反射的光,通过光谱仪对光信息的抓取、以照相底片显影,或通过电脑化自动显示数值仪器显示和分析,从而测知物品中含有何种元素。光谱仪不仅可以测量可见光,还可以检测肉眼不可见的光谱,比如利用光谱仪将阳光分解,并按波长排列,可以看到可见光只占了光谱的很小的一个范围,其余都是肉眼不可见的光谱,如红外线、微波、紫外线、X射线等等。 总体来说,光谱仪是利用光学原理,对物质的组成成分和结构进行检测,分析和处理的科学设备,具有分析精度高、测量范围大、速度快和样品用量少等优点。因此,其广泛应用于冶金、地质、石油化工、医药卫生、环境保护等部门,也是军事侦察、宇宙探索、资源和水文勘测所必不可少的仪器。 根据现代光谱仪的工作原理,可以将光谱仪分为两大类,即经典光谱仪和新型光谱仪。经典光谱仪是依据空间色散原理来工作,而新型光谱仪则是依据调制原理,因此经典光谱仪都是狭缝光谱仪器,而调制光谱仪则由圆孔进光,它是非空间分光的。下面简单介绍一下经典光谱仪的原理。 由于光谱仪要测量所研究光(即所研究物质的反射、吸收、散射或受激发的荧光等)的光谱特性,如波长、强度等,所以,光谱仪应具有以下功能:一、分光:按一定波长或波数把被研究光在一定空间内分开;二、感光:按照光信号强度,将其转化成相应的电信号,从而测量出各个波长的光的强度,以及光强度随着波长变化的规律;三、绘谱线图:记录保存分开的光波及其强度按波长或波数的发布规律或显示出对应光谱图。 要具备上述功能,一般光谱仪器都可分成四部分:光源和照明系统,分光系统,探测接收系统和传输存储显示系统。下面是经典光谱仪的一张结构示意图: 一、光源和照明系统。一般来说,在研究物质的发射光谱如气体火焰、交直流电弧以及电火花等激发试样时,光谱仪研究对象就是光源;而在研究吸收光谱、拉曼光谱或荧光光谱时,光源则作为照明工具(如汞灯、红外干燥灯、乌灯、氙灯、LED、激光器等等)照射在研究物质上,光谱仪测量研究物质所反射的光,因此为了尽可能多地会聚光源照射的光强度,并传递给后面的分光系统,就需要专门设计照明系统。 二、分光系统。分光系统是任何光谱仪的核心部分,一般由准直系统、色散

直读光谱仪作业指导书

直读光谱仪作业指导书 本机须由熟悉直读光谱仪的性能、操作和安全要求的持证操作者操作。 1.开机步骤 1.1首先打开UPS电源开关:接通市电,持续按面板上的开/关机键1秒以上。 1.2打开稳压电源开关。 1.3打开真空泵抽真空:开启真空泵开关等待两分钟后,再打开球阀阀门。 1.4开启仪器主电源开关。 1.5打开高纯氩气供应,调整输出压力为0.3~0.4MPa。 1.6开启计算机主机、显示器等其它附属设备,启动仪器操作软件,等待真空状态显示为绿色(表示真空正常),开启仪器高压开关,仪器开始进入待机稳定状态,仪器稳定后(高压开启两小时以上),即可进行分析操作。 2.关机步骤 2.1退出仪器操作软件,关闭计算机主机及显示器等其它附属设备。 2.2关闭仪器高压开关,关闭仪器主电源开关。 2.3关闭真空球阀阀门,关闭真空泵电源开关。 2.4关闭氩气供应。 2.5关闭稳压电源开关。 2.6关闭UPS电源开关,持续按面板上的开/关机键1秒以上。 3.光谱仪特别注意事项: 3.1在仪器较短时间内不工作的情况下(如过夜),保持主机电源及真空系统常开,以保持仪器的稳定状态。 3.2如果要进行仪器维修或保养,请将高压开关关闭,维修维护操作结束后再开启。 3.3如遇节假日等仪器较长时间不需使用的情况下可关闭仪器(当仪器长期关闭再开启时,抽真空过程需要较长时间),禁止在不明情况下,松动或拆卸真空通路连接头等。

3.4仪器没有满足真空条件情况下,禁止开启高压开关,以免损坏相关元器件。 4.样品检测 4.1点击“方法”菜单,从展开的下拉式菜单中选中“打开”选项。 4.2窗口将弹出分析程序对话框,根据你的样品类型选择相应方法程序,你所选择的方法名称将在状态栏显示(软件启动时,将自动载入前次使用的分析程序)。 4.3用电极刷清扫电极。 4.4将制备好的样块置于火花台上,确保样块表面能完全覆盖激发孔。 4.5样品测量: 4.5.1按下开始按钮进行测量,也可以通过点击键盘上的功能键F2或软件的绿色图标来开始测量,将听到火花激发的声音,测量结束后,分析结果自动显示在屏幕上。 4.5.2将样块拿开,用电极刷将电极清理干净,重复进行第二次测量,将两次结果进行比对,如果重复性不好,再进行第三次测量。 4.5.3假如重复性结果满足分析要求,点击软件工具栏的蓝色图标或F4功能键结束此次分析。 4.6检查激发点: 4.6.1理想的激发点应该具有清晰的轮廓,外围有一圈黑色的金属边缘,中间是激发坑。 4.6.2假如样块出现激发白点的话,请检查以下几项: a.样块是否有包容物; b.氩气质量是否有保障; c.是否有外界气体混入; d.样块制备是否理想。 4.7将分析结果保存、打印或输出等其它操作。 4.8未知样品分析之前,可以对标准样品进行分析,考察标样的分析结果,判断是否需要进行类型校准(灵活使用类型校准,可以使样品分析数据更可靠,更准确)。 4.9类型校准 4.9.1测量控样:在火花台上放好相应的控制样品,单击F2或按F2键,激发样

原子荧光分光光度计

一、原子荧光分光光度计 技术参数 1、工作条件要求 1.1电源: 220V,50Hz 1.2温度: 15~35℃ 1.3相对湿度: 10-75% 2、技术能力要求 2.1用途:用于食品卫生检验、环境样品检验、城市给排水检测、农产品检验、地质冶金检验、化妆品检验、土壤肥料饲料检验等样品中As、Sb、Bi、Hg、Se、Te、Sn、Ge、Pb、Zn、Cd元素的痕量分析。 2.2分析方法:非色散光学系统,进行两道元素同时测量 *2.2.1氢化物发生进样方式:双注射泵联合进样,蠕动泵主动排废 2.2.2检测能力:适用于As、Hg、Se、Pb、Ge、Sn、Te、Bi、Sb、Cd、Zn等十一种元素的痕量测定 2.2.3检测限(D.L.):As、Pb、Se、Bi、Sn、Sb、Te、Hg≤0.01μg/L;Hg(冷原子测汞)、Cd≤0.001μg/L;Ge≤0.05μg/L;Zn≤1.0μg/L *2.2.4相对标准偏差(RSD):≤0.8% 2.2.5线性范围:≥三个数量级 *2.3光学光源系统:双光束、实时监控,脉冲恒流或集束脉冲供电,无色散光学系统,自识空心阴极灯 2.4气路设计(气路控制模块): 2.4.1控制方式:质量流量控制器(MFC) 2.4.2连续可调:气体流量控制,气路自动保护装置,自动控制气路并可自动诊断,关机可自动切断气源 2.4.3气路控制:载气、屏蔽气流量分别自动控制(控制精度可达1ml/min) *2.5双检测系统:高信噪比光电倍增管双检测系统 2.6内置式两个独立注射泵进样:一路进样品载流,一路进还原剂(自动配制标准曲线,高浓度自动稀释,自动清洗,单标自配标准曲线,在线智能提示,自动在线加载还原剂、掩蔽剂) 2.7 在线分析功能:自动炉高调节、自动负高压设置、自动气路设置、在线动态

光栅光谱仪实验报告

光栅光谱仪的使用 学号 2015212822 学生姓名张家梁 专业名称应用物理学(通信基础科学) 所在系(院)理学院 2017 年 3 月 14 日

光栅光谱仪的使用 张家梁 1 实验目的 1.了解光栅光谱仪的工作原理。 2.学会使用光栅光谱仪。 2实验原理 1. 光栅光谱仪 光栅光谱仪结构如图所示。光栅光谱仪的色散元件为闪耀光栅。入射狭缝和出射狭缝分别在两个球面镜的焦平面上,因此入射狭缝的光经过球面镜后成为平行光入射到光栅上,衍射光经后球面镜后聚焦在出射狭缝上。光栅可在步进电机控制下旋转,从而改变入射角度和终聚焦到出射狭缝处光线的波长。控制入射光源的波长范围,确保衍射光无级次重叠,可通过控制光栅的角度唯一确定出射光的波长。 光谱仪的光探测器可以有光电管、光电倍增管、硅光电管、热释电器件和CCCD 等多种,经过光栅衍射后,到达出射狭缝的光强一般都比较弱,因此本仪器采用光电倍增管和CCD 来接收出射光。 2. 光探测器 光电倍增管是一种常用的灵敏度很高的光探测器,它由光阴极、电子光学输入系统、倍增系统及阳极组成,并且通过高压电源及一组串联的电阻分压器在阴极──打拿极(又称“倍增极”) ──阳极之间建立一个电位分布。光辐射照射到阴极时,由于光电效应,阴极发射电子,把微弱的光输入转换成光电子;这些光电子受到各电极间电场的加速和聚焦,光电子在电子光学输入系统的电场作用下到达第一倍增极,产生二次电子,由于二次发射系数大于1,电子数得到倍增。以后,电子再经倍增系统逐级倍增,阳极收集倍增后的电子流并输出光电流信号,在负载电阻上以电压信号的形式输出。

CCD 是电荷耦合器件的简称,是一种金属—氧化物—半导体结构的新型器件,在电路中常作为信号处理单元。对光敏感的CCD 常用作图象传感和光学测量。由于CCD 能同时探测一定波长范围内的所有谱线,因此在新型的光谱仪中得到广泛的应用。 3. 闪耀光栅 在光栅衍射实验中,我们了解了垂直入射时(Φ=90°)光栅衍射的一般特性。当入射角Φ=90°时,衍射强度公式为 光栅衍射强度仍然由单缝衍射因子和多缝衍射因子共同决定,只不过此时 当衍射光与入射光在光栅平面法线同侧时,衍射角θ取+号,异侧时取-号。单缝衍射中央主极大的条件是u=0,即sinΦ=-sinθ或Φ=θ。将此条件代入到多缝干涉因子中,恰好满足v=0,即0 级干涉大条件。这表明单缝衍射中央极大与多缝衍射0 级大位置是重合的(图9.1a),光栅衍射强度大的峰是个波长均不发生散射的0 级衍射峰,没有实用价值。而含有丰富信息的高级衍射峰的强度却非常低。 为了提高信噪比,可以采用锯齿型的反射光栅(又称闪耀光栅)。闪耀光栅的锯齿相当于平面光栅的“缝”。与平面光栅一样,多缝干涉条件只取决于光栅常数,与锯齿角度、形状

AFS系列原子荧光光度计作业指导书--_New

AFS系列原子荧光光度计作业指导书--_New

AFS系列原子荧光光度计作业指导书--

为规范AFS系列原子荧光光度计操作,使其精确测定物质的吸光度,制订本操作规程。 2.适用范围 本操作规程适用于AFS系列原子荧光光度计。 3.职责 3.1AFS系列原子荧光光度计操作人员必须熟知其使用说明,严格按操作规程操作,以确保其运行良好,使结果准确,并及时填写仪器使用记录,如发现异常应及时向科室负责人反应。 3.2保管人员应定期做好清洁、保养及日常维护工作。 3.3科室负责人对该仪器应指定专人负责保管,专人使用,经常询问、察看仪器的使用记录情况,定期联系法定单位检定校准,仪器发生故障应及时联系有关人员进行维修,并做好维修记录。 4.操作程序 4.1安全操作注意事项和特别提示: 4.1.1所有用到的试剂均为优级纯,试剂配制用水为娃哈哈纯净水。 4.1.2所有用到的玻璃仪器均要用20%硝酸浸泡过夜,然后用娃哈哈水冲洗干净,60°烘1 小时,待用。污染严重的器皿,可先用超声清洗。 4.1.3已清洗干净的器皿如果放置时间太长,使用前要用娃哈哈水重新冲洗。 4.1.4若样品中被测物含量很高,污染了仪器,则停止测试,立即清洗反应系统的管道、原 子化器等。 4.1.5盛放还原剂的容器应为聚乙烯塑料材质,避免使用玻璃材质。 4.1.6更换元素灯时一定要关闭主机电源。 4.1.7仪器使用前应检查二级气液分离器(水封)中是否有水。 4.1.8测量前仪器应运行预热至少半小时。 4.1.9蠕动泵管定期滴加硅油,不测量时应打开压块,不能长时间挤压泵管。 4.2 仪器操作

1.打开灯室,将待测元素的空心阴极灯插头插入灯座。注意:插头凸处对准插座的凹处插入;不能带电拔插空心阴极灯。 2.检查断续流动系统的泵头和泵管,适当补加硅油,旋转固定块将压块压住泵头。3.开启气瓶,调节气瓶减压阀至次级压力在0.2-0.3Mpa之间。 4.按微机、断续流动、主机、顺序开启电源。 二、系统设置 1.用鼠标左键双击桌面“AFS—****原子荧光光度计”,进入AFS—****软件操作系统。2.微机和主机连机通讯正常时,软件自动进入元素灯识别画面,用鼠标左键双击不需检测的元素灯符号后,按键盘删除键将其删除,确认无误后,用鼠标左键单击“确定(O)”。 3.在“文件(F)”下拉菜单中,分别选择“气路自检”、“断续流动系统自检”、“空心阴极灯自检”、“串行通信检测”,进行系统自检,自检完毕后,用鼠标左键单击“关闭(C)”,退出自检(不必每次开机时都进行自检)。 4.在“文件(F)”下拉菜单中,选择“生成新数据库”或“连接数据库”,使本次测试的所有信息及数据以一个或多个文件的形式存放在数据库中。 4.1生成新数据库:一个元素可以生成一个或几个数据库; 4.2连接数据库:对数据库已有的元素进行连接后,点击“索引”将所需文件 调出,使用调出文件的测量条件进行测量,不必每次生成数据库; 5.用鼠标左键单击“条件设置”,进入测试条件设置对话框,在该对话框中分别对“仪器条件”、“测量条件”、“断续流动程序”、“标准样品参数”、“自动进样器参数”等内容进行相关参数的设定(除对以下参数调整外,其他参数尽可能保持软件默认值)。 5.1 仪器条件:输入负高压、灯电流

光栅光谱仪的使用(北科大实验报告)

光栅光谱仪的使用实验报告 学院高等工程 师学院 班级自E152学号41518170姓名郑子亮 一、实验目的与实验仪器 【实验目的】 1.了解平面反射式闪耀光栅的分光原理及主要特性 2.了解光栅光谱仪的结构,学习使用光栅光谱仪 3.测量钨灯和汞灯在可见光范围的光谱 4.测定光栅光谱仪的色分辨能力 5.测定干涉滤光片的光谱透射率曲线 【实验仪器】 WDS-3平面光栅光谱仪(200~800nm)。汞灯,钨灯氘灯组件,干涉滤光片等。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) (1)平面反射式光栅与光栅方程 规定衍射角Θ恒为正,i与Θ在光栅平面法线的同侧为正,异侧为负。K是光谱级 对于常用的平面光栅光谱仪,谱板中心到光栅中心的连线与入射光线在同一平面内,因此,衍射角Θ可当做入射角i,光谱方程为: (2)闪耀问题 闪耀波长: 2平面光栅光谱仪结构组成 (1)光学系统 (2)电子系统 (3)光栅光谱仪操作

3.色分辨率 光栅光谱仪的色分辨率是分开两条邻近谱线能力的量度 4.滤光片光谱特性 光谱透射率为: 三、实验步骤 (要求与提示:限400字以内) 1.准备工作 开机前,需要缓慢旋转入射狭缝宽度调节旋钮,设置参数 2.校准光谱仪的波长指示值 利用氘灯波长值为486.0nm的谱线校准光谱仪,利用“数据处理”菜单的功能读出测量的氘灯光谱谱线波长,如果有偏差,用“系统操作”菜单中的“波长校正”功能进行校正3.汞灯光谱和光谱仪分辨率的测量 (1)入射缝宽和出射缝宽设定在0.15~0.20nm之间,负压-300~-600之间 (2)移去钨灯&氘灯组件,将汞灯置于入射狭缝前,进行快速全谱扫描,根据光谱测量结果进一步调节狭缝宽度、负高压等参数,使得记录的谱线高度适当,再进行一次慢速全谱扫描,保存实验数据。 4.滤色片光谱特性的测量 5.退出系统与关机 四、数据处理 (要求与提示:对于必要的数据处理过程要贴手算照片) 1. (1)汞灯光谱

直读光谱仪讲义 第一章 直读光谱仪的概况

第一章直读光谱仪的概况 国内外光电直读光谱仪的发展 光谱起源于17世纪,1666年物理学家牛顿第一次进行了光的色散实验。他在暗室中引入一束太阳光,让它通过棱镜,在棱镜后面的自屏上,看到了红、橙、黄、绿、兰、靛、紫七种颜色的光分散在不同位置上——即形成一道彩虹。这种现象叫作光谱.这个实验就是光谱的起源,自牛顿以后,一直没有引起人们的注意。到1802年英国化学家沃拉斯顿发现太阳光谱不是一道完美无缺的彩虹,而是被一些黑线所割裂。 1814年德国光学仪器专家夫琅和费研究太阳光谱中的黑斑的相对位置时.把那些主要黑线绘出光谱图。 1826年泰尔博特研究钠盐、钾盐在酒精灯上光谱时指出,发射光谱是化学分析的基础、钾盐的红色光谱和钠盐的黄色光谱都是这个元素的特性。 到1859年克希霍夫和本生为了研究金属的光谱自己设计和制造了一种完善的分光装置,这个装置就是世界上第一台实用的光谱仪器,研究火焰、电火花中各种金属的谱线,从而建立了光谱分析的初步基础。 从1860年到1907年之间、用火焰和电火花放电发现碱金属元素铯Cs、1861年又发现铷Rb和铊Tl,1868年又发现铟In和氦He。1869年又发现氮N。1875~1907年又相继发现镓Ga,钾K,铥Tm,镨Pr,钋Pe,钐Sm,钇y,镥Lu等。 1882年,罗兰发明了凹面光栅,即是把划痕直接刻在凹球面上。凹面光栅实际上是光学仪器成象系统元件的合为一体的高效元件,它解决了当时棱镜光谱仪所遇到的不可克服的困难。凹面光栅的问世不仅简化了光谱仪器的结构,而且还提高了它的性能。 波耳的理论在光谱分析中起了作用,其对光谱的激发过程、光谱线强度等提出比较满意的解释。 从测定光谱线的绝对强度转到测量谱线的相对强度的应用,使光谱分析方法从定性分析发展到定量分析创造基础。从而使光谱分析方法逐渐走出实验室,在工业部门中应用了。 1928年以后,由于光谱分析成了工业的分析方法,光谱仪器得到迅速的发展,一方面改善激发光源的稳定性,另一方面提高光谱仪器本身性能。 最早的光源是火焰激发光谱;后来又发展应用简单的电弧和电火花为激发光源,在上世纪的三十、四十年代改进采用控制的电弧和电火花为激发光源,提高了光谱分析的稳定性。工业生产的发晨,光谱学的进步,促使光学仪器进一步得到改善,而后者又反作用于前者,促进了光谱学的发展和工业生产的发展。 六十年代光电直读光谱仪,随着计算机技术的发展开始迅速发展。由于计算机技术的发展,电子技术的发展,电子计算机的小型化及微处理机的出现和普及,成本降低等原因、于上世纪的七十年代光谱仪器几乎100%地采用计算机控制,这不仅提高了分析精度和速度,而且对分析结果的数据处理和分析过程实现自动化控制。 解放后,我国的光谱仪器工业从无到有,由小到大,得到飞跃的发展,且具有一定的规模,与世界先进技术竞争中求生存,社会商品竞赛中得到发展。 1958年开始试制光谱仪器,生产了我国第一台中型石英摄谱仪,大型摄谱仪,单色仪等。中科院光机所开始研究刻制光栅,59年上海光学仪器厂,63年北京光学仪器厂开始研究刻制光栅,63年研制光刻成功。1966—1968年北京光学仪器厂和上海光学仪器厂先后研制成功中型平面光栅摄谱仪和一米平面光栅摄谱仪及光电直读头。1971—1972年由北京第二光学仪器厂研究成功国内第一台WZG—200平面光栅光量计,结束了我国不能生产光电直读光谱仪的历史。 八十年代以来,我国铸造行业开始引进光电直读光谱仪作为熔炼过程中化学成份控制的分析手段,并逐步取代了我国传统的湿法化学分析法,至今已发展到中小企业也逐步采用光谱法配合作炉前分析。

原子荧光光度计培训试题(答案)

AFS—230E原子荧光光度计培训考试试题 选择题 1、在以下说法中, 正确的是( 2 ) (A) 原子荧光分析法是测量受激基态分子而产生原子荧光的方法 (B) 原子荧光分析属于光激发 (C) 原子荧光分析属于热激发 (D) 原子荧光分析属于高能粒子互相碰撞而获得能量被激发 2、原子化器的主要作用是:( 1 ) (A)将试样中待测元素转化为基态原子 (B)将试样中待测元素转化为激发态原子 (C)将试样中待测元素转化为中性分子 (D)将试样中待测元素转化为离子 3、在原子荧光法中, 多数情况下使用的是( 4 ) (A)阶跃荧光 (B)直跃荧光 (C)敏化荧光 (D)共振荧光 4、原子荧光的量子效率是指( 3 ) (A)激发态原子数与基态原子数之比 (B)入射总光强与吸收后的光强之比 (C)单位时间发射的光子数与单位时间吸收激发光的光子数之比 (D)原子化器中离子浓度与原子浓度之比 5、下述哪种光谱法是基于发射原理?( 2 ) (A) 红外光谱法 (B) 荧光光度法 (C) 分光光度法 (D) 核磁共振波谱法 二、填空题 1、原子荧光光谱仪一般由四部分组成:、、和。 答案:光源(激发光源)、原子化器、光学系统(单色仪)、检测器 2、原子荧光光谱仪的检测部分主要包括、以及放大系统和输出装置。 答案:分光系统、光电转换装置 3、在原子荧光分析的实际工作中,会出现空白大于样品强度的情况,这是因为空白溶液中不存在的原因。 答案:荧光、干扰 4、在原子荧光分析中,样品分析时,标准溶液的应和样品完全一致,同时必须做。 答案:介质、空白 5、AFS仪器的光源中,微波源入射功率直接影响测定结果和也影响无极放电灯的使用寿命。答案:精确度、准确度 三、判断题 1、原子荧光光谱仪的光电倍增管对可见光无反应,因此可以把仪器安装在日光直射或光亮处。()

直读光谱仪

TECHNICAL DOCUMENT 技术文件 ARL 3460 金属分析仪(直读光谱仪)制造商:Thermo Scientific(瑞士)

1. Scope of Supply 供货范围 No. 序号 Ref. No. 参考号 Description 说明 Qty.数量 1 OE-34ADV A RL 3460 Advantage Metals Analyzer ARL 3460AD 金属分析仪 1 ? One meter focal length, Paschen-Runge polychromator made of cast iron 一米焦距,帕邢龙格装置,光谱室由特殊铸铁制造; ? Vacuum spectrometer 真空型光谱室 ? Temperature controlled to 38 ±0.1o C 温控系统 (38±0.1o C); ? MBS 201/I argon stand MBS 201/I 充氩激发台; ? Spark table with diam. 16mm hole & electrode holder assembly 直径16mm 的火花激发台,包括电极夹具装置; ? Cooling system for spark table 激发台水冷系统 ? HiRep II excitation source with High Energy Prespark capacity, 400Hz 具有高能预火花能力的HiRep II 高重复率火花激发光源,400Hz ; ? Integral measuring electronics section 积分测量电子部分; ? Status control card ? Diagnostics 光谱仪状态控制卡 ? 具有自诊断功能 OXSAS OXSAS analytical software OXSAS 分析软件(中文分析软件) 1 OXSAS analytical software OXSAS 分析软件,主要功能如下: ? Graphic user interface. Navigation, operation and display through HTML pages using Internet Explorer; 图解式用户界面;使用Explorer 浏览器,通过HTML 页面进行导航、操作和显示。? Shortcuts for analyses and other ordinary tasks with one click; 使用单键捷径式操作进行分析和其他日常任务操作。 ? Automatic analytical program choice;自动分析程序选择。 ? Manual input of values;手工数据出入。 ? Flexible result display and printing;灵活的分析结果显示和打印。 ? Quality check & quality sort;质量检查和分类。 ? Concentration result recalculation;浓度结果再计算; ? Instrument control with on-line integrated SPC-Basic; 基于在线式基本SPC 技术的仪器控制。 ? Instrument standardization and type standardization with audit trail; 采用检查跟踪方式进行仪器标准化和类型标准化。 ? Software and instrument configuration tools and utilities; 软件和仪器配置工具及应用。 ? Result storage. Basic post-treatment and export to popular software applications;结果存储;基本的处理后管理并输出到通用的应用软件中。 ? Result validation and edition, with audit trail; 采用检查跟踪方式对分析结果进行确认和编辑。

原子荧光实验讲义

实验二原子荧光光谱法测量水样中总砷的含量 一、实验目的 1.了解原子荧光光谱仪的基本结构及使用方法; 2.掌握原子吸收光谱分析测量条件的选择方法及测量条件的相互关系及影响,确定各 3. 掌握原子荧光光谱分析测定水样中总砷含量的方法 二、方法原理 原子荧光光谱仪工作原理: 在一定工作条件下,荧光强度I F与被测元素的浓度c成正比,其关系如下: I F= K c 氢化物发生原理: BH4-+ H++ 2As3+ +3H2O →2AsH3↑+H2↑+ BO33- 生成的AsH3蒸汽在载气的带动下,经过火焰原子化,As原子接受由低压砷灯发出激发光照射,基态砷原子被激发到高能态,当返回到基态时辐射出共振荧光,此荧光经聚光镜聚焦于光电倍增管,实现光电转换,最后得到信号。 在原子荧光光谱分析中测量条件选择得是否正确,直接影响到分析方法的检出限、精密度和准确度。本实验通过砷的原子荧光光谱分析测量条件的选择,如灯电流、载气流量等,确定这些测量条件的最佳值。 三、仪器设备与试剂材料 1.PF6型原子荧光光谱仪(北京普析通用),砷高强度空心阴极灯。 2.试剂: (1)砷标准贮备液(1000u g?mL-1):国家标准。 (2)砷实验工作溶液(1u g?mL-1):由砷标准贮备液1000u g?mL-1逐级稀释得到。 (3)硫脲溶液(100g?L-1):称取硫脲10g,加入80mL蒸馏水,水浴加热溶解,蒸馏水稀至100mL,摇匀。 (4)硼氢化钠-氢氧化钠溶液(15g?L-1):称取5g氢氧化钠溶于200mL蒸馏水,加入15g硼氢化钠并使其溶解,用蒸馏水稀至1000mL,摇匀。 (5)2% 盐酸溶液(v/v):移取20ml HCl(GR),用蒸馏水稀释至1000mL,摇匀。 (6)(1+1)盐酸溶液(v/v)。 三、四、测量条件的选择及样品的测定 1.10ng?mL-1标准溶液的配制 移取1mL砷工作溶液(1u g?mL-1),加入4mL(1+1)HCl和10mL硫脲溶液,用蒸馏水定容至100mL,摇匀。 2.水样的配置

光栅光谱仪的使用实验报告-董芊宇

实验报告 题目: 光栅光谱仪的使用 姓名董芊宇 学院理学院 专业应用物理学 班级2013214103 学号2013212835 班内序号22 2015年9 月

一. 实验目的 1. 了解光栅光谱仪的工作原理。 2. 学会使用光栅光谱仪。 二. 实验原理 1.闪耀光栅 在光栅衍射实验中,我们了解了垂直入射时(φ=90?)光栅衍射的一般特性。当入射角φ=90?时,衍射强度公式为 22 2 sin sin sin I u Nv A u v = ???? ? ????? (9.1) 光栅衍射强度仍然由单缝衍射因子和多缝干涉因子共同决定。只不过此时 ()sin sin a u π φθλ= + (9.2) ()sin sin d v πφθλ =+ (9.3) 当衍射光与入射光在光栅平面法线同侧时,衍射角θ取+号,异侧时取-号,单缝衍射中央主 极大的条件是0u =,即sin sin φθ=-或?θ=-。将此条件代入到多缝干涉因子中,恰好满足0v =,即0级干涉最大条件。这表明单缝衍射中央极大与多缝衍射0级最大位置是重合的,光栅衍射强度最大的峰是个波长均不发生散射的0级衍射峰,没有实用价值。而含有丰富信息的高级衍射峰的强度却非常低。 为了提高信噪比,可以采用锯齿形的反射光栅(又称闪耀光栅)。闪耀光栅的锯齿相当于平面光栅的“缝”,与平面光栅一样,多缝干涉条件只取决于光栅常数,与锯齿角度、形状无关。所以当光栅常数及入射角与平面光栅一样时,两者0级极大的角度也一样。闪耀光栅的沟槽斜面相当于单缝,衍射条件与锯齿面法线有关。中央极大的衍射方向与入射线对称于齿面法线N ,于是造成衍射极大与0级干涉极大方向不一致。适当调整光栅参数,可以使光栅衍射的某一波长最强峰发生在1级或其他高级干涉极大的位置。 2.非平衡光辐射(发光) 处于激发态上的电子处于非平衡态。它向低能级跃迁时就会发光。设电子跃迁1 E 和0E ,发 射光子的能量为 10hc hv E E E λ ==-=? (9.4) 电子受光辐射激发到高能态上导致的发光成为光致发光。光致发光时,电子在不同能级间跃迁常见如下情况。 (1) 电子受光辐射激发,然后以无辐射情况跃迁到低能级。(无发射跃迁释放的能量转化成热能

(整理)光栅光谱仪与光谱分析 讲稿

光栅光谱仪与光谱分析 一、 实验目的 1、进一步掌握光栅的原理 2、了解光电倍增管和线阵CCD 及其在光谱测量中的应用 3、学习摄谱、识谱和谱线测量等光谱研究的基本方法 4、通过测量氢光谱可见谱线的波长,验证巴尔末公式的正确性,从而对玻尔理论的实验基础有具体的了解。力求准确测定氢的里德伯常数,对近代测量达到的精度有一初步了解。 二、实验原理 光谱分析是研究原子和分子结构的重要手段,现有关于原子结构的知识,大部分来源于各种原子光谱的研究。通过光谱研究,可以得到所研究物质中含有元素的组分和原子内部的能级结构及相互作用等方面的信息。在光谱分析中,用于分光的光谱仪器和检测光的光探测器对分析结构有着决定性作用 1) 光栅光谱仪分光原理与参数 光栅是光栅光谱仪的核心,其分光原理如下: 1. 平面反射光栅的构造与光栅方程 目前最广泛应用的是平面反射光栅,它是在玻璃基板上镀上铝层,用特殊刀具刻划出许多平行而且间距相等的槽面而成,如图1所示。大量生产的平面反射光栅每毫米的刻槽数目为600条、1200条、1800条和2400条。铝在近红外区和可见光区的反射系数都较大,而且几乎是常数,在紫外区的反射系数比金和银都大,加上它比较软,易于刻划,所以通常都用铝来刻制反射光栅。我们将看到,在铝层上只要刻划出适当的槽形,就能把光的能量集中到某一极,克服透射光栅光谱线强度微弱的缺点。铝制反射光栅几乎在红外、可见光和紫外区都能用。用一块刻制好的光栅(称原制光栅或母光栅)可以复制出多块光栅。由于这些优点,反射光栅在分光仪器中得到越来越多的应用。 在图1中,衍射槽面(宽度为a )与光栅 平面的夹角为θ,称为光栅的闪耀角。当平行光 束入射到光栅上,由于槽面的衍射及各个槽面衍 射光的叠加,不同方向的衍射光束强度不同。考 虑槽面之间的干涉,当满足光栅方程 (sin sin )d i m βλ±= (1) 时,光强度将出现极大。式中i 及β分别是入射光及衍射光与光栅平面法线的夹角(入射角和衍射角)。d 为光栅常数,m=±1,±2,±3,…,为干涉级,λ是出现极大值的波长。当入射线与衍射线在法线同侧时,公式取正号,异侧取负号。 由式(1)可知,当入射角i 一定时,不同的波长对应不同的衍射角,因而经光栅衍射后按不同方向排列成光谱,成像于谱面中心的谱线波长称为中心波长。本仪器采用的光路,对中心波长λ0而言,入射角与衍射角相等,i =β(图2),这种布置方式称为littrow 型,因此对中心波长λ0有 图1 光栅刻槽断面示意图

光栅光谱仪实验报告

光栅光谱仪的使用 学号2015212822 学生姓名张家梁 专业名称应用物理学(通信基础科学)所在系(院)理学院 2017 年3 月14 日

光栅光谱仪的使用 张家梁 1 实验目的 1. 了解光栅光谱仪的工作原理。 2. 学会使用光栅光谱仪。 2实验原理 1. 光栅光谱仪 光栅光谱仪结构如图所示。光栅光谱仪的色散元件为闪耀光栅。入射狭缝和出射狭缝分别在两个球面镜的焦平面上,因此入射狭缝的光经过球面镜后成为平行光入射到光栅上,衍射光经后球面镜后聚焦在出射狭缝上。光栅可在步进电机控制下旋转,从而改变入射角度和终聚焦到出射狭缝处光线的波长。控制入射光源的波长范围,确保衍射光无级次重叠,可通过控制光栅的角度唯一确定出射光的波长。 光谱仪的光探测器可以有光电管、光电倍增管、硅光电管、热释电器件和CCCD 等多种,经过光栅衍射后,到达出射狭缝的光强一般都比较弱,因此本仪器采用光电倍增管和CCD 来接收出射光。

2. 光探测器 光电倍增管是一种常用的灵敏度很高的光探测器,它由光阴极、电子光学输入系统、倍增系统及阳极组成,并且通过高压电源及一组串联的电阻分压器在阴极──打拿极(又称“倍增极”) ──阳极之间建立一个电位分布。光辐射照射到阴极时,由于光电效应,阴极发射电子,把微弱的光输入转换成光电子;这些光电子受到各电极间电场的加速和聚焦,光电子在电子光学输入系统的电场作用下到达第一倍增极,产生二次电子,由于二次发射系数大于1,电子数得到倍增。以后,电子再经倍增系统逐级倍增,阳极收集倍增后的电子流并输出光电流信号,在负载电阻上以电压信号的形式输出。 CCD 是电荷耦合器件的简称,是一种金属—氧化物—半导体结构的新型器件,在电路中常作为信号处理单元。对光敏感的CCD 常用作图象传感和光学测量。由于CCD 能同时探测一定波长范围内的所有谱线,因此在新型的光谱仪中得到广泛的应用。 3. 闪耀光栅 在光栅衍射实验中,我们了解了垂直入射时(Φ=90°)光栅衍射的一般特性。当入射角

光栅光谱仪实验报告(终审稿)

光栅光谱仪实验报告公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

光栅光谱仪的使用 学号 22 学生姓名张家梁 专业名称应用物理学(通信基础科学)所在系(院)理学院 2017 年 3 月 14 日

光栅光谱仪的使用 张家梁 1 实验目的 1. 了解光栅光谱仪的工作原理。 2. 学会使用光栅光谱仪。 2实验原理 1. 光栅光谱仪 光栅光谱仪结构如图所示。光栅光谱仪的色散元件为闪耀光栅。入射狭缝和出射狭缝分别在两个球面镜的焦平面上,因此入射狭缝的光经过球面镜后成为平行光入射到光栅上,衍射光经后球面镜后聚焦在出射狭缝上。光栅可在步进电机控制下旋转,从而改变入射角度和终聚焦到出射狭缝处光线的波长。控制入射光源的波长范围,确保衍射光无级次重叠,可通过控制光栅的角度唯一确定出射光的波长。 光谱仪的光探测器可以有光电管、光电倍增管、硅光电管、热释电器件和 CCCD 等多种,经过光栅衍射后,到达出射狭缝的光强一般都比较弱,因此本仪器采用光电倍增管和 CCD 来接收出射光。 2. 光探测器

光电倍增管是一种常用的灵敏度很高的光探测器,它由光阴极、电子光学输入系统、倍增系统及阳极组成,并且通过高压电源及一组串联的电阻分压器在阴极──打拿极(又称“倍增极”) ──阳极之间建立一个电位分布。光辐射照射到阴极时,由于光电效应,阴极发射电子,把微弱的光输入转换成光电子;这些光电子受到各电极间电场的加速和聚焦,光电子在电子光学输入系统的电场作用下到达第一倍增极,产生二次电子,由于二次发射系数大于 1,电子数得到倍增。以后,电子再经倍增系统逐级倍增,阳极收集倍增后的电子流并输出光电流信号,在负载电阻上以电压信号的形式输出。 CCD 是电荷耦合器件的简称,是一种金属—氧化物—半导体结构的新型器件,在电路中常作为信号处理单元。对光敏感的 CCD 常用作图象传感和光学测量。由于 CCD 能同时探测一定波长范围内的所有谱线,因此在新型的光谱仪中得到广泛的应用。 3. 闪耀光栅 在光栅衍射实验中,我们了解了垂直入射时(Φ=90°)光栅衍射的一般特性。当入射角Φ=90°时,衍射强度公式为 光栅衍射强度仍然由单缝衍射因子和多缝衍射因子共同决定,只不过此时

20140224光栅光谱仪实验要求

光栅光谱仪 实验仪器 WGD-5型组合式多功能光栅光谱仪,滤色片一组(红绿蓝),汞灯,溴钨灯,水,玻璃片。 预习思考题 1.简述工作原理(不可照抄课本),在此基础上画出光栅光谱仪的光路图,。 2.改变光谱仪入射或出射狭缝的大小会对测量结果有什么影响? 3.测量透过率曲线对光源有什么要求?汞灯是合适的光源吗? 4.水和玻璃是什么颜色的?为什么? 实验内容 一. 测量前的准备(自带U 盘) (1) 记录螺旋尺旋转方向与缝宽变化的关系。 (2) 打开单色仪的电源开关,打开汞灯、溴钨灯电源,预热5min。 (3) 将倍增管的高压调至400V(不得超过600V)。 (4) 打开计算机,进入win98 后,双击“WGD-5 倍增管”图标进入工作界面。待系统和波长初始化完成后便可以工作。 二. 单色仪波长校准 探测器选用光电倍增管,高压加到400伏。在能量模式下测量汞灯光谱。扫描范围300-750nm,扫描步长选1nm。用“自动寻峰”测量谱线波长,与标准值比较,如果波长差大于1nm,进行波长修正。 说明:光源:汞灯 参数设置:工作方式:模式“能量”,间隔“1nm”;工作范围:300—750nm。 狭缝宽度调节,使入射缝与出射缝相匹配。 点击“单程”,单色仪开始扫描。 扫描完成根据谱线强度重新调整入射和出射狭缝,使谱线尽量增高,并使黄线 576.9nm、579.0nm 分开 (以划线谱线作为参照) (汞灯谱线:波长(nm)365.02、404.66、407.78、435.83、546.07、576.96、579.07、623.4) 三. 测量滤色片透过率曲线 光源:取下高压汞灯,换上溴钨灯 1. 扫描基线 工作方式:模式“基线”。 点击“单程”,单色仪开始扫描。调节入射缝的缝宽使基线的峰值达到900以上; 扫描结束后,点击“当前寄存器”列表框右侧“---”,在弹出的“环境信息”填入信息,然后关闭。保存该寄存器的数据,选用“txt”的文本格式。 2. 扫描透过率曲线 打开样品池顶盖,将一个滤色片放在入射狭缝的前面,盖上顶盖。

相关文档
最新文档