叶轮式水表的工作原理及结构

叶轮式水表的工作原理及结构
叶轮式水表的工作原理及结构

叶轮式水表的工作原理及结构

叶轮式水表的工作原理与涡轮式流量计类似,当水以一定流速流过水表时,水表的叶轮转动,其转速n和水流的速度U成正比,即

式中:n——叶轮转速,r/s;

U ——水流速度,m/s;

C——比例系数。

如以转速和流量的关系表示,可写为

式中:Q——流过水表的水流量,m3/s;

A——流通面积,m2。

应用积算机构累计旋转叶轮的转速,可算出在一定时间内流经水表的水的总量。

叶轮式水表的分类及其简要特点列于表3-3。

压气机转子叶片的故障分析与维护

提高发动机操纵系统可靠性的维修 【摘要】 在现代技术进步与之密切相关的最迫切的问题当中,压气机叶片质量和维护问题占据着主导的地位,起着十分重要的作用。 论文以维护发动机压气机叶片为目的,以发动机压气机转子叶片的组成,安装技术,压气机叶片的故障分析和各种故障的维修方式,以及常用典型发动机压气机叶片的维护作为主要内容,全面的根据发动机压气机叶片的故障特点对发动机压气机叶片的修理进行论述。 关键词:压气机转子叶片喷丸强化维修 Abstract: In the modern technological progress is closely related with the most pressing problem, compressor blade quality and maintenance problems to occupy a dominant position, plays a very important role. On the maintenance of the engine compressor blade for the purpose, with the engine compressor rotor blade is composed of compressor blade, installation technology, fault analysis and fault repair, as well as the typical engine compressor blade maintenance as the main content, comprehensive according to engine compressor blade fault characteristics of engine compressor blade repair are discussed. Key word:Aeroengine control system reliability maintenance

轴流式压气机工作原理(伯努利方程)

进口、收缩器、导向叶片(导叶)、动叶片、转子、扩压器、出口 增压原理:伯努利方程,气体从进口流入压气机,经收缩器时流速得到初步提高,进口导向叶片使气流改为轴向,同时还起扩压管的作用,使压力有所提高。转子在外力作用下作高速转动,固装在转子上的动叶片推动气流,使气流获得很高的流速。高速气流进入导叶(静叶),气流动能降低而压力升高,相邻导叶叶片间的通道相当于一个扩压管。气体流经每一级连续进行类似的过程,使气体压力逐渐升高 伯努利方程:理想正压流体在有势体积力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程。因著名的瑞士科学家 D.伯努利于1738年提出而得名。对于重力场中的不可压缩均质流体,方程为: 式中p、ρ、v分别为流体的压强、密度和线性速度;h为铅垂高度;g为重力加速度;c为常量。 上式各项分别表示单位体积流体的压力能p、重力势能ρgh和动能(1/2)*ρv ^2,在沿流线运动过程中,总和保持不变,即总能量守恒。但各流线之间总能量(即上式中的常量值)可能不同。对于气体,可忽略重力,方程简化为p+(1/2)*ρv ^2=常量(p0),各项分别称为静压、动压和总压。显然,流动中速度增大,压强就减小;速度减小,压强就增大;速度降为零,压强就达到最大(理论上应等于总压)。飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小,因而合力向上。据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理。在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间。在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项[1]。

水表结构和测量原理

水表结构和测量原理 1电池供电超声水表特点和测量原理及安装要求 1.1水表特点 电池供电超声水表介质流速范围0.01~32.00m/s,准确度(0.5~1),无任何活动的机械部件,无压力损失和磨损,具有测量精度长期不发生变化且运行稳定,可靠的特点,用户无需设置参数,可任意角度安装。标准单节电池可连续工作6年,选配电池可连续工作10年以上。空管状态自动进入省电模式,满管状态自动进入正常测量模式。 1.2水表结构和测量原理 电池供电超声水表的测量原理是利用超声波换能器产生超声波并使其在水中传播,声波在水中传播,顺流方向传播速度增大,逆流方向则减小,同一传播距离有不同的传播时间,当超声波在流动的水中传播时产生传播速度差,该速度差与水的流速成正比。水表由换能器,电子线路及流量显示,累积等系统组成,超声波发射换能器将电能转换为超声波能量,并将其发射到被测流体中,接收器接收到的超声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算,实现了流量的测量。 1.3水表安装及应用注意事项 安装超声水表,要选择流体流场分布均匀的部位,保证有足够的直管段长度,使流体形成稳定的速度分布。一般要求前直管段长度为10倍管径,后直管段长度为5倍管径。另外,要尽量远离机泵和阀门,如果有机泵,前直管段长度一般要求50倍管径,如果有流量控制阀,前直管段长度一般要求30倍管径,如果直管段长度达不到要求,测量准确度将会下降。 a)管道参数。在旧管线上安装超声水表时,一定要准确地得到管道的参数,如管道的外径,壁厚等,以求得准确的测量结果。 b)安装方式。由于管道中的气泡和杂质会反射和衰减超声波信号,给测量带来很大误差,所以在安装时一定要选择正确的安装方式。超声水表在倾斜和水平管道上安装时,应该水平安装,这样可使气泡聚集在管道上方,大的杂质则沿着管道的底部流动,尽可能使超声水表探头处于和水平面成45#角的范围内。另外,超声水表安装的部位要有一定的背压,保证管道内充满流体,没有气泡或者气泡较少以保证测量精度。 信号强度和信号良度检查。信号强度表示上下游探头的信号强度,信号良度表示上下两个传输方向的信号峰值,可以辅助判断接受信号的优良程度。 传输时间和传输时差的检查。传输时间表示超声波平均的传输时间,传输时差表示超声波上下游传输时间差。这两个信号是超声水表计算流速的主要依据,特别是传输时间差最能反应超声水表工作是否稳定。如果这两个信号不稳定,应检查传感器探头安装点是否合适,设置数据是否正确。 e)应用注意事项。安装不合理是超声水表不能正常工作的主要原因。安装时需要考虑位置的确定,除保证足够的上,下游直管段外,尤其要注意换能器尽量避开有变频调速器,机泵等污染电源的场合。 及时核校是确保超声波准确计量的前提:坚持一装一校,即对每一台新安装超声水表在调试时进行核校,确保选位好,安装好,测量准;对在线运行的超声水表发生流量突变时,利用便携式超声波流量计进行及时核校,查清流量突变的原因,确定是超声水表发生故障还是流量发生了变化。 定期维护是确保超声波长期运行的基础工作,与其他流量仪表相比,超声水表的维护量比较小,定期检查流量计与管道之间的法兰连接是否良好,并考虑现场温度和湿度对其电子

水表的结构和工作原理

水表的结构和工作原理 第一节旋翼式水表 旋翼式水表是速度式水表的一种,是世界上用得最多的水表品种。 在国家标准中,速度式水表的定义为“安装在封闭管道中,由一个动力元件组成,并由水流速直接使其获得运动的一种水表”。当水流通过水表时,驱动叶轮(旋翼或螺翼)旋转,而水流的流速与叶轮的转速成正比,因水流驱动叶轮处喷口的截面积为常数,故叶轮的转速与流量也成正比。通过叶轮轴上的联动部件与计数机构相连接,使计数机构累积叶轮(旋翼或螺翼)的转数,从而记下通过水表的水量。 一、多流束水表 多流(束)水表:水流通过水表时,有多束(股)水流从叶轮盒四周流人,驱动叶轮旋转。这种水表的公称口径一般为15mm~150mm。 旋翼多流束式水表由表壳、中罩、表玻璃、密封垫圈、计量机构、计数机构和滤水网等组成。水流冲击叶轮后,叶轮开始转动,所转圈数通过计数机构累计,记录显示通过水表的水量。见图2-1和2-2。 图2-l 旋翼多流束水表的结构示意图 1-接管;2-连接螺母;3-接管密封垫圈;4-铅封;5-铜丝;6-销子;7-O形密封垫圈; 8-叶轮计量机构;9-罩子;10-盖子;11-罩子衬垫;12-表壳;1-碗状滤丝网

图2—2 旋翼多流束水表的结构展开图 1-表盖;2-轴销;3-铜罩;4-罩子衬垫;5-表玻璃;6-O形密封圈;7-计数器;8-防磁环;9-中心齿轮,10-齿轮盒;11-垫圈;12-磁钢座;13-叶轮;14-叶轮盒;15-表壳;16-调节螺钉;17-调节螺钉垫片;18-调节塞;19-滤水网;20-接管垫片;21-接管;22-连接螺母 多流束水表的总体尺寸和连接方式见表2—1。 表2—Ⅱ旋翼式多流束水表的总体尺寸和连接方式mm

智能水表方案工作原理及应用

智能水表方案工作原理及应用 点击次数:1002 发布时间:2011-5-24 水表的发展已有近二百年的历史,在开始阶段相当长的一段时间里,英法日德等国家的水表一直占据着中国水表行业。随着城市供水事业的发展,中国的水表工业也相应地发展起来,从20世纪90年代开始,各种智能型水表、水表抄表系统等产品也开始兴起。 尽管,目前国内的水表市场仍然以机械表为主,但是从发展角度来看,智能化是一种必然的趋势,可以节省人工,提高抄表的准确度,更可以实现阶梯化收费,有效的利用有限的水资源。 水表的电源一般由水表自行供给,这就对水表的功耗提出了苛刻的要求。国际规定,智能水表的静态电流应该小于30μA,实际中水表厂商都把该指标控制在10μA以内(使用干簧管时),保证工作时间大于6年以上才算合格。NEC带LCD控制功能的8位微控制器以其低功耗、高性能等优势,成为水表微控制器的优质选择。 NEC山梨MR和Renesas MCU水表方案: 该方案的工作原理为:在叶轮上装上磁铁,由磁场感应器(MR Sensor)感知出叶轮的旋转。磁场感应器(MR Sensor)把磁场信号转变成电信号,再由单片机进行计量的加法或减法运算,运算值由液晶显示或对外部输出。 方案结构框图如下:

Renesas(原NEC)水表方案结构框图 Renesas MCU——78K0/Lx3微控制器介绍 Renesas电子78K0/Lx3微控制器是高性能8位通用微控制器,采用原NEC电子的78K0内核,有48Pin~80Pin的多种封装,内置4Com/8Com 模式的LCD驱动,可以驱动的LCD段数高达288段。 ●LCD驱动器 最大可实现36*8段位控制,共有6种显示模式供选择,内/外部分组电压。 ●CSI通讯模块1~2 可与IC卡接收器、短距离无线收发器、超声波流量传感器进行通讯 ●丰富的比较/触发定时器 采集流量传感器信号并精确计算出流量 ●EEPROM模拟功能 通过flash的数据烧写及特殊的管理方式代替EEPROM对重要数据进行存储 ●振荡电路 78K0/Lx3微控制器内置高精度8MHz振荡电路,并且可以通过寄存器去控制内部振荡电路的快慢。对于不需要实时时钟的水表,可以节约成本,加快软件开发进度。如果需要使用RTC,则需要外接32.768kHz的振荡器,可以轻松实现阶梯复费率水费。 ●功耗

压气机叶片磁粉探伤

压气机叶片磁粉探伤方法 1.范围 本标准规定了汽轮机叶片的湿法磁粉探伤。 本标准适用于检测叶片表面及近表面的裂纹、发纹及其他缺陷。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均 为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 G B / T 9 4 4 5 - 1 9 8 8 无损检测人员技术资格鉴定通则 G B / T 1 2 6 0 4 . 5 -1 9 9 0 无损检测术语磁粉检测 J B / T 8 2 9 0 - 1 9 9 8 磁粉探伤机 3 定义 本标准所用的术语定义符合 G B / T 1 2 6 0 4 . 5 中的有关规定 4 检测人员要求 4 . 1 磁粉检测人员应按 G B / T 9 4 4 5 规定取得技术资格证书 4 . 2 磁粉检测应由具有磁粉探伤I 级以上资格证书者进行磁粉探伤,由具有磁粉探伤I 级以上资格证 书者签发检测报告,以保证探伤结果的可靠性。 5 检测设备 5 . 1 叶片探伤用磁粉探伤机应符合J B / T 8 2 9 。中的技术要求。推荐采用固定式磁粉探伤机。对被检 叶片,按本标准 8 . 1 - 8 . 7 的规定,该机应能产生足够强的磁场。 5 . 2 磁粉探伤机应安装周向磁化电流和纵向磁化安匝数等指示表,指示误差不得超过示值的上 5 写,每 年至少校准指示表一次。 5 . 3 具有何种方式的磁化装置,则应具有相应方式的退磁装置 5 . 4 磁粉撒布装置应包括储液箱及喷洒机构,储液箱应安装搅拌器。 5 . 5 应具有剩磁检查仪。 5 . 6 应安装照明灯,被检区域的光照度不得低于 3 5 0 I x 5 . 7 当采用荧光法检测时,在暗室内观察磁痕,暗室内其可见光照度应不大于 2 0 I x ,所使用的紫外线 灯在工件表面的紫外线强度应不低于 1 0 0 0 p W / c m ` , 紫外线波长应在0 . 3 2 ^ - 0 . 4 0 p m 范围内。 6 叶片的表面准备 6 . 1 被检叶片的表面应干燥、无污物和锈斑等。 6 . 2 被检叶片表面的表面粗造度 R a 最大允许值为 1 . 6 0 K m . 6 . 3 如果要对叶片进行表面处理( 如电镀、喷涂等) ,磁粉探伤应在表面处理前进行。 6 . 4 如果必须在表面处理后进行磁粉探伤,可由供需双方协商解决。但用直接通电法时,须保证通电 触点处露出金属本底,确保通电良好 7 磁粉及其磁悬液 叶片磁粉探伤允许采用荧光磁粉或非荧光磁粉。

水表抄表装置的原理及设计

水表抄表装置的原理及设计 今天为大家介绍一项国家发明授权专利——水表抄表装置。该专利由芜湖职业技术学院申请,并于2017年12月8日获得授权公告。 内容说明本发明涉及水表抄表装置。 发明背景水表,是一种测量水的使用量的装置。常见于自来水的用户端,其度数用以计算水费的依据。水表通常总测量单位为立方英尺(ft3)或是立方米(m3)。 现阶段的水表远程抄表系统将现场计量仪表及变送器的数据通过GPRS无线通讯的方式传输到监控抄表中心,在监控抄表中心对数据进行统一汇总、分析,为管理及收费提供依据。平升水表远程抄表系统广泛适用于水利、热力、燃气、石油、工矿企业等行业用户。 目前无法准确实现水表的数据读取,亟需设计一种水表抄表装置。 发明内容本发明的目的是提供一种水表抄表装置,该水表抄表装置克服了现有技术中无法准确实现水表的数据读取的问题,实现了水表读数的准确读取。 该水表抄表装置包括脉冲发射装置、脉冲接收装置、中控器和安装支架,安装支架卡合于水表的上表面,且脉冲发射装置和脉冲接收装置固接于安装支架;脉冲发射装置朝向水表的指针所在处发送激光,在指针旋转过程中,当激光照射至空白处时,脉冲接收装置接收不到该激光,当激光照射至指针上时,脉冲接收装置能够接收到该激光,并通过中控器对接收到激光的次数进行计数后计算流量数值。 安装支架包括:安装卡扣和调节机构,安装卡扣卡合于水表的上表面,且调节机构设置于安装卡扣的上方,且脉冲发射装置和脉冲接收装置设置于调节机构上,以进行位置的调节。调节机构包括:基座和架体;其中,基座的下表面固接于安装卡扣,且脉冲发射装置固接于基座,架体设置于基座上,且脉冲接收装置设置于架体上。基座呈环形结构,且脉冲发射装置所发出的激光通过基座的中心部的通孔照射至所述指针上。架体包括:垂直调节部分和水平调节部分,且垂直调节部分的一端固接于基座,另一端连接于水平调节部分的一端,水平调节部分的另一端连接有脉冲接收装置。安装卡扣包括:第一卡尺、第二卡尺和

NB-IoT智能水表的原理及设计

NB-IoT智能水表的原理及设计 今天为大家介绍一项国家发明授权专利——NB-IoT智能水表。该专利由益都智能技术(北京)股份有限公司申请,并于2018年9月28日获得授权公告。 内容说明本实用新型具体涉及NB-IoT智能水表。 发明背景水表作为一种计量器具,大多是水的累计流量测量。一般分为容积式水表和速度式水表两类,采用活动壁容积测量室的直接机械运动过程或水流流速对翼轮的作用以计算流经自来水管道的水流体积的流量计,现有的水表均为自来水厂安装在各用户的房屋门口的进水口端,传统的水表需要工作人员逐个观察记录,这样十分浪费时间;为了解决上述问题,在水表内设置采集单元、近距离通信单元及相关信号处理单元,将水表的读数发送至工作人员的手持终端上,这样一来,工作人员便可批量化的获取水表读数。 现如今的采用的方式是在原有的老式水表的指针上加上小磁铁,并在水表内部加上一个磁敏传感器与外部采集电路板,通过导线将传感器与外部采集电路板相联,其通过检测指针转动的圈数来达到计量用水量的目的,存在智能化程度低的问题。再者,这种水表由于上述电路元件是设置在水表内部的,其需要作一定的防水处理,无疑的增加了水表的报价;且电路板部分和传感器部分为易损件,维修时需要打开整个水表进行修理,甚至需要将水表完全更换,这样一来浪费人力物力,二来也浪费了材料,且其信号传递是通过磁场,这样就存在可能被外部磁场干扰的情况,这时的传感器都会检测到恒定磁信号,传感器就无法计数或计数错误。 发明内容有鉴于此,本实用新型目的是提供一种传输方式多样化、检测信息准确和智能化程度高的NB-IoT智能水表。 为了解决上述技术问题,本实用新型的技术方案是:一种NB-IoT智能水表,包括水表壳体,及设置在水表壳体上方的、且与水表壳体固定的信号采集装置;所述信号采集装置包括外壳体,及设置在外壳体内部一端、且与外壳体固定的CMOS数字图像传感器,及设置在CMOS数字图像传感器上方的、并与CMOS数字图像传感器连接的、用于显示数值

离心式压气机的工作原理

航空发动机原理

压气机的工作原理 根据气流在压气机的流动方向,可将压气分为两大类,气流沿离开叶轮中心方向流动的叶做离心式压气机;气流沿与叶轮轴平行方向流动的叫做轴流式压气机。此外还有轴流式与离心式压气机混合而成的混合式压气机。目前使用最广泛的是轴流式压气机,以下将作重点介绍。 轴流式压气机的基本组成,由静子和转子组成。静子由多排叶片组成,这些叶片叫做整流叶片,由一排流叶片组成的圆环叫做整流环,各整流环固定在机匣上。转子由多排叶轮组成,每一排叶轮上固定了许多工作叶片,压气机叶轮最终能过叶轮轴与涡轮的工作叶轮轴相连,并由涡轮带动高速旋转。 轴流式压气机的叶轮和整流环是交错排列的。一个叶轮和后面相邻的整流环构成了压气机的一级。单级压气机增压比不高。一般约为1.2-1.8。为了得到更高的增压比,目前用在民航机上的涡扇发动机的轴流式压气机级数常为10-20级,压气机增压比高达30-40。 有些轴流式压气机的进口安装了一排固定的导流叶片,它们所组成的圆环叫做导流环。空气在压气机中的流动 从进气道流入压气机的空气,首先流过导流环,然后依次流过各级的叶轮和整流环,最后从末级整流环流出进入燃烧室。由于空气在压气机中的流动较为复杂,同时气流在不同半径叶片通道内的流动大体相仿,为了便于分析,我们假想用一条通过各级叶轮平均地半径处的直线绕叶轮旋转,来切割叶轮和整流环叶片,得到压气机——“基本级”,每级压气机可看成是很多基元级相叠加而成。

所以空气在基元级中的流动可看成压气机工作的缩影。把所得到的基元级切片在平面上展开,就得到——平面叶栅图形。 目前大多数航空燃气轮机都采用轴流式压气机,只有小功率、小流量的涡轴和涡浆发动机上才采用离心式压气机。在20世纪40年代末和50年代初、涡喷发 动机也曾采用离心式压气机。 离心式压气机由导流器, 叶轮, 扩压器, 导气管等部分组成,叶轮和扩压器是其中两个主要部件。导流器:安装在叶轮的进口处,其通道是收敛形的使气流以一定方向均匀进入工作叶轮, 以减小流动损失,空气在流过它时速度增大,而压力和温度下降。叶轮:是高速旋转的部件,叶轮上叶片间的通道是扩张形的,空气在流过它时, 对空气作功, 加速空气的流速, 同时提高空气的压力。扩压器:位于叶轮的出口处,其通道是扩张形的,空气在流过它时将动能转变为压力位能,速度下降, 压力和温度都上升。导气管:使气流变为轴向, 将空气引入燃烧室。 离心式压气机属于叶片机械,其工作原理是以高速气流与工作叶轮和固定叶片的相互动力作用为基础,与容积式压气机相比离心式压气机的优点是:消耗同样的功率时,比容积式压气机的效率高,并能得到较高的增压压力,一般能达到0.147~0.196MPa以上;结构简单紧凑,重量轻,金属消耗量少。目前离心式压气机在内燃机增压方面获得广泛的应用。离心式压气机的缺点是随着转速的降低,增压压力便急剧下降。空气经滤清器进入气道,进气道的断面沿气流方向逐渐缩小,以便提高气流的稳定性。进气道一定要能保证在流动损失为最小的情况下,把空气均匀地导向工作轮。工作轮装装花链轴上,尺寸小的可安装在光轴上。工作轮可由曲轴通过机械驱动,也可直接由涡轮机驱动。 空气沿进气道进入工作轮随工作轮一起旋转,受到离心力的作用沿着工作轮上叶片所构成的通道流动,使空气受到压缩,这时压力从P1增加到P2,气流速度从c1增加到c2,驱动工作轮的机械功转化为空气在工作轮中获得的动能,和以压力形式表现的势能。工作轮出口处的功能一般为气流总能量的一半,因此,

远传水表的工作原理

远传水表的工作原理 远传水表的发明已有十几年的历史。但是留给人的影响一直是失败的阴影。凡是安装过远传水表的自来水公司都摇头,直呼上当受骗。机械水表纷纷替换下各种远传水表又成这几年的一大景观。 远传水表运行期间的故障率,每年必须小于千分之五。既一年1000户水表的故障水表要求小于5台。特别 是每天抄一次表的情况下尤其重要。 远传水表的长期合格运行难在两点:电,水。 远传水表的工作环境不如电表,气表。它没电,却有水。电子线路离开电就是一无所长的废物。电子的产 品也最怕潮湿和水的侵蚀。 南京水门电子有限公司从2000年起就专心研制生产远传水表,经过10年研制,9年安装调试,6年批量生产,3年遍布全国十几个城市的实际运行。终于推出了成熟的SM-10D型远传水表。 一.水表 1.南京水门电子有限公司生产的SM-10D型远传水表,由于采用了零功耗的韦根传感器和高难的计算机CPU 掉电技术,电子远传水表的静态工作电流只有0.006mA。使用一节2400mA/小时的5号锂电池。理论上可以静态工作45年,持续水流动态工作20年。实际运行十年以上绰绰有余。从而保证了远传水表在没有外部 供电的环境下长期稳定的工作基础。 该远传水表采用双电源的工作原理,既可在没有外部供电时使用水表内置的锂电池工作;也可在外部供电时自动转为外部电源方式工作,即抄表通讯方式,每台通讯工作电流0.5mA。从而更加稳定可靠。2.该远传水表的外壳采用全密封结构设计和工程安装连接密封技术。其专有设计的水表接插件既杜绝多芯线漏水的难题又方便水表的更换。可以在水下2米的环境中长期稳定运行。从而杜绝了水的危害。3.高灵敏度的水表对于水管的空管段的空气造成的水锤现象而带来的度数误走是无法避免。该远传水表采用软件的特殊计算方法解决了99.9%的水表误走读数。从而彻底解决了这一重大难题。保证了高灵敏度的 水表精确且正确计量水量的工作运行。 4.该远传水表的分为基表和电器盒两个独立的密封结构。两者之间采用电器盒上3个铆钉镶在基表外壳的环形槽结构连接。既可防止拆卸,又可使电器盒(显示窗)位置360°旋转,便于安装。 5.该远传水表电器盒上有1个沉底槽内的定位螺母,水表安装完毕,定位螺母与基表的壳体螺孔锁定。然后,电器盒的沉底槽口加一圆形的易碎贴封口,可防止非正常维护的旋转和拆卸。 6.该远传水表的基表有15mm,20mm,25mm三种符合国家标准长度,口径的多流速旋翼式水表。有水平式,

航空发动机压气机转子叶片强度计算及气流场模拟

航空发动机压气机转子叶片强度计算及气流场模拟

摘要 压气机是为航空发动机提供需要压缩空气的关键部分,由转子和静子等组成,其中转子叶片是完成该功能的核心零件,在能量转换方面起着至关重要的作用。叶片工作的环境比较恶劣,除了承受高转速下的气动力、离心力和高振动负荷外,还要承受热应力,所以在叶片设计之中,首先遇到的问题是叶片结构的强度问题,转子叶片强度的高低直接影响发动机的运行可靠性,叶片强度不足,可能会直接导致叶片的疲劳寿命不足,因此在强度设计中必须尽量增大强度,以提高叶片疲劳寿命和可靠性。 由进气道、转子、静子等组成的离心式压气机内部流动通道是非常复杂的,由于压气机是发动机的主要增压设备,其工作的好坏对发动机的性能有很大的影响。随着现在的计算机和数字计算方法的大力发展,三维计算流体模拟软件越来越多的被运用到旋转机械的内部流场进行数值分析。本文利用三维流体模拟软件ANSYS系列软件对压气机内部的气体流动性能进行模拟,得到一些特征截面的压力和速度分布情况。 关键字:转子叶片;强度计算;Fluent;轴流式压气机

Abstract The compressor is to provide compressed air for the needs of key parts of aero engine, the rotor and the stator, etc., wherein the rotor blades are core components to complete the function, plays a crucial role in the transformation of energy. The blade working environment is relatively poor, in addition to withstand high speed aerodynamics, centrifugal force and vibration in high load, to withstand greater thermal stress, so in the blade design, the first problem is the strength of the blade structure, the rotor blade strength directly affect the reliability of the engine, blade lack of strength, may directly lead to the fatigue life of the blade is insufficient, so the strength design must try to increase the strength, to improve the blade fatigue life and reliability. The internal flow passage of centrifugal compressor inlet, rotor and stator which is very complex, is mainly due to the high pressure equipment of the engine, has great impact on the performance of the quality of its work on the engine. With the development of computer and digital calculation method, 3D computational fluid simulation software has been applied to numerical analysis of internal flow field of rotating machines. In this paper, the fluid flow characteristics in the compressor are simulated by using a series of ANSYS software, and the pressure and velocity distributions of some characteristic sections are obtained. Keywords: rotor blade; strength calculation; Fluent; axial flow compressor

燃气轮机原理与结构解析

图说燃气涡轮发动机的原理与结构 曹连芃 摘要:文章介绍燃气涡轮发动机的工作原理;对燃气轮机的主要部件轴流式压气机、环管形燃烧室、轴流式涡轮分别进行了原理与结构介绍;对燃气涡轮发动机的整体结构也进行了介绍。 关键字:燃气涡轮发动机,燃气轮机,轴流式压气机,燃烧室,轴流式涡轮 1. 燃气涡轮发动机的工作原理 燃气涡轮机发动机(燃气轮机)的原理与中国的走马灯相同,据传走马灯在唐宋时期甚是流行。走马灯的上方有一个叶轮,就像风车一样,当灯点燃时,灯内空气被加热,热气流上升推动灯上面的叶轮旋转,带动下面的小马一同旋转。燃气轮机是靠燃烧室产生的高压高速气体推动燃气叶轮旋转,见图1。 图1-走马灯与燃气涡轮 燃气轮机属热机,空气是工作介质,空气中的氧气是助燃剂,燃料燃烧使空气膨胀做功,也就是燃料的化学能转变成机械能。图2是一台燃气轮机原理模型剖面,通过它来了解燃气轮机的工作原理。 从外观看燃气轮机模型:整个外壳是个大气缸,在前端是空气进入口;在中部有燃料入口,在后端是排气口(燃气出口)。 燃气轮机主要由压气机、燃烧室、涡轮三大部分组成,左边部分是压气机,有进气口,左边四排叶片构成压气机的四个叶轮,把进入的空气压缩为高压空气;中间部分是燃烧器段(燃烧室),内有燃烧器,把燃料与空气混合进行燃烧;右边是涡轮(透平),是空气膨胀做功的部件;右侧是燃气排出口。

图2-模型燃气轮机结构 在图3中表示了燃气轮机的简单工作过程:空气从空气入口进入燃气轮机,高速旋转的压气机把空气压缩为高压空气,其流向见浅蓝色箭头线;燃料在燃烧室燃烧,产生高温高压空气;高温高压空气膨胀推动涡轮旋转做功;做功后的气体从排气口排出,其流向见红色箭头线。 图3-燃气轮机工作过程 在燃气轮机中压气机是由涡轮带动旋转,压气机的叶轮与涡轮安装在同一根主轴上组成燃气轮机转子,如图4所示。

压气机

西安航空职业技术学院毕业设计论文涡扇发动机的压气机部件

目录 1概述 ................................................................................................................................................................ 2压气机的分类以及结构特点 ....................................................................................................................... 2.1 .................................................................................................................................................................. 2.2 .................................................................................................................................................................. 2.3 ................................................................................................................................................................. 2.3.1 ........................................................................................................................................................... 2.3.2 ........................................................................................................................................................... 2.3.3 ........................................................................................................................................................... 2.3.4 ........................................................................................................................................................... 2.3.5 .......................................................................................................................................................... 3压气机的工作原理 ........................................................................................................................................ 3.1离心式压气机的工作原理...................................................................................................................... 3.2轴流式压气机的工作原理...................................................................................................................... 4压气机的材料 ............................................................................................................................................... 5 6压气机常见故障的诊断以及维修 ................................................................................................................ ...................................................................................................................................................................... 谢辞 ............................................................................................................................................................... 参考文献 ........................................................................................................................................................... 附录 ................................................................................................................................................................

光电直读式智能水表系统的原理及设计

光电直读式智能水表系统的原理及设计 今天为大家介绍一项国家发明授权专利——快速高精度光电直读式智能水表系统。该专利由扬州恒隆软件有限公司申请,并于2017年2月8日获得授权公告。 内容说明本实用新型涉及水表领域,具体涉及一种快速高精度光电直读式智能水表系统。发明背景水表是关系民生的重要计量器具,近年来城市建设快速发展,但水表行业发展却相对缓慢。随着微电子技术、信息技术的发展,智能水表技术发展进入快车道,各类新技术用用层出不穷。 我国目前水表生产企业大约有600多家,虽然下游用户自来水厂、房地产公司等十分分散,但是竞争仍然比较激烈。摄像直读式远传水表产品最早是由北京北保电器公司2008年研发的,由于图像传输和数字译码方面不太成熟,导致产品没有普及推广。第二代产品由广东华旭等公司20011年研制,较好解决了图像处理、图像传输和译码传输等技术难题,使该项技术取得了突破性进展,目前,该产品已投入小批量生产,并在北京等地挂表试用,大面积推广还有待于应用时间和应用数量的考验。 虽然市场上已经出现直读式水表及其抄表系统,但抄表速度慢、容易误读、受环境光线影响等问题依然存在。 发明内容为解决上述技术问题,本实用新型的发明目的在于提供一种快速高精度光电直读式智能水表系统,克服了现有的远传直读水表的普遍存在的结构复杂、容易受到外界光线干扰、相邻透射管之间相互干扰、总线式抄表系统容易出现故障、抄表速度慢等问题。 为实现上述发明目的,本实用新型提供以下的技术方案:一种快速高精度光电直读式智能水表系统,主要由多个终端水表、抄表集中器以及抄表管理系统组成,所述终端水表包括单片机和多个字轮单元,每个字轮单元包括机械字轮和多组光发射接收对管,每组光发射接收对管中的发射管和接收管之间采用唯一对应的正交码序列CDMA信号通讯连接,所述正交码序列CDMA信号的每个码还采用曼彻斯特编码以使其跳变,所述单片机分别驱动每组光发射接收对管的发射管向接收管发出信号。

旋翼式水表的结构和工作原理

旋翼式水表的结构和工作原理 第一节旋翼式水表 旋翼式水表是速度式水表的一种,是世界上用得最多的水表品种。 在国家标准中,速度式水表的定义为“安装在封闭管道中,由一个动力元件组成,并由水流速直接使其获得运动的一种水表”。当水流通过水表时,驱动叶轮(旋翼或螺翼)旋转,而水流的流速与叶轮的转速成正比,因水流驱动叶轮处喷口的截面积为常数,故叶轮的转速与流量也成正比。通过叶轮轴上的联动部件与计数机构相连接,使计数机构累积叶轮(旋翼或螺翼)的转数,从而记下通过水表的水量。 一、多流束水表 多流(束)水表:水流通过水表时,有多束(股)水流从叶轮盒四周流人,驱动叶轮旋转。这种水表的公称口径一般为15mm~150mm。 旋翼多流束式水表由表壳、中罩、表玻璃、密封垫圈、计量机构、计数机构和滤水网等组成。水流冲击叶轮后,叶轮开始转动,所转圈数通过计数机构累计,记录显示通过水表的水量。见图2-1和2-2。 图2-l 旋翼多流束水表的结构示意图 1- 接管;2-连接螺母;3-接管密封垫圈;4-铅封;5-铜丝;6-销子;7-O形密封垫圈; 8-叶轮计量机构;9-罩子;10-盖子;11-罩子衬垫;12-表壳;1-碗状滤丝网

图2—2 旋翼多流束水表的结构展开图 1-表盖;2-轴销;3-铜罩;4-罩子衬垫;5-表玻璃;6-O形密封圈;7-计数器;8-防磁环;9-中心齿轮,10-齿轮盒;11-垫圈;12-磁钢座;13-叶轮;14-叶轮盒;15-表壳;16-调节螺钉;17-调节螺钉垫片;18-调节塞;19-滤水网;20-接管垫片;21-接管;22-连接螺母多流束水表的总体尺寸和连接方式见表2—1。

压气机叶片排序

压气机排序 河海大学 摘要:在本文中我们针对压气机实际生产中的问题,试图找到满足题意的可行解,使压气机的叶片在这种排列组合下能够满足生产中规定的所组合在一起的叶片在重量和频率方面的要求,从而使其能够正常运作。 对第一个问题,我们主要采取理论分析的方法将24个叶片的按照重量大小进行排序,然后采取大小结合的办法,将重量大的和重量小的合为一组,依次进行下去,尽量保证组合后的12组叶片重量和相差不大(相等最好),这样做得目的是为了使每两组数据之和与另外两组数据之和的差不超过8g,对于不满足要求的进行调整。这样做就能够保证这12组叶片任意两组组成一个象限均能满足质量要求了。 在满足质量要求后,我们就可以在这些组合中寻找满足频率要求的组合。具体方法与问题一方法相似,根据问题一中的排序依次写出频率值。比较每一组的频率之差,使差的绝对值不小于6。对于不能满足此要求的可以进行微调,微调时还要顾及质量要求。这样组成的12组叶片序对在根据频率要求进行排序,具体方法是:每组中的两个叶片相连,一组中频率小的叶片和另外一组频率大的叶片相连,使相连两点地频率差不下于6,不满足要求的继续微调。这样到最后就形成一条链,如果这条链首尾两点也满足频率要求,那么此链连接的点的顺序就是叶片排序的一组可行解。 根据上面提供的算法我们分别对试题中的两组叶片排序,通过较少的微调就可以得到满足题意的可行解(可行解不止一个,通过多次微调可以得到多个),第一象限依次是:10-2-4-9;第二象限依次是:13-8-18-11;第三象限依次是:16-20-1-7;第四象限依次是:5-12-17-22;第五象限依次是:3-23-14-24;第六象限依次是:21-6-19-15。 用同样的方法对第二组数据进行排序,得到结果如下:第一象限顺序:4-24-1-21;第二象限顺序:2-9-13-7;第三象限顺序:6-23-16-22;第四象限顺序:17-8-5-19;第五象限顺序:14-11-3-12;第六象限顺序:15-10-18-20。 关键词:微调、叶片排序、频率差、重量差 一、问题重述 在实际生产中,由于加工出的压气机叶片的重量和频率不同,所以在安装时就需要按工艺要求对叶片进行重新排序。具体的工艺要求有: (1)压气机24 片叶片均匀分布在一圆盘边上,分成六个象限,每象限4 片叶片的总重量与相邻象限4 片叶片的总重量之差不允许超过8g。 (2)叶片排序不仅要保证重量差,还要满足频率要求,两相邻叶片频率差尽量大,使相邻叶片频率差不小于6Hz。 (3)当叶片不满足上述要求时,允许更换少量叶片。

相关文档
最新文档