粉煤灰的分级及其品质标准

粉煤灰的分级及其品质标准

粉煤灰的分级及其品质标准

我国于1979年制定了《用于水泥和混凝土中粉煤灰》的质量标准。1990年又颁布了《粉煤灰混凝土应用技术》(GBJ146—90),规定了粉煤灰的分级技术标准

不同等级粉煤灰的适用范围

粉煤灰配合比设计)

粉煤灰混凝土配合比设计 混凝土中掺人适量的粉煤灰,既可降低工程施工成本,改善混凝土的和易性、可泵性,增加混凝土的黏性,减少混凝土离析与泌水,又可使混凝土的凝结时间相对延长,坍落度损失减小,降低水化热,减少或消除混凝土中碱集料反应的危害。但也存在粉煤灰品质波动大,混凝土早期强度偏低的缺点。若在配合比设计时,对原材料、粉煤灰取代率及超掺量系数作正确选择,其混凝土能满足设计施工要求。本文论述桥梁结构中C25灌注桩、承台,C30墩帽及墩身,C40、C50后张法预应力混凝土箱梁的粉煤灰混凝土配合比设计,原材料选择及施工注意事项。 1 原材料 (1)粉煤灰:用于混凝土的粉煤灰按其品质分为I、Ⅱ、Ⅲ3个等级,主要技术指标见表1。 桥梁结构混凝土配合比设计时,选择I、Ⅱ级粉煤灰,其中I级灰用于强度大于40 MPa的混凝土,Ⅱ级灰用于混凝土强度等级小于C30的桩基、承台、立柱、墩台帽工程。 粉煤灰活性:粉煤灰越细,比表面积越大,粉煤灰的活性就越容易被激发,因此,所用粉煤灰越细,混凝土早期强度越高、耐久性越好。 粉煤灰烧失量对需水性影响显著,随粉煤灰烧失量增加,粉煤灰的需水量增加,当烧失量大于10%时,粉煤灰对流动扩展度无有利作用;粉煤灰含碳量增高,烧失量增大,在混凝土搅拌、运送、成型过程,粉煤灰更容易浮到表面,影响混凝土的外观与内在质量。另外,由于烧失量增大,还会降低减水剂的使用效果。 需水量与粉煤灰的细度、烧失量也有一定的关系,一般来说粉煤灰需水量越小,对混凝土性能越有利。粉煤灰越细,需水量越小;烧失量越大,需水量也越大。所以粉煤灰的需水量指标可以综合反映出粉煤灰的性能。 含水量过高,会降低粉煤灰的活性,直接影响使用效果。 SO3含量影响混凝土的强度增长极限和凝结时间,同时粉煤灰中SO3 含量过多还可能造成硫酸盐侵蚀。 (2)水泥:混凝土强度等级小于C30时,选用32.5或42.5的普通硅酸盐水泥;混凝土强度等级大于C30时,选用42.5或52.5的硅酸盐水泥或普通硅酸盐水泥。 (3)黄砂:满足Ⅱ类砂要求的条件下,优先选择级配良好的江砂或河砂。因为江砂或河砂含泥量少,砂中石英颗粒含量较多,级配一般都能满足要求。山砂中含泥量较大,且含有较多风化颗粒,一般不能使用。砂的细度模数控制在2.4

浅谈粉煤灰对混凝土强度的影响.

广东建材2008年第4期 1前言 粉煤灰又称飞灰,是指燃煤电厂中磨细煤粉在锅炉 中燃烧后从烟道排出,被收尘器收集的物质,粉煤灰呈灰褐色,通常呈酸性,比表面积在2500~7000cm2/g,尺寸从几百微米到几微米,通常为球状颗粒,我国大多数粉煤灰的主要化学成分为:SiO240%~60%;Al2O315%~40%;Fe2O34%~20%;CaO2%~7%;烧失量3%~10%。此外,还有少量的Mg、Ti、S、K、Na等氧化物。我国是产煤和烧煤大国,火电厂每年排放的粉煤灰总量逐年增长,预计2005年排粉煤灰量约2亿吨左右,如果这些粉煤灰得不到利用,将污染环境,影响气候,破坏生态。从目前有关资料来看,粉煤灰在建筑工程和基础工程的应用,是最主要的利用方式,也是提高其利用率的根本途径。至今比较成熟的技术和已建成生产线的有:粉煤灰加气混凝土、粉煤灰混凝土、粉煤灰砌筑水泥、粉煤灰硅酸盐水泥、粉煤灰粘土砖、粉煤灰硅酸盐砌块、粉煤灰地面砖、粉煤灰免烧砖、粉煤灰筑路和粉煤灰充填等,由此可见,开发研究以粉煤灰为掺合料的混凝土具有重要意义,配 制粉煤灰混凝土是粉煤灰综合利用的主要途径之一[1] 。 2粉煤灰的主要性质 2.1火山灰效应 粉煤灰的矿物相主要是铝硅玻璃体,含量一般为50%~80%,是粉煤灰具有火山灰活性的主要组成部分,其含量越多,活性越高,其矿物结构为硅氧四面体、铝氧四面体和铝氧三面体,该结构的聚合度很大,键能很高,因而在通常状态下,粉煤灰所表现出的活性很低。粉煤灰的化学活性在于铝硅玻璃体在碱性介质中,OH-

离子打破了Si-O,Al-O键网络,降低了硅氧、铝氧聚合度,并与水泥水化产生的Ca(OH)2发生反应,生成水化硅酸钙 和水化铝酸钙,其化学方程式: XCa(OH)2+SiO2+nH2O→XCaO?SiO2?nH2O YCa(OH)2+Al2O3+mH2O→YCaO?Al2O3?mH2O 粉煤灰的火山灰活性表现出来的技术性质为:①反 应是缓慢的,所以放热速率和强度发展也相应较慢。②反应消耗了层状结构的Ca(OH)2生成了致密结构的水化硅酸钙和水化铝酸钙,粒径细化有利于提高混凝土的强度。③反应产物极为有效地填充了大的毛细空间,孔 径细化使混凝土的强度和抗渗性能得到改善[2]。 2.2微集料效应 细度是衡量粉煤灰品质的主要指标,通常用0.08mm或0.045mm方孔筛余量表示。粉煤灰的细度对混凝土的性能影响很大。粉煤灰的颗粒越细,微小玻璃球形颗粒越多,比表面积也越大,粉煤灰中的活性成分也就越容易和水泥中的Ca(OH)2化合,其活性就越高。另外,随着细度的增加,粉煤灰的比重增大,标准稠度需水量减小,浆体的密实度及强度增大,同时,由于粉煤灰的密度小于水泥30%以上,从而增加了灰浆体积,足量的灰浆填充在混凝土孔隙空间,覆盖和润滑骨料颗粒,增加了拌合物的粘聚力和可塑性,改善了混凝土的和易性,加上细小的粉煤灰颗粒可以填充未水化水泥颗粒空隙,形成更加密实的结构,这些都有利于提高混凝土的强度。 2.3形态效应 优质的粉煤灰中的玻璃珠粒形完整,表面光滑,粒

粉煤灰-石膏制砖工艺流程及产污分析

1 生产工艺 1.1产品简介 产品方案及生产规模 1.2原辅材料 项目主要原材料及辅料用量

1.3工艺流程 图2.3-1 工艺流程 工艺流程说明: 块状生石灰和生产过程中的废品,倒入受料斗,经一台鄂式破碎机破碎后储存于生石灰库仓,再通过下料溜子进入球磨机磨细,与配料楼水泥仓中水泥搅拌后制成胶结料,储存胶结料仓中待用;粉煤灰由翻斗车运入厂内,自卸到粉煤灰堆棚内储存,然后通过粉煤灰制浆装置将湿粉煤灰制成粉煤灰浆储存在粉煤灰浆储罐储存待用;石膏用电厂脱硫石膏,汽车运到原料堆棚;铝粉膏是由汽车运入厂内,存放于库内。 配料楼上将称量好的原料按粉煤灰料浆、胶结料的投料顺序加入到浇注搅拌机搅拌均匀后,打开铝粉膏搅拌机的下料阀,使铝粉膏液流入搅拌机内与料浆混合搅拌,随后打开浇注搅拌机卸料阀,将料浆

浇注入模,浇注好料浆的模具在静停室内静停90~150分钟,形成胚体并且达到切割强度后,吊车将坯体连同模底板一起吊至切割机组的翻转台上,切割机对坯体进行六面切割,切割后的坯体连同模底板一起被吊放至蒸压釜前轨道的养护小车上,拉进蒸压釜内,开启真空泵对蒸压釜抽真空,抽完真空后,向釜内通入蒸汽,蒸压养护完毕后,将成品运送至成品堆场,7天后即可出厂。

2 水污染源分析 2.1产品物料平衡 物料平衡表 该企业生产过程中,所用原辅材料的损耗有以下几个方面: (1)粉煤灰、生石灰、石膏露主要存于料仓内,堆场及料仓在自然风作用下会产生粉尘,考虑料仓除尘器的集尘作用,大部分粉尘能够被收集作为原料回用于生产,少量无组织排入大气或由地面进入雨水管网排走,物料粉尘损耗量约占总物料量的0.005%。 (2)生产过程中物料内的水蒸气蒸发损失。 综上,除形成最终的产品外,其余原辅材料以水蒸气(排入大气)、粉尘(排入大气)的形式排出。

粉煤灰混凝土强度增长特性研究.

第36卷第3期山 2010年1月文章编号:100926825(2010)0320185203 SHANXI ARCHITECTURE 西建 Vol.36No.3筑 Jan.2010 ?185? 粉煤灰混凝土强度增长特性研究 丁义海 摘要:通过试验对不同粉煤灰掺量、不同强度等级混凝土与空白混凝土的强度增长特性进行了研究,并进行了对比分 析,得出了高强度混凝土和低强度混凝土的粉煤灰最优掺量,从而达到提高混凝土 强度的目的。关键词:粉煤灰,混凝土,强度特性,掺量中图分类号:TU528文献标识码:A 粉煤灰(简称FA)是在发电时燃烧已被磨得很细的煤粉所产 生的渣滓,是一种具有潜在火山灰活性的物质。在普通混凝土中添加适量的粉煤灰,能有效地改善混凝土的力学性能,降低温升、节约水泥、控制污染[1]。目前粉煤 灰混凝土在工程中的应用逐步广泛,但现有文献资料显示,这些应用的粉煤灰混凝 土不能合理地根据粉煤灰混凝土早期强度推算混凝土强度等级,从而不能判定混凝土质量,这是目前粉煤灰混凝土应用亟待解决的问题[2]。本文在采用陕西地产材 料的条件下,用高强度等级水泥、高效减水剂,加入以超细粉煤灰进行了粉煤灰混 凝土的配制试验研究,并测定了不同龄期粉煤灰混凝土强度,为粉煤灰混凝土在工 程中的应用进行了基础试验工作。 水泥:陕西秦岭水泥有限公司生产的秦岭牌P.O42.5R和P.O32.5R水泥;粉煤灰:陕西新型建筑材料有限公司生产的超细粉煤灰;外加剂:上海麦斯特产ST28CN型减水剂;粗集料:西安临潼区产花岗岩,粒径5mm~25mm连续级配碎石,表观密度为2695kg/m3,压碎指标为8.2%,含泥量0.2%;砂:西安沣河产中粗砂,细度模数2.9,表观密度为2665kg/m3,级配合格,含泥量0.8%;水:自来水。 1.2试验方案

粉煤灰的技术要求

粉煤灰的技术要求 1.1 分级及技术要求 1.1.1 用于水工混凝土的粉煤灰分为Ⅰ级、Ⅱ级、Ⅲ级三个等级,其技术要求应符合 下表 项目 技术要求Ⅰ级 Ⅱ级Ⅲ级细度(45μm方孔筛筛余) % F类粉煤灰≤12.0 ≤25.0 ≤45.0 C类粉煤灰需水量比 % F类粉煤灰≤95 ≤105 ≤115 C类粉煤灰烧失量 % F类粉煤灰≤5.0 ≤8.0 ≤15.0 C类粉煤灰含水量 % F类粉煤灰≤1.0 C类粉煤灰三氧化硫 % F类粉煤灰≤3.0 C类粉煤灰游离氧化钙 % F类粉煤灰≤1.0 C类粉煤灰≤4.0 安定性 C类粉煤灰 合格 1.1.2 粉煤灰的放射性应合格。 1.1.3 当粉煤灰用于活性骨料混凝土时,需限制粉煤灰的碱含量,其允许值应经实验论证确定。粉煤灰的碱含量以钠当量(Na2O+0.658K2O)计。 1.1.4 宜控制粉煤灰的均匀性,粉煤灰的均匀性可用需水量比或细度为考核依据。 1.2 标识 1.2.1 粉煤灰生产厂应按批检验,并向用户提交每批粉煤灰的检验结果及出厂产品合格证。 1.2.2 出厂粉煤灰应标明产品名称、类别、等级、生产方式、批号、执行标准号、生产厂名称和地址、出厂日期。袋装粉煤灰还应标明净质量。 1.3 检验与验收 1.2.1 对进场的粉煤灰应按批次取样检验。粉煤灰的取样以连续供应是相同等级、相同种类的200t为一批,不足200t者按一批计。 1.2.2 取样要具有代表性,从不同的部位取样,粉煤灰的品质检验按现行国家和有关行业标准进行。 1.2.3 对进场的粉煤灰抽取的检验样品,应留样封存,并保留3个月。当有争议时,对留洋进行复检或仲裁检验。 1.2.4 每批F类粉煤灰应检验细度、需水量比、烧失量、含水量.三氧化硫和游离氧化钙可按5-7个批次检验一次。每批C类粉煤灰应位验细度、需水量比、烧失量、含水量、游离氧化钙和安定性,三氧化硫可按5-7个批次检脸一次。 1.4 保管 1.4.1 粉煤灰的储存应设置专用料仓或料库,分类分级存放.井应采取防尘、防溯措施。 1.4.2 粉煤灰的运输、储存、使用应遥免对环境的污染。

粉煤灰加气混凝土砌块制造过程中

粉煤灰加气混凝土砌块制造过程中,在浇注时最理想的情况是发气和稠化进程同时结束,即稠化正好出现在再也没有体积膨胀的瞬间,但原材料中石灰、水泥和铝粉在与水反应过程中都放热,它们的成份与掺量的改变直接都会影响料浆的升温速度和温度的绝对值,都会影响热膨胀值的大小,其中,尤以石灰的影响更为显著。料浆浇注的不稳定现象,可能是由于下面几点没有控制好引起的。 (1)塌模及其控制 (一)前期塌模,前期塌模即发生在料浆发气过种前期的塌模,一般指浇注15min以内,在高膨胀阶段的塌模,通常由下列原因引起; a.水料比大,料浆粘度增长慢,气泡极易汇集大气泡并上浮。 b.铝粉颗粒太细,覆盖面积大于6000平方米/克,早期发气太快。 c.料浆温度太低,生石灰消化温度低。 d.粉煤灰存放时间过长,颗粒较粗,含碳量较大,当冬季使用湿排灰时,灰中含有冰粒, 解决办法:主要围绕提高料浆的粘度,抑制铝粉发气及采用稳泡措施进行,其途径有: a.检查粉煤灰采灰点,避免使用存放时间久,出现板结和含碳量较大的粉煤灰。 b.检查粉煤灰的磨细效果,保证粉煤灰的细度; c.适当减小水料比,促使粘度迅速增长; d.粉煤灰浆中掺入一定量的废料浆(掺入时间尽量提前): e.适当减小水料比,促使粘度迅速增长 f.加入适量水玻璃,克服铝粉发气太早的缺陷。 g.加入一定量的可溶油等气泡稳定剂 h.配料中适当增加石灰掺量。 i.延长料浆的搅拌时间。 (二)后期塌模 后期塌横即发生在料浆接近稠化时,局部发生冒泡、沉陷而引起的塌模,一般发生在15min之后,后期塌陷常因石灰性能波动或石灰消化速度过快引起。 当采用消化速度过快,消化温度过高的石灰,由于料浆温度在模内高度方向变化大,顶部散热快,温度最低,底部散热次之,温度较低,中部不易散热,温度最高。这样气孔压力、压力梯度,极限剪应力沿模高方向都不均匀,中部极限剪应力最大,发气就容易被抑制,欲向极限剪奕力较小的地方伸展而顶部极限剪应力最小,发气最舒畅,但当某一局部由于继续发气或气体压力的传递,就会在顶部拉断料浆表面而形成冒泡,打破浆体平衡而引起塌模,其解决的主要途径有: a.抑制生石灰的消化速度(参见“原材料制备.生石灰”)、配料中适当增加石膏,并可考虑适量加入三乙醇胺等; b.将部分生石灰提前消化,延长石灰存放时间; c.调整配合比,适当减少石灰用量,增加水泥用量; d.不要使用过粗的铝粉(覆盖面积小于4000平方米/克)或适当减小铝粉用量: e.适当降低浇注温度 (2)冒泡程度的控制 冒泡一般发生在料浆稠化之后,此时料浆已形成坯体,并不发生体积变形。冒泡是由热膨胀引起的。当坯体中部温度高,气体压力大时,将产生膨胀力。掺有生石灰的加气混凝土,在水料比较大、铝粉发气时间较长、坯体温度升高缓慢的条件下,在料浆稠化后,经常是不冒泡而保持了浇注稳定。因此,粉煤灰加气混凝土出现适量的冒泡,有利于获得良好的坯体,但冒泡量过多易于坯体中因料浆下沉而出现密实部分或出现深层孔洞,对坯体形成破

粉 煤 灰 标 准

粉煤灰标准 17.用于水泥和混凝土中的粉煤灰 标准名称用于水泥和混凝土中的粉煤灰 标准类型中华人民共和国国家标准 标准号 GB 1596-91 标准发布单位国家技术监督局发布 标准正文 1 主题内容与适用范围 本标准规定了用于水泥和混凝土中的粉煤灰的技术要求、试验方法和检验规则等。本标准适用于拌制水泥混凝土和砂浆时作掺合料的粉煤灰成品和水泥生产中作混合材料的粉煤灰。 2 引用标准 GB 176 水泥化学分析方法 GB 177 水泥胶砂强度检验方法 GB 2419 水泥胶砂流动度试验方法 3 定义:从煤粉炉烟道气体中收集的粉末称为粉煤灰。 4 技术要求 4.1 拌制水泥混凝土和砂浆时,作掺合料的粉煤灰成品应满足表1要求。 表1 4.2 水泥生产中作活性混合材料的粉煤灰应满足表2要求。 表2

5 试验方法 5.1 烧失量、含水量和三氧化硫 按GB176进行。 5.2 细度 按附录A进行。 5.3 需水量比 按附录C进行。 5.4 28天抗压强度比 按附录C进行。 6 检验规则 6.1 组批与取样 6.1.1 以连续供应的200t相同等级的粉煤灰为一批。不足200t者按一批论,粉煤灰的数量按干灰(含水量小于1%)的重量计算。 6.1.2 取样方法 6.1.2.1 散装灰取样:从运输工具、贮灰库或堆场中的不同部位取15份试样,每份试样1  ̄3kg,混合拌匀,按四分法,缩取出比试验所需量大一倍的试样(称为平均样)。 6.1.2.2 袋装灰取样:从每批任抽10袋,从每袋中分取试样不少于1kg,按6.1.2.1的方法混合缩取平均试样。 6.1.3 拌制水泥混凝土和砂浆时作掺合料的粉煤灰成品,必要时,需方可对粉煤灰的质量进行随机抽样。 6.2 检验项目 6.2.1 型式检验 6.2.1.1 拌制水泥混凝土和砂浆作掺合料的粉煤灰成品,供方必须按4.1条规定的技术要求每半年检验一次。 6.2.1.2 水泥厂启用粉煤灰作活性混合材料时,必须按4.2条规定的技术要求进行检验。作为生产控制,要求烧失量,三氧化硫和含水量每月检验一次,28天抗压强度比每季度检验一次。 6.2.1.3 当电厂的煤种和设备工艺条件变化时,也应及时检验。 6.2.2 交货检验 6.2.2.1 拌制水泥混凝土和砂浆作掺合料的粉煤灰成品,供方必须按6.1条要求,进行细度、烧失量和含水量检验。 6.2.2.2 水泥厂作活性混合材料使用的粉煤灰,供方必须按6.1条要求,进行烧失量和含 水量检验。 6.3 检验结果评定 6.3.1 符合本标准第4章各级技术要求的为等级品。若其中任何一项不符合要要求的,应重新加倍取样,进行复验。复验不合格的需降级处理。 6.3.2 凡低于第4章技术要求中最低级别技术要求的粉煤灰为不合格品。 6.3.3 按4.2条技术要求,28天抗压强度比指标低于62%的粉煤灰,可作为水泥生产中的非活性混合材料。 6.3.4 粉煤灰出厂合格证,内容包括: a.厂名和批号; b.合格证编号及日期; c.粉煤灰的级别及数量; d.质量检验结果。 7 包装、标志、运输和贮存 7.1 袋装粉煤灰的包装袋上应清楚标明“粉煤灰”、厂名、级别、重量、批号及包装日期。 7.2 粉煤灰运输和贮存时,不得与其他材料混杂。并注意防止受潮和污染环境。

粉煤灰对混凝土的作用

粉煤灰对混凝土的作用文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

粉煤灰的燃烧过程:煤粉在炉膛中呈悬浮状态燃烧,燃煤中的绝大部分可燃物都能在炉内烧尽,而煤粉中的不燃物(主要为)大量混杂在高温烟气中。这些不燃物因受到高温作用而部分熔融.同时由于其面张力的作用,形成大量细小的球形颗粒。在尾部引风机的抽气作用下,含有大量灰分的烟气流向炉尾。随着烟气温度的降低,一部分熔融的细粒因受到一定程度的急冷呈体状态,从而具有较高的潜在活性。在引风机将烟气排入大气之前,上述这些细小的球形颗粒,经过除尘器,被分离、收集,即为粉煤灰。 粉煤灰是我国当前较大的工业废渣之一。现阶段我国年排渣量已达3000万t。随着工业的发展,燃煤电厂的粉煤灰排放量逐年增加。大量的粉煤灰不加处理,就会产生扬尘,污染大气;若排入系会造成河流淤塞,而其中的有毒物质还会对人体和造成危害。因此粉煤灰的处理和利用问题引起人们广泛的注意。 粉煤灰的三大效应 我国着名学者沈旦申、张荫济先生早在上世纪80年代总结国内外大量研究成果,提出粉煤灰《三大效应》理论,科学全面的阐述了粉煤灰在混凝土及粉煤灰制品中的作用和机理。对指导我国粉煤灰综合利用起到了积极的作用。 一、粉煤灰的“形态效应” 在显微镜下显示,粉煤灰中含有70%以上的玻璃微珠,粒形完整,表面光滑,质地致密。这种形态对混凝土而言,无疑能起到减水作用、致密作用和匀质作用,促进初期水泥水化的解絮作用,改变拌和物的流变性质、初始结构以及硬化后的多种功能,尤其对泵送混凝土,能起到良好的润滑作用。 二、粉煤灰的“活性效应” 粉煤灰的“活性效应”因粉煤灰系人工火山灰质材料,所以又称之为“火山灰效应”。因粉煤灰中的化学成份含有大量活性SiO2及Al2O3,在潮湿的环境中与Ca(OH)2

合肥关于成立粉煤灰制砖公司可行性报告

合肥关于成立粉煤灰制砖公司 可行性报告 投资分析/实施方案

报告摘要说明 新型建筑材料是在传统建筑材料基础上产生的新一代建筑材料。新型建筑材料主要包括新型建筑结构材料、新型墙体材料、保温隔热材料、防水密封材料和装饰装修材料。 xxx公司由xxx有限公司(以下简称“A公司”)与xxx(集团)有限公司(以下简称“B公司”)共同出资成立,其中:A公司出资490.0万元,占公司股份69%;B公司出资220.0万元,占公司股份31%。 xxx公司以粉煤灰制砖产业为核心,依托A公司的渠道资源和B公司的行业经验,xxx公司将快速形成行业竞争力,通过3-5年的发展,成为区域内行业龙头,带动并促进全行业的发展。 xxx公司计划总投资3883.57万元,其中:固定资产投资3043.80万元,占总投资的78.38%;流动资金839.77万元,占总投资的 21.62%。 根据规划,xxx公司正常经营年份可实现营业收入5680.00万元,总成本费用4339.17万元,税金及附加68.75万元,利润总额1340.83万元,利税总额1594.52万元,税后净利润1005.62万元,纳税总额588.90万元,投资利润率34.53%,投资利税率41.06%,投资回报率25.89%,全部投资回收期5.36年,提供就业职位78个。

新型建材(即新型建筑材料)是区别于传统的砖瓦、灰砂石等建材的建筑材料新品种,行业内将新型建筑材料的范围作了明确的界定,即新型建筑材料主要包括新型墙体材料、新型防水密封材料、新型保温隔热材料和装饰装修材料四大类。

第一章总论 一、拟筹建公司基本信息 (一)公司名称 xxx公司(待定,以工商登记信息为准) (二)注册资金 公司注册资金:710.0万元人民币。 (三)股权结构 xxx公司由xxx有限公司(以下简称“A公司”)与xxx(集团)有限公司(以下简称“B公司”)共同出资成立,其中:A公司出资490.0万元,占公司股份69%;B公司出资220.0万元,占公司股份31%。 (四)法人代表 马xx (五)注册地址 xx工业新城(以工商登记信息为准) 合肥,简称庐或合,古称庐州、庐阳、合淝,是安徽省省会,国务院批复确定的中国长三角城市群副中心城市,国家重要的科研教育基地、现代制造业基地和综合交通枢纽。截至2019年,全市下辖4个区、4个县、

蒸压粉煤灰砖作业指导书

蒸压粉煤灰砖作业指导书 1、适用范围 本实验方法适用于以粉煤灰、生石灰为主要原料,可掺加适量石膏等外加剂和其他集料,经坯料制备、压制成型、高压蒸汽养护而制成的砖。 2、引用标准 《蒸压粉煤灰砖》JC239-2014 3、规格及试验项目 3.1 规格 砖的外观为直角六面体。砖的公称尺寸为长度240mm,宽度115mm,高度53mm。生产其他规格尺寸产品,由用户与生产厂协商确定。 3.2 强度级别 根据抗压强度和抗折强度分为MU30,MU25,MU20,MU15,MU10五级。 3.3试验项目 抗压强度,抗折强度,外观质量。 4、技术要求 4.1尺寸允许偏差和外观质量

项目指标 尺寸允许偏差, mm 长度L +2,-1 宽度 B ±2 高度H +2,-1 缺棱掉角 个数,不多于(个) 2 三个方向投影尺寸不大于, mm 15 层裂不允许 裂纹 裂纹延伸的投影尺寸累计不大 于,mm 20 4.2强度 强度等级 抗压强度抗折强度 平均值不小于单块值不小于平均值不小于单块值不小于MU30 30.0 24.0 4.8 3.8 MU25 25.0 20.0 4.5 3.6 MU20 20.0 16.0 4.0 3.2 MU15 15.0 12.0 3.7 3.0 MU10 10.0 8.0 2.5 2.0 5.试验方法

5.1抗折强度试验 5.1.1仪器设备: 材料试验机:实验机的示值相对误差不大于±1%,预期最大破坏荷载应在量程的20%~80%之间。 抗折夹具:抗折试验的加荷形式为三点加荷,其上压棍和下支棍的曲率半径为15mm,下支棍应有一个为绞接固定。 钢直尺:规格为400mm,分度值为1mm。 5.1.2试样 试样数量:10块。 试样处理:样品应放在温度为(20±5)℃的水中浸泡24h后取出,用湿布拭去其表面水分进行抗折强度试验。 5.1.3试验步骤 5.1.3.1样品测量:测量试样宽度B和高度H,分别测量两次取平均值,精确至1mm。 5.1.3.2调整抗折夹具下支棍的跨距为砖规格长度减去40mm。但规格长度为190mm的砖,其跨距为160mm。 5.1.3.3将试样大面平放在下支棍上,试样两端面与下支棍的距 离应相同,当试样有裂缝或凹陷时,应使有裂缝或凹陷的大面朝下, 以(50~150)N/S的速度均匀加荷,直至试样断裂,记录最大破坏 荷载P。 5.1.3.4结果计算与评定 每块试样的抗折强度(Rc)按式(1)计算,精确至0.01MPa。

粉煤灰对混凝土强度及弹性模量值的影响

3.5 错台处治 对于完好的混凝土板与板之间发生错台,处治方法为采用压浆抬板并辅以磨平法。对于板块因脱空下沉,在压浆完毕弯沉检测满足其要求后,仍有错台的板块采用磨平机磨平(对高差小于10mm的错台,直接用磨平机磨平;对大于10mm的错台,借助人工将高出的错台板基本凿平,然后再用磨平机磨平。),从错台最高点开始向四周扩展,边磨边用 3m直尺找平,直至相邻两块板齐平为止。磨平后,将接缝内杂物清除干净,并吹净灰尘,及时用聚氨酯填缝料填缝。 3.6 接缝维修 对于纵横向接缝填缝料采用填缝料进行重新灌缝处理;灌缝时将缝内碎屑及杂物用勾子清除,并将专用填缝料灌入缝内。 3.7 混凝土板块病害处治合格的标准 经过对混凝土板块病害的处理后,砼的弯拉强度不低于5MPa;采用落锤式弯沉仪FWD逐板检测板角处的弯沉,满足不同荷载下弯沉曲线的截距小于 30mm、单点弯沉小于0.14mm,相邻板块的弯沉差小混凝土路面结构内部。 4.2 加铺层材料选择 沥青的添加剂、改性剂伴随着沥青在道路工程 上的使用而逐渐发展起来,现在市场上有各种各样 的添加剂、改性剂来有针对性地改善沥青的各种性 能。如纤维就是一种典型的已经证明能有效抑制反 射裂缝的添加剂,它可以提高沥青混合料的抗拉强 度从而减少反射裂缝。 罩面层常采用的已经证明对抑制反射裂缝有良 好效果的改性沥青有橡胶改性沥青、SBS改性沥青 等。由于橡胶沥青当时在省内没有生产成规模、质 量较稳定的橡胶沥青厂家,因此采用SBS改性沥青。 同时采用改性沥青和纤维的沥青玛蹄脂碎石SMA 性能优良,不但具有良好的高温稳定性具有良 好的抗反射裂缝能力。因此经过综合比较,三环路 采用SBS改性沥青玛 蹄脂碎石SMA作为路面抗滑表 层 4.3 加铺层厚度设计 我国现行规范并没用白改黑加铺层厚度设计内 容。根据国内外使用经验,较厚的加铺层厚度能减 轻反射裂缝的产生。 沥青面层厚度对防治或减轻反射裂缝的原因有 两点: (1)沥青面层越厚,原水泥混凝土面板的温缩 应力将减小; (2)反射裂缝通过较厚的沥青面层需要较长的 时间。 但较厚的沥青面层需要花费较高的费用,且根 据国内外的研究资料来看,仅仅依靠增加罩面层厚 度来防治反射裂缝的尝试仅部分成功,且最少厚度 必须在15cm以上才有明显效果[6]。对于我国超载情 况较严重的实际情况,单靠增 加沥青层厚度来防治“白加黑”水泥面板的反射裂 缝显然是不现实的。因此,三环路加铺层厚度的设 计根据交通荷载、提高路面平整度以及抗反射裂缝 的要求综合确定采用10cm沥青混凝土加铺层。 粉煤灰对混凝土强度及弹性模量值的影响 达生润 (四川济通水运公路工程检测有限责任公司成都610225) 【摘 助。 要】通过分析粉煤灰对混凝土强度及弹性模量值的影响,为优化混凝土配合比提供一定的帮 【关键词】混凝土强度;弹性模量;粉煤灰;掺量 性模量的影响。 在水胶比及其他因素不变的情况下,调整粉煤 灰掺量,用以判断粉煤灰对混凝土强度和混凝土弹 性模量的影响。 根据试验方案设计配合比进行数据收集见表1。 表1 设计配合比汇总表 0前言 伴随科学技术的发展,工程技术和各种社会需求 也不断增长,工程中使用的混凝土除了保证工程质量 以外,还要追求较高的经济价值和实用性。这样,多 组分混凝土在实际生产过程中的应用也越来越普及。 现代工程施工中的混凝土主要以强度,坍落度作为控 制指标外,经常还需要规定混凝土的抗渗、抗冻、以 及弹性模量值。在计算钢筋混凝土的变形,裂缝扩展 及大体积混凝土的温度应力时,施工单位都需要准确 了解对应混凝土的弹性模量值。在施工过程中,也经 常出现混凝土强度达到设计要求而弹性模量偏低,使 混凝土构件变形较大而不能正常使用,导致混凝土结 构失衡而发生工程质量事故。本文主要讨论粉煤灰对 混凝土强度及混凝土弹性模量的影响。 4加铺沥青面层施工 沥青罩面层的厚度一般根据交通量的情况取 5cm及以上。由于水泥混凝土面板强度较高,作为基层路面的结构强度一般能满足要求,关键是如何防止沥青加铺层产生反射裂缝。 4.1 应力吸收中间层 在水泥面板处治合格后考虑设置抗反射裂中间层材料。常见的有各类土工类材料,用于防止反射裂缝实际工程中的效果报道相差较大,从没有效果,甚至因为使用不当造成水损坏等反作用,到效果优越的都有报道。因此使用这类材料时应根据具体的裂缝病害选择合适的材料,在施工中应认真细致,不要造成材料的卷起或不平,特别是土工布类材料使用时候要让沥青浸透,否则还会起到相反的效果。 根据历史资料及使用经验,三环路选择采用橡胶沥青同步碎石应力吸收层作为盈利吸收层使用,这种结构具有优良的柔韧性和粘结性,可抑制和减缓水泥混凝土路面接缝引起的反射裂缝,同时也是一层优良的防水层,可以有效地防止路表水分渗入 1 1.1 试验情况及其设计原理 原材料 水泥:广西东泥股份有限公司生产的P.0 42.5各 2试验数据分析 根据设计试验方案收集整理出的数据见表2。 表2 不同实验方案混凝土的力学性能指标汇总表 项技术指标均符合国家标准的规定。 细骨料:田阳那坡镇机制砂场生产的机制砂, 细度模数2.8。 粗骨料:可袍采石场山碎石,5~31.5mm连续级 配。粉煤灰:广西田东创源股份有限公司生产 的F类 粉煤灰。 搅拌方式:采用120型生产用强制式搅拌机。 1.2 试验方案 在粉煤灰掺量及其他因素不变的情况下,调整 水胶比,用以判断粉煤灰对混凝土强度和混凝土弹 5结束语 三环路路面整治工程于2011年6月27日开 始,于 同年9月20日结束,施工仅用了不足3个月的时 间。 通过各种性能指标的检测,取得(下转第34 序号 1d抗压 强度代表 值(MPa) 3d抗压 强度代表 值(MPa) 7d抗压 强度代表 值(MPa) 28d抗压 强度代表 值(MPa) 28d弹性 模量代表 值(MPa) 56d抗压 强度代表 值(MPa) 90d抗压 强度代表 值(MPa) A17.3011.3715.4925.563422325.6828.03 B17.3011.2618.1626.613528436.2639.51 C114.1021.2126.8933.063832644.2543.85 A2 4.907.1010.5618.503037522.7924.70 B2 5.809.9113.3225.703330727.9837.39 C211.3017.5022.2733.303808940.2041.96 A3 3.60 5.959.0516.252953920.9623.77 B3 5.507.9913.2025.282900730.8436.05 C38.3013.0417.9233.133745435.0040.05 序号 设计 标准 水泥用 量(kg) 粉煤灰 用量(k g) 粉煤灰 参量(%) 细集料 用量(k g) 粗集料 用量(k g) 水用量 (kg) 水胶比 A1C20266662077711201780.54 B1C30317792076410561930.49 C1C40349872073210551860.43 A2C202321003077711201780.54 B2C302771193076410561930.49 C2C403051313073210551860.43 A3C201991334077711201780.54 B3C302381584076410561930.49 C3C402621744073210551860.43

[全]粉煤灰品质对混凝土性能的影响

粉煤灰品质对混凝土性能的影响 (一)粉煤灰品质对混凝土性能的影响 1.对混凝土拌和物性能的影响 对混凝土和易性影响。在优质(如I级)粉煤灰中含有许多微小的球形颗粒,如同“滚球作用”,能够减小混凝土中较大的骨料之间啮合的摩阻力,减少用水量,-般优质粉煤灰可减少用水量5% ~8%。另外,由于粉煤灰的密度较低(只相当于水泥密度的2/3),在用等量粉煤灰取代水泥时,掺加了粉煤灰的混凝土体积中胶凝材料增加,从而增大了混凝土的塑性。由于优质粉煤灰具有减水作用,使用水量降低,同时粉煤灰的微小颗粒也能改善混凝土内部结构。这些微小粒子使混凝土内部原先相互连通的孔隙被其阻隔,内部自由水不易流动,泌水性能得到改善,富有黏聚性,从而提高拌和物的和易性和稳定性。这种良好的和易性,对于泵送混凝土十分有利。因此,在泵送混凝土中掺加一定数量粉煤灰,不仅能改善混凝土的可泵性;节约水泥,还能延长泵送机械的使用寿命。但是,混凝土中掺加粉煤灰后,由于含碳量增加,多孔结构的碳粒具有较强的吸附能力,能减少拌和物中含气量。比如在碾压混凝土中由于粉煤灰掺量较多,往往要使其达到- -定含气量,必须沉源上多数信的引气别。掺加粉煤厌的混凝土的凝结时间也会延长,而且随着掺加量增力加而延长。

2.对混凝凝土强度的影响. 粉煤灰对强度的影响取决于其减水效果和火山灰效应。优质粉煤灰减水效果明显,在是的和易性和胶材用最条件下,减水意味着减小水胶比,有利于提高强度,而粉煤灰自身的胶凝性比水泥小,必须在有激发剂下产生二次水化反应。因此,掺加粉煤灰的混凝土表现为期强度发展缓慢,后期增长率高的特点。掺加粉煤灰混凝土的3d.7 d强度低于不掺的为混凝土.但是到了90 d,粉煤灰的水化反应加快,可能接近或达到不掺粉煤灰的混凝土。随着龄期延长,,粉煤灰的活性发挥更快些,到180d 就有可能超过不掺粉煤灰的混凝土。这对水工混凝土建筑物来说,利用其后期强度的发展,有利于混凝土性能改善和提高。根据一些工程资料统计,粉煤灰混凝土抗压强度发展如图所示。 粉煤灰对混凝土的抗拉强度影响与对抗压强度影响相似。 3.对混凝土温升的影响 在等量取代水泥时,水泥水化热随粉煤灰掺量增加而降低,水化热降幅小于掺量。比如在42.5级中热水泥中掺30% I级粉煤灰,7 d水化热降低约15%,掺40%时降低约25%,掺50%时降低约32%,掺60%时降低约43%。掺粉煤灰减小水泥水化热,也就是降低混凝土温升,粉煤灰不仅降低温升,,还具有削减温峰和推迟最

蒸压粉煤灰砖

蒸压粉煤灰砖、蒸压灰砂砖砌体 本章适用于一般工业与民用建筑承重结构的蒸压灰砂砖和蒸压粉煤灰砖砌筑工程。一、材料要求 (一)砖: 品种、强度等级必须符合设计要求,并有出厂合格证、产品性能检测报告。进场使用前,应施工时所用的蒸压砖的产品龄期不应小于28d,不宜小于35d.地基基础施工宜用蒸压粉煤灰砖。蒸压粉煤灰砖、蒸压灰砂砖不得用于酸性介质的地基土中。 (二)水泥: 1一般宜采用32.5级的普通硅酸盐水泥或矿渣硅酸盐水泥。 2水泥进场使用前,应分批对其强度、凝结时间、安定性进行复验。 3当在使用中对水泥的质量有怀疑或水泥出厂超过3个月(快硬硅酸盐水泥超过1个月)时,应复查试验,并按结果使用. 4不同品种的水泥不得混合使用。 (三)砂: 用中砂,砂浆的砂含泥量不超过5%,得含有草根等杂物。使用前应用5mm 孔的筛子过筛。 (四)掺合料: 混合砂浆采用石灰膏、粉煤灰和磨细生石灰粉等,磨细生石灰粉熟化时间不得少于2d。 (五)其他材料: 墙体拉结筋及预埋件、刷防腐剂的木砖。 二、主要机具 应备有搅拌机、磅秤、垂直运输设各、大铲、刨铸、瓦刀、扁子、托线板、线坠、小白线、卷尺、铁水平尺、皮数杆、小水桶、灰槽、砖夹子、扫帚等。 三、作业条件 (一)基础墙砌筑:参见本篇第1章1.3.1条。 (二)墙体砌筑: 1完成室外及房心回填土,安装好沟盖板。 2办完地基、基础工程隐检手续。 3按标高抹好水泥砂浆防潮层。 4弹好轴线、墙身线,根据进场砖的实际规格尺寸,弹出门窗洞口位置线,经验线符合设计要求,办完预检手续。 5按设计标高要求立好皮数杆,皮数杆的间距以15~20m为宜。 6砂浆由试验室做好试配,准备好砂浆试模(6块为一组)。

粉煤灰在混凝土中的作用

粉煤灰在混凝土中的作用 粉煤灰是燃烧煤粉后收集到的灰粒,亦称飞灰,其化学成分主要是SiO2(45~65%)、Al2O3(20~35%)及Fe2O3(5~10%)和CaO(5%)等,粉煤灰掺入混凝土后,不仅可以取代部分水泥,降低混凝土的成本,保护环境,而且能与水泥互补短长,均衡协合,改善混凝土的一系列性能,粉煤灰混凝土具有明显的技术经济效益 1 掺入粉煤灰可改善新拌混凝土的和易性 新拌混凝土的和易性受浆体的体积、水灰比、骨料的级配、形状、孔隙率等的影响。掺用粉煤灰对新拌混凝土的明显好处是增大浆体的体积,大量的浆体填充了骨料间的孔隙,包裹并润滑了骨料颗粒,从而使混凝土拌和物具有更好的粘聚性和可塑性。 2 粉煤灰可抑制新拌混凝土的泌水

粉煤灰的掺入可以补偿细骨料中的细屑不足,中断砂浆基体中泌水渠道的连续性,同时粉煤灰作为水泥的取代材料在同样的稠度下会使混凝土的用水量有不同程度的降低,因而掺用粉煤灰对防止新拌混凝土的泌水是有利的。 3 掺用粉煤灰,可以提高混凝土的后期强度 有试验资料表明,在混凝土中掺入粉煤灰后,随着粉煤灰掺量的增加,早期强度(28天以前)逐减,而后期强度逐渐增加。粉煤灰对混凝土的强度有三重影响:减少用水量,增大胶结料含量和通过长期火山灰反应提高强度。 当原材料和环境条件一定时,掺粉煤灰混凝土的强度增长主要取决于粉煤灰的火山灰效应,即粉煤灰中玻璃态的活性氧化硅、氧化铝与水泥浆体中的Ca(OH)2作用生成碱度较小的二次水化硅酸钙、水化铝酸钙的速度和数量。粉煤灰在混凝土中,当Ca(OH)2薄膜覆盖

在粉煤灰颗粒表面上时,就开始发生火山灰效应。但由于在Ca(OH)2薄膜与粉煤灰颗粒表面之间存在着水解层,钙离子要通过水解层与粉煤灰的活性组分反应,反应产物在层内逐级聚集,水解层未被火山灰反应产物充满到某种程度时,不会使强度有较大增长。随着水解层被反应产物充满,粉煤灰颗粒和水泥水化产物之间逐步形成牢固联系,从而导致混凝土强度、不透水性和耐磨性的增长,这就是掺粉煤灰混凝土早期强度较低、后期强度增长较高的主要原因。 4 掺粉煤灰可降低混凝土的水化热 混凝土中水泥的水化反应是放热反应,在混凝土中掺入粉煤灰由于减少了水泥的用量可以降低水化热。水化放热的多少和速度取决于水泥的物理、化学性能和掺入粉煤灰的量,例如,若按重量计用粉煤灰取代30%的水泥时,可使因水化热导致的绝热温升降低15%左右。众所周知,温度升高时水泥水化速

粉煤灰对商品砼表面强度影响的研究

粉煤灰对商品砼表面强度影响的研究 摘要:对某些混凝土表面硬度低的实例进行分析的基础上,进行了生产性试验验证,论述了粉煤灰对混凝土表面硬度的影响及某些混凝土表面硬度偏低的原因。关键词:粉煤灰;表面硬度;泌水;含碳量目前,由于粉煤灰质量及配比、施工养护等方面的原因,使许多人认为掺灰混凝土的表面硬度必然偏低。这种观念阻碍了粉煤灰在混凝土中的应用。例如一些商品混凝土搅拌站在路面混凝土中不敢掺用粉煤灰或者只掺很小比例的粉煤灰。他们担心掺加粉...... 摘要:对某些混凝土表面硬度低的实例进行分析的基础上,进行了生产性试验验证,论述了粉煤灰对混凝土表面硬度的影响及某些混凝土表面硬度偏低的原因。关键词: 粉煤灰;表面硬度;泌水;含碳量目前,由于粉煤灰质量及配比、施工养护等方面的原因,使许多人认为掺灰混凝土的表面硬度必然偏低。这种观念阻碍了粉煤灰在混凝土中的应用。例如一些商品混凝土搅拌站在路面混凝土中不敢掺用粉煤灰或者只掺很小比例的粉煤灰。他们担心掺加粉煤灰会影响混凝土的回弹强度,以致在某些可能会现场回弹检测的结构部位不掺或少掺粉煤灰。本文结合我们近年遇到的有关混凝土表面硬度问题的典型实例进行分析,并做了大量模拟试验,以探讨粉煤灰对混凝土表面硬度的影响和某些混凝土表面疏松的原因。 1 典型实例实例1 某工程C50 混凝土构造柱,在验收过程中发现,混凝土回弹推定值刚满足C40 强度等级混凝土的要求,但随后钻芯取样表明,其强度值均在50MPa 以上,完全满足工程设计要求。类似的情况在近几年的监督检测、验收过程中时有出现,且都集中在C40 及以上强度等级的混凝土中。于是有人认为这是掺用粉煤灰影响了混凝土的表面硬度,有些搅拌站为避免纠纷,在工程重点部位尤其是需要通过回弹验收质量的部位限制粉煤灰掺量,但效果也并不明显。实例2 某厂区道路工程,采用C25 非泵送商品混凝土。水泥为立窑产普硅水泥,在混凝土中掺用10 % Ⅱ级粉煤灰。使用一段时间后发现局部路面起砂,且面层疏松。有人认为这是掺用大量粉煤灰所致。在当年的济南市混凝土企业技术交流会上,几家预拌混凝土企业一致反映使用上述水泥也出现过类似的情况,于是认为这是粉煤灰富集于混凝土表面所致。后来这几家搅拌站找到该水泥生产厂家时却发现该水泥生产时并未过多掺入粉煤灰,且主要掺合料也不是粉煤灰。 实例3 济南市某集团公司院内路面工程,使用C20 商品混凝土800余m3。投入使用后不到一个月,部分混凝土路面有“起粉”、“起砂露石”现象,混凝土表面硬度较低,局部甚至在清扫过程就能扫出大量粉尘,汽车驶过则出现“扬尘”。建设及施工单位怀疑混凝土强度不合格,但质检部门对“起砂露石”较严重部位的混凝土钻芯取样检验表明,其强度完全符合设计施工要求。于是有人认为是混凝土中粉煤灰质量较轻,过振后富集于新拌混凝土表面,导致表面硬度下降,造成“起粉”。但混凝土生产厂家对此认为,他们所用水泥为大厂旋窑水泥,一部分掺粉煤灰10 % ,另一部分则未掺加粉煤灰。施工日志及混凝土厂家生产记录表明,未掺灰的混凝土也有起粉现象。至于该配比已多次用于路面混凝土工程,并未出现过类似现象。实例4 2001 年施工的某公司厂房地面工程,厚度10cm ,采用C20 商品混凝土。施工后一个月,发现局部混凝土表面疏松,干燥处也出现“起粉”现象,另外一部

蒸压灰砂砖标准

蒸压灰砂砖标准 1主题内容与适用范围 本标准规定了蒸压灰砂砖(以下简称灰砂砖)的产品分类、技术要求、试验方法、检验规则、产品合格证、堆放和运输。 本标准适用于以石灰和砂为主要原料,经坯料制备、压制成型、蒸压养护而成的实心灰砂砖。 本标准规定的灰砂砖不得用于长期受热200℃以上、受急冷急热和有酸性介质侵蚀的建筑部位。 2引用标准 GB2542砌墙砖(外观质量、抗压、抗折强度、抗冻性能)检验方法 GB5348砖和砌块名词术语 3产品分类 3.1产品规格 3.1.1砖的外形为矩形体。 3.1.2砖的公称尺寸为:长度190mm,宽度90mm,高度53mm。 3.2产品等级 3.2.1根据抗压强度和抗折强度,强度级别分为251),201),151),102)级。3.2.2根据尺寸偏差和外观分为: a.优等品——A; b.一等品一一B; c.合格品一一C。 3.3产品标记

灰砂砖产品标记采用强度级别、产品等级、标准编号的顺序打印,示例如下: 强度级别为20级,优等品的灰砂砖: LSB-20-A-GB l1945 4技术要求 4.1尺寸偏差和外观 4.2抗折强度和抗压强度 抗折强度和抗压强度应符合表2的规定。 抗冻性应符合表3的规定。 表1灰砂砖外观质量mm 项目指标 优等品一等品合格品(1)尺寸偏差不超过 长度±2 宽度±2 ±2 ±3 高度±1 (2)对应高度差不大于 1 2 3 (3)缺棱掉角的最小破坏尺寸不大于10 15 25 (4)完整面不少于2个条面和1个顶面1个条面和1个条面和 或2个顶面和1个1个顶面1个顶面 条面 (5)裂缝长度不大于 a.大面上宽度方向及其延伸到条面的长度;30 50 70

相关文档
最新文档