物质的组成成份分析方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见的化学成分分析方法

一、化学分析方法

化学分析从大类分是指经典的重量分析和容量分析。重量分析是指根据试样经过化学实验反应后生成的产物的质量来计算式样的化学组成,多数是指质量法。容量法是指根据试样在反应中所需要消耗的标准试液的体积。容量法即可以测定式样的主要成分,也可以测定试样的次要成分。

1.1重量分析

指采用添加化学试剂是待测物质转变为相应的沉淀物,并通过测定沉淀物的质量来确定待测物的含量。

1.2容量分析

滴定分析主要分为酸碱滴定分析、络合滴定分析、氧化还原滴定分析、沉淀滴定分析。

酸碱滴定分析是指以酸碱中和反应为原理,利用酸性标定物来滴定碱性物质或利用碱性标定物来滴定酸性待测物,最后以酸碱指示剂(如酚酞等)的变化来确定滴定的终点,通过加入的标定物的多少来确定待测物质的含量。

络合滴定分析是指以络合反应(形成配合物)反应为基础的滴定分析方法。如EDTA与金属离子发生显色反应来确定金属离子的含量等。络合反应广泛地应用于分析化学的各种分离与测定中,如许多显色剂,萃取剂,沉淀剂,掩蔽剂等都是络合剂,因此,有关络合反应的理论和实践知识,是分析化学的重要内容之一。

氧化还原滴定分析:是以溶液中氧化剂和还原剂之间的电子转移为基础的一种滴定分析方法。氧化还原滴定法应用非常广泛,它不仅可用于无机分析,而且可以广泛用于有机分析,许多具有氧化性或还原性的有机化合物可以用氧化还原滴定法来加以测定。通常借助指示剂来判断。有些滴定剂溶液或被滴定物质本身有足够深的颜色,如果反应后褪色,则其本身就可起指示剂的作用,例如高锰酸钾。而可溶性淀粉与痕量碘能产生深蓝色,当碘被还原成碘离子时,深蓝色消失,因此在碘量法中,通常用淀粉溶液作指示剂。

沉淀滴定分析:是以沉淀反应为基础的一种滴定分析方法,又称银量法(以硝酸银液为滴定液,测定能与Ag+反应生成难溶性沉淀的一种容量分析法)。虽然可定量进行的沉淀反应很多,但由于缺乏合适的指示剂,而应用于沉淀滴定的反应并不多,目前比较有实际意义的是银量法。

二、仪器分析

2.1电化学分析

是指应用电化学原理和技术,是利用原电池模型的原理来分析所测样品的电极种类及电解液的组成及含量和两者之间的电化学性质的关系而建立起来的一类分析方法。现在一般是使用电化学工作站来对样品进行测试。其特点是灵敏度高,选择性好,设备简单,操作方便,应用范围广。根据测量的电信号不同,电化学分析法可分为电位法、电解法、电导法和伏安法。

电位法是通过测量电极电动势以求得待测物质含量的分析方法。若根据电极电位测量值,直接求算待测物的含量,称为直接电位法;若根据滴定过程中电极电位的变化以确定滴定的终点,称为电位滴定法。

电解法是根据通电时,待测物在电他电极上发生定量沉积的性质以确定待测物含量的分析方法。

电导法是根据电解质溶液中溶质溶度的不同,其电导率也不同的原理,而测量分析溶液的电导以确定待测物含量的分析方法。

伏安法是将一微电极插入待测溶液中,根据被测物质在电解过程中的电流-电压变化曲线来进行定性或定量分析的一种电化学分析方法。

2.2光化学分析

光化学分析是基于能量作用于物质后,根据物质发射、吸收电磁辐射以及物质与电磁辐射的相互作用来进行分析的化学分析方法。其主要可分为光谱法和非光谱法两大类。光谱法是基于辐射能与物质相互作用时,测量有无之内不发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度而进行分析的方法。主要有原子吸收光谱

法(AAS)、原子发射光谱法(AES)、原子荧光分析法(AFS)、红外光谱法(IR)等。非光谱法是基于光的波动性而对物质进行测试,主要有分光光度法和旋光法等。

2.2.1原子吸收光谱法(AAS)

原子吸收光谱法是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长,由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。

其基本原理是每一种元素的原子不仅可以发射一系列特征谱线,也可以吸收与发射线波长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,与被测元素的含量成正比:A=KC 式中K为常数;C为试样浓度;K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。

2.2.2原子发射光谱法(AES)

原子发射光谱法是依据各种元素的原子或离子在热激发或电激发下,发射特征的电磁辐射,而进行元素的定性与定量分析的方法,是光谱学各个分支中最为古老的一种,可同时检测一个样品中的多种元素。

其基本原理是各物质的组成元素的原子的原子核外围绕着不断运动的电子,电子处在一定的能级上,具有一定的能量。从整个原子来看,在一定的运动状态下,它也是处在一定的能级上,具有一定的能量。在一般情况下,大多数原子处在最低的能级状态,即基态。基态原子在激发光源(即外界能量)的作用下,获得足够的能量,其外层电子跃迁到较高能级状态的激发态,这个过程叫激发。处在激发态的原子是很不稳定的,在极短的时间内(10s)外层电子便跃迁回基态或其它较低的能态而释放出多余的能量。释放能量的方式可以是通过与其它粒子的碰撞,进行能量的传递,这是无辐射跃迁,也可以以一定波长的电磁波形式辐射出去,其释放的能量及辐射线的波长(频率)要符合波尔的能量定律。

2.2.3原子荧光分析法(AFS)

原子荧光分析法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。但所用仪器与原子吸收光谱法相近。原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。原子荧光光谱是介于原子发射光谱和原子吸收光谱之间的光谱分析技术。

其基本原理是通过测量待测元素的原子蒸气在一定波长的辐射能激发下发射的荧光强度而进行定量分析。原子荧光的波长在紫外、可见光区。气态自由原子吸收特征波长的辐射后,原子的外层电子从基态或低能态跃迁到高能态,约经10-8秒,又跃迁至基态或低能态,同时发射出荧光。若原子荧光的波长与吸收线波长相同,称为共振荧光;若不同,则称为非共振荧光。共振荧光强度大,分析中应用最多。在一定条件下,共振荧光强度与样品中某元素浓度成正比,从而通过测试共振荧光的强度来确定待测元素的含量。

2.2.4分光光度法

分光光度法是通过测定被测物质在特定波长处或一定波长范围内光的吸光度或发光强度,对该物质进行定性和定量分析的方法。

其基本原理是在分光光度计测试中,将不同波长的光连续地照射到一定浓度的样品溶液时,便可得到与不同波长相对应的吸收强度。再以波长(λ)为横坐标,吸收强度(A)为纵坐标,就可绘出该物质的吸收光谱曲线。利用该曲线进行物质定性、定量的分析方法,称为分光光度法,也称为吸收光谱法。用紫外光源测定无色物质的方法,称为紫外分光光度法;用可见光光源测定有色物质的方法,称为可见光光度法。

2.2.5旋光法

旋光法是基于许多物质都具有旋光性(又称光学活性)如含有手征性碳原子的有机化合物,从而利用物质的旋光

相关文档
最新文档