关于生物降解材料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于生物降解材料

篇一:浅谈生物可降解高分子材料的开发利用

[摘要]我国目前的高分子材料生产和使用已跃居世界前列,每年产生几百万吨废旧物。如此多的高聚物迫切需要进行生物可降解,以尽量减少对人类及环境的污染。本文探讨了生物可降解高分子材料现阶段的开发应用情况。

[摘要]我国目前的高分子材料生产和使用已跃居世界前列,每年产生几百万吨废旧物。如此多的高聚物迫切需要进行生物可降解,以尽量减少对人类及环境的污染。本文探讨了生物可降解高分子材料现阶段的开发应用情况。

[关键词]高分子材料可降解生物

我国目前的高分子材料生产和使用已跃居世界前列,每年产生几百万吨废旧物。如此多的高聚物迫切需要进行生物可降解,以尽量减少对人类及环境的污染。生物可降解材料,是指在自然界微生物,如细菌、霉菌及藻类作用下,可完全降解为低分子的材料。这类材料储存方便,只要保持干燥,不需避光,应用范围广,可用于地膜、包装袋、医药等领域。生物可降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。按照上述机理,现将目前研究的几种主要的可生物可降解的高分子材料介绍如下。

1、生物可降解高分子材料概念及降解机理

生物可降解高分子材料是指在一定的时间和一定的条件下,能被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。

生物可降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。一般认为,高分子材料的生物可降解是经过两个过程进行的。首先,微生物向体外分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子量小于500的小分子量的化合物;然后,降解的生成物被微生物摄入人体内,经过种种的代谢路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。

因此,生物可降解并非单一机理,而是一个复杂的生物物理、生物化学协同作用,相互促进的物理化学过程。到目前为止,有关生物可降解的机理尚未完全阐述清楚。除了生物可降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。生物可降解高分子材料的降解除与材料本身性能有关外,还与材料温度、酶、ph值、微生物等外部环境有关。

2、生物可降解高分子材料的类型

按来源,生物可降解高分子材料可分为天然高分子和人工

合成高分子两大类。按用途分类,有医用和非医用生物可降解高分子材料两大类。按合成方法可分为如下几种类型。 2.1微生物生产型

通过微生物合成的高分子物质。这类高分子主要有微生物聚酯和微生物多糖,具有生物可降解性,可用于制造不污染环境的生物可降解塑料。如英国ici公司生产的“biopol”产品。

2.2合成高分子型

脂肪族聚酯具有较好的生物可降解性。但其熔点低,强度及耐热性差,无法应用。芳香族聚酯(pet)和聚酰胺的熔点较高,强度好,是应用价值很高的工程塑料,但没有生物可降解性。将脂肪族和芳香族聚酯(或聚酰胺)制成一定结构的共聚物,这种共聚物具有良好的性能,又有一定的生物可降解性。

2.3天然高分子型

自然界中存在的纤维素、甲壳素和木质素等均属可降解天然高分子,这些高分子可被微生物

完全降解,但因纤维素等存在物理性能上的不足,由其单独制成的薄膜的耐水性、强度均达不到要求,因此,它大多与其它高分子,如由甲壳质制得的脱乙酰基多糖等共混制得。

篇二:生物降解高分子材料研究进展

【摘要】合成高分子材料,并且因此开发可降解的高分子材料已成为高分子领域的一个重要研究课题,生物降解性高分子材料更是目前研究的热点。本文简述了生物降解性高分子的生物降解机理、影响因素,着重综述了淀粉、聚乳酸、可生物降解塑料等几种具有生物降解性的高分子材料的最新研究进展及其发展趋势。

【关键字】生物降解高分子降解性塑料淀粉聚乳酸研究进展

前言: 当今世界,合成高分子材料制品已经被广泛应用于人们生产和生活的各个领域,并且在众多领域取代了传统的金属、玻璃、陶瓷、木材等材料,特别是在包装行业应用更为广泛。PE、PS、PP、PVC等的薄膜、软袋及容器已使包装行业发生了一次深刻的革命。然而,由此产生的大量废旧塑料给地球环境及生态带来的影响己越来越为社会的广泛关注。其中塑料因为其不可降解性而给人们带来了“白色污染”的很大困扰。发展环境降解塑料(EDP)已成为当务之急[1]!

1. 生物降解高分子材料概述

从化学角度来定义,高分子是由分子量很大的长链分子所组成,而每个分子链都是由共价键联结的成百上千的一种或多种小分子构造而成[2]。高分子材料的功能很多,因此应用十分广泛。可是高分子材料在给人类创造美好生活的同时,也带来了一些负面效应,其中最明显的当属废旧塑料等

引起的“白色污染”。

生物可降解高分子是指在一定条件下,一定时问内能被微生物降解的高分子材料。按美国材料试验学会ASTM在1989年给可降解塑料下的确切定义,可降解塑料是指:在特定时间内造成性能损失的特定环境条件下,其化学结构发生变化的一种塑料,根据促进化学结构发生降解变化的因素来分类,降解塑料可分为生物降解塑料和光降解塑料两种。前者在细菌、真菌和藻类等微生物的作用下,塑料产生分解直至消失;后者是在日光作用情况下,塑料产生分解直至消失[3]。

2. 降解高分子材料的生物降解机理

生物降解高分子的降解通常是以化学方式进行的,即在微生物活性(有酶参与)的作用下,酶进入聚合物的活性位置并渗透至聚合物的作用点后,使聚合物发生水解反应从而使聚合物大分子骨架结构发生断裂变成小的链段,并最终断裂为稳定的小分子产物,

完成生物降解过程。下表 [4]为一些生物降解高分子的水解反应情况。

高分子材料的生物降解过程可分为4个阶段:水合作用、强度损失、物质整体化丧失和质量损失。高分子水合作用是因依靠范德华力和氢键维系的结构的破裂引发的水合作用,以及其后高分子主链可能因化学或酶催化水解而破裂,高分

相关文档
最新文档