精馏塔故障分析及诊断讨论

精馏塔故障分析及诊断讨论
精馏塔故障分析及诊断讨论

精馏塔故障分析及诊断讨论

【摘要】本文针对精馏塔的故障进行相关讨论,陈述了γ-射线技术进行扫描和流程模拟等的原理,分析了精馏塔在其故障诊断中该技术的应用,对其进行诊断的一般过程进行讨论。从实质上讲,γ-射线扫描技术就是对精馏塔设备进行透视检查,在γ-射线扫描中,探头检测到透射的强度,根据强度来得到数据而形成谱图,从而实现对精馏塔故障的诊断分析。

【关键词】精馏塔故障γ-射线

精馏过程是一个涉及最为广泛的化工单元设备,也是在化学加工工业中数量最多的应用。对于精馏塔故障的分析诊断,在早期主要是通过相关工程技术人员的知识与经验相结合、积累来进行判定和排除。随着科技进步,在石油和化工行业的高速发展下,精馏技术得到了长足的进步,其应用的规模和数量都有很大的提升,这也很大程度的刺激了精馏相关科学的研究。对于精馏塔的故障诊断已经逐渐形成了一个新的研究方向,这也逐步提高了故障诊断的准确性和排除故障的成功率。而在众多技术中γ-射线扫描以及流程模拟等技术作用更为突出,在对精馏塔故障的诊断上也得到了更多的重视。本文主要对γ-射线相关技术进行论述。

1 γ-射线扫描技术

该技术最早的应用是在上世纪60年代末,这种技术在工业设备的扫描检测中是一种透视技术。对于该技术的应用,是杜邦公司最早发现,并实现了重水精馏塔操作的检测。根据1998年国外相关

齿轮故障诊断

第1章齿轮箱失效比重及失效形式 齿轮箱在机械设备中扮演着非常重要的角色,通常情况下,原动机输出的转矩和转速不能直接用于执行元件执行操作,需要进行转矩放大和降低转速,通常使用的传动设备有齿轮减速箱、带传动、链传动等,由于齿轮箱传动瞬时传动比恒定、传动效率高、工作可靠、使用寿命长、结构紧凑、适用范围从1W到数万KW等优点,所以齿轮箱传动是机械传动系统中运用最广泛的一种传动形式。 1.1 齿轮箱失效原因及比重 机械设备中的齿轮箱从装配投入使用开始,除了设备维护以外,齿轮箱都需要保持一个稳定的运行状态,长期的高负荷运转使齿轮箱的故障率非常大,在机械设备中,造成齿轮箱故障的原因及失效比重如下表所示: 由此可见,齿轮箱失效主要的原因是维护和操作不当,相邻的零件故障也会造成齿轮箱的故障,设计不合理也是严重影响齿轮箱使用的重要因素,为保障机械设备在运行中稳定可靠,除了合理设计齿轮箱外,正确选择相邻零件、合理操作维护是保障稳定运行的重要手段。当出现故障时,能够准确找出故障是对齿轮箱维护的重要前提,因此,掌握齿轮箱故障诊断技术非常重要。 1.2 齿轮箱失效零件及失效比重 在齿轮箱中,失效的主要零件及失效比重如下表所示:

由此可见,齿轮失效是造成齿轮箱失效的主要原因,由于制造误差、装配不当或在不适当的条件(如载荷、润滑等)下使用,齿轮常发生损伤,从而导致机械设备不能够用稳定运行,甚至发生生产安全事故。 1.3 齿轮的主要失效形式 齿轮的主要失效形式有四种:轮齿断裂、齿面磨损、齿面疲劳、齿面塑性变形。 1.31 轮齿折断 齿轮副在啮合传递运动时,主动轮的作用力和从动轮的反作用力都通过接触点分别作用在对方轮齿上,最危险的情况是接触点某一瞬间位于轮齿的齿顶部,此时轮齿如同一个悬臂梁,受载后齿根处产生的弯曲应力为最大,若因突然过载或冲击过载,很容易在齿根处产生过负荷断裂。即使不存在冲击过载的受力工况,当轮齿重复受载后,由于应力集中现象,也易产生疲劳裂纹,并逐步扩展,致使轮齿在齿根处产生疲劳断裂。 轮齿的断裂是齿轮的最严重的故障,常因此造成设备停机,在齿轮故障中,轮齿折断概率为41%。 1.32 齿面磨损 (1)粘着磨损在低速、重载、高温、齿面粗糙度差、供油不足或油粘度太低等情况下,油膜易被破坏而发生粘着磨损。润滑油的粘度高,有利于防止粘着磨损的发生。 (2)磨粒磨损与划痕含有杂质颗粒以及在开式齿轮传动中的外来砂粒或在摩擦过程中产生的金属磨屑,都可以产生磨粒磨损与划痕。 (3)腐蚀磨损由于润滑油中的一些化学物质如酸、碱或水等污染物与齿面发生化学反应造成金属的腐蚀而导致齿面损伤。 (4)烧伤烧伤是由于过载、超速或不充分的润滑引起的过分摩擦所产生的局部区域过热,这种温度升高足以引起变色和过时效,会使钢的几微米厚表面层重新淬火,出现白层。损伤的表面容易产生疲劳裂纹。 (5)齿面胶合大功率软齿面或高速重载的齿轮传动,当润滑条件不良时易产生齿面胶合(咬焊)破坏,即一齿面上的部分材料胶合到另一齿面上而在此齿面上

_精馏塔操作常见问题

1.精馏塔操作及自动控制系统的改进 问:蒸汽压力突然变化时,将直接影响塔釜难挥发组分的蒸发量,使当时塔内热量存在不平衡,导致气-液不平衡,为此如何将塔釜热量根据蒸汽进料量自动调节达到相对稳定,从而保证塔内热量平衡是问题的关键。在生产过程中,各精馏塔设备已确定,塔釜蒸发量与气体流速成正比关系,而流速与塔压差也成正比关系,所以控制好塔顶、塔釜压力就能保证一定的蒸发量,而在操作中,塔顶压力可通过塔顶压力调节系统进行稳定调节或大部分为常压塔,为此,稳定塔釜压力就特别重要。于是在蒸汽进料量不变情况下,我们对蒸汽压力变化情况与塔釜压力的变化进行对比,发现两者成正比关系,而且滞后时间极小。于是将蒸汽进料量与塔釜压力进行串级操作,将塔釜压力信号传递给蒸汽流量调节阀,蒸汽流量调节阀根据塔釜压力进行自动调节,通过蒸汽进料量自动增大或减少,确保塔釜压力稳定,从而保证了精馏操作不受外界蒸汽波动的影响。 我们在讨论精馏塔的控制方式,主要分析的是工艺系统对塔的影响,公用工程几乎不对内部有制约。实际上也是如此。举例分析:蒸汽系统的压力突然变化的系数要远远小于一个精馏塔内部压力变化的系数,也就是说蒸汽系统的压力对比塔压是更趋于稳定;基于这个原因塔压的控制才可以串级控制再沸器的进入蒸汽流量。如果发现蒸汽系统的压力发生了变化,塔压基本没法和加热蒸汽流量串控了。 第二塔的压差基本只是一个参考数据,一般不对塔压差进行控制。尽管塔压差过高我们要采取一定的措施。 DCS/SCS/APC等技术伴随着大容量的工业电脑的应用,投入成本逐渐下降,精馏塔的高级智能控制也成为可能,比如APC/SCS等技术,精馏产品纯度也得到保证。可是这些系统其实很脆弱,由于影响这些先进控制的外来因素的影响,DCS操作工随时都可能摘除这些控制,回到DCS的水平,进行人工干预。 问:个人认为首先蒸汽压力的波动可以直接影响釜温和塔釜压力的不稳定,同时造成塔内压差的波动,在锅炉补水或蒸汽温度变化的情况下如果不即时去调节蒸汽量来稳定塔内压差的话,很有可能造成反混和塔釜轻组分超标现象.这个和采用双温差控制的方式相仿,而且在现场操作的时候,如果蒸汽压力升高或降低,如果阀门保持同样的开度的话,蒸汽的流量会多少有加大和减少的情况,我认为公用系统的稳定是精馏系统温度的先决条件,楼上你认为如何? 你“说”的没有任何错误。可是问题出在哪里呢? 我们以控制塔压力为例。假设塔的其它参数不变,只有供应塔底再沸的蒸汽压力在变化,假定塔压直控塔底再沸蒸汽的量或者串控塔底蒸汽的流量。因为该蒸汽压力的变化,然后塔压命令再沸器的流量控制阀做出调整,这样才能保持塔的稳定。这是可以实现的,完全没有问题。(这是一元参数变化) 然而实际的情况却不能让你这样子。 我们知道塔的进料除非你特意的控制其进料流量(有这种模式),否则任何塔的进料都是波动的,有时甚至有较大波幅(这时就产生二元参数变化),进料板一般不能变化了(除非特殊工艺,设计了多个可控进料口),设塔的进料变大了,就会出现塔的灵敏板以下温度降低,但是塔压已经正常,楼主的用塔压控制蒸汽流量的阀门关闭了,可这时塔底部温度却还低呢!如果有三元以上参数也变化呢?楼主的精馏塔还精馏吗? 正确的精馏塔的控制机理应该是这样的:因为工艺的变化,要求塔底再沸器蒸汽流量伴随变化,蒸汽流量是从动参数。反过来是不允许的,尽管理论上是成立的。 顺便想讨论的是:一个装置中锅炉系统不会因为系统补水和排污而导致蒸汽系统压力产生波动,否则属于事故方向问题。

基于神经网络的故障诊断

神经网络工具箱应用于故障诊断 1.问题描述 电力系统的安全运行具有十分重要的意义。当高压变压器或其他类似设备在运行中出现局部过热、不完全放电或电弧放电等故障时,其内部绝缘油、绝缘纸等绝缘材料将分解产生多种气体,包括短链烃类气体(C2H2、CH4等)和H2、CO2等,这些气体称作特征气体。而特征气体的含量与故障的严重程度有着很密切的关系,如下图1所示。将BP神经网络应用于变压器故障诊断对大型变压器的运行有着非常重要的意义。 2.神经网络设计 (1)输入特征向量的确定 变压器的故障主要与甲烷(CH4)、氢气(H2)、总烃(C1+C2)以及乙炔(C2H2)4 种气体的浓度有关,据此可以设定特征向量由这 4 种气体的浓度组成,即CH4、H2、C1+C2(总烃)和C2H2,同时也设定了网络输入层的节点数为4个。 (2) 输出特征向量的确定 输出量代表系统要实现的功能目标,其选择确定相对容易一些。只要问题确定了,一般输出量也就确定了。在故障诊断问题中,输出量就代表可能的故障类型。变压器的典型故障类型有:一般过热故障、严重过热故障、局部放电故障、火花放电故障以及电弧放电故障等5种类型,因此这里选择 5 个向量作为网络的输出向量,即网络输出节点确定为 5 个。根据Sigmoid 函数输出值在0 到1 之间的特点,这里设定以0 到1 之间的数值大小表示对应的故障程度,也可以理解为发生此类故障的概率,数值越接近 1 表示发生此类故障的几率越大或说对应的故障程度越大。针对本系统,

设定输出值大于等于0.5 时认为有此类故障,小于0.5 时认为无此类故障。 (3)样本的收集 输入、输出向量确定好以后就可以进行样本的收集。 数据归一化处理时,注意:在归一化处理的时候,因考虑到各气体浓度值相差较大,如总烃的浓度比H2的浓度值高出几个数量级,因此在归一化处理的时候,分别对各个气体浓度值进行处理,即最大值和最小值取的是各气体的最值,而不是所有样本值中的最值。 在本实例中采用:MATLAB利用归一化公式 u=(x-min(min(x)))./(max(max(x))-min(min(x))) (1) 在公式1中x表示所需归一化处理的数据,u表示归一化后的结果 处理结果如下:

2020年第三届全国农业行业职业技能大赛农机修理工技能竞赛内容

2020年第三届全国农业行业职业技能大赛 农机修理工技能竞赛内容 农机修理工职业技能竞赛的理论知识考试内容和操作技能考核的内容、命题规则、评分要点如下。 一、理论知识考试 (一)理论知识考试范围 理论知识考试范围以《国家职业标准农机修理工》高级工应掌握的知识为主,兼顾有关新知识和新技术。由职业技能鉴定国家题库农业分库生成的题目数量不少于题目总量的80%。 (二)理论知识复习参考资料 1. 职业技能鉴定培训指导《农机修理工》(初级、中级、高级),农业部农机行业职业技能鉴定教材编审委员会编写,中国农业科学技术出版社出版。 2.竞赛使用的农机产品使用说明书等。 3.理论知识考试试题库。 产品使用说明书以及题库发布在农机学习平台App

PC端网址。 二、操作技能考核 农机修理工操作技能考核分别设置拖拉机悬挂旋耕机作业机组综合故障诊断与排除项目、全喂入谷物联合收割机综合故障诊断与排除项目,两个项目配分比例分别占操作技能考核总成绩的60%和40%。 (一)操作技能考核使用机型 项目一使用机型:雷沃欧豹牌MG2004型方向盘轮式拖拉机(配置雷沃动力牌6DK3-ETA06型200马力、六缸高压共轨柴油发动机),悬挂雷沃1GKN-320型旋耕机。 项目二使用机型:雷沃谷神牌4LZ-10M6型方向盘自走(轮)式全喂入谷物联合收割机(配置雷沃动力牌4DK3-ETA20型180马力、四缸高压共轨柴油发动机)。 (二)操作技能考核要点 项目一:拖拉机悬挂旋耕机作业机组综合故障诊断与排除 本项考核时间:70分钟(时间结束时,未完成的内容不得

分)。 本项考核技术要求:满足相应产品使用说明书及维修技术手册要求。 本项考核要点:见表1。 表1 拖拉机悬挂旋耕机作业机组综合故障诊断 与排除考核要点

齿轮传动系统的故障诊断方法研究要点

齿轮传动系统的故障诊断方法研究内容提要:在机械设备运转过程中,齿轮传动系统通过主、从动齿轮的相互啮合传递运动和能量,这个过程将产生一定形式的机械振动。而诸如磨损、点蚀、制造误差、装配误差等齿轮和齿轮传动系统的各种缺陷和故障必然引起机械振动状态(或信号)发生变化。因此,在齿轮传动系统的振动信号中,蕴涵有它的健康状态(故障与无故障)信息,监测和分析振动信号自然就可以诊断齿轮和齿轮传动系统的故障。 关键词:齿轮故障;故障诊断;振动;裂纹

目录 引言 (1) 第一章影响齿轮产生振动的因素 (2) 1.1 振动的产生 (2) 1.2 振动的故障 (2) 第二章齿轮裂纹故障诊断 (4) 2.1 裂纹产生的原因 (4) 2.2齿轮裂纹分类、特征、原因及预防措施 (4) 2.2.1淬火裂纹 (4) 2.2.2磨削裂纹 (4) 2.2.3疲劳裂纹 (5) 2.2.4轮缘和幅板裂纹 (6) 第三章齿轮故障诊断方法与技术展望 (7) 3.1 齿轮故障诊断的方法 (7) 3.1.1 时域法 (7) 3.1.2 频域法 (7) 3.1.3 倒频谱分析 (8) 3.1.4 包络分析 (8) 3.1.5 小波分析方法 (8) 3.2 齿轮故障诊断技术的展望 (9) 结论 (10) 致谢 (11) 参考文献 (12)

引言 随着科学技术的不断进步,机械设备向着高性能、高效率、高自动化和高可靠性的方向发展。齿轮由于具有传动比固定、传动转矩大、结构紧凑等优点,是改变转速和传递动力的最常用的传动部件,是机械设备的一个重要组成部分,也是易于故障发生的一个部件,其运行状态对整机的工作性能有很大的影响。 在机械设备运转过程中,齿轮传动系统通过主、从动齿轮的相互啮合传递运动和能量,这个过程将产生一定形式的机械振动。而诸如磨损、点蚀、制造误差、装配误差等齿轮和齿轮传动系统的各种缺陷和故障必然引起机械振动状态(或信号)发生变化。因此,在齿轮传动系统的振动信号中,蕴涵有它的健康状态(故障与无故障)信息,监测和分析振动信号自然就可以诊断齿轮和齿轮传动系统的故障。

影响精馏塔操作问答题

1、影响精馏塔操作?影响精馏操作的因素有以下几种:(1)回流比的影响;(2)进料状态的影响;(3)进料量大小的影响;(4)进料组成变化的影响;(5)进料温度变化的影响;(6)塔顶冷剂量大小的影响;(7)塔顶采出量大小的影响;(8)塔底采出量大小的影响。 2、进料状态有哪几种,对精馏操作有何影响?进料状态有五种:1冷进料。2饱和液。3气液混和物。4饱和气。5过热气。对于固定进料的某个塔来说,进料状态的改变,将会影响产品质量和损失。例如:某塔为饱和液进料,当改为冷进料时,料液入塔后在加料板上与提馏段上升的蒸气相遇,即被加热至饱和温度,与此同时,上升蒸汽有一部分被冷凝下来,精馏段塔板数过多,提馏段板数不足,结果会造成釜液中损失增加。这时在操作上,应适当调整再沸器蒸汽,使塔的回流量达到原来量。 3、进料量的大小对精馏操作有何影响?有两种情况:l进料量波动范围不超过塔顶冷凝器和加热釜的负荷范围时,只要调节得当,对顶温和釜温不会有显著变化,而只影响塔内上升蒸汽速度的变化。2进料量变动的范围超过了塔顶冷凝器和加热的负荷范围时,不仅影响塔内上升蒸汽速度的变化,而且会改变塔顶、塔釜温度,致使塔板上的气液平衡组成改变,直接影响塔顶产品的质量和塔釜损失。总之,进料过大的波动,将会破坏塔内正常的物料平衡和工艺条件,造成了系列的波动。因此,应平衡进料,细心调节。 4、进料组成的变化对精馏操作有何影响?进料组成的变化直接影响精馏操作,当进料中重组分增加时,精馏段负荷增加,容易造成重

组分带到塔顶,使塔顶产品不合格,若进料中轻组分增加,提馏段负菏就会加重,容易造成釜液中轻组份损失加大。进料组成的变化,还会引起物料平衡和工艺条件的变化。 5、进料温度的变化对精馏操作有何影响?进料温度的变化对精馏操作影响是很大的。进料温度低,会增加加热釜的热负荷,减少塔顶冷凝器的冷负荷。反之亦反。进料温度变化过大时,通常会影响整个塔的温度,从而改变汽液平衡。另外,进料温度的改变,会引起进料状态的变化,会影响精馏段、提馏段负荷的改变,使产品质量、物料平衡都会发生改变。因此,进料温度是影响精馏操作的重要因素之一。 6、塔顶冷剂量的大小对精馏塔顶冷剂量的大小会引起回流量和回流温度的变化。冷剂量加大,回流量也加大,塔顶温度下降;冷剂量减小,回流量也减小,操作有何影响?会引起顶温上升,因此,塔顶冷剂量要适当。 7、塔顶取出量的大小对精馏操作有何影响?塔顶取出量的大小与进料量有着密切关系:进料量增大或减小,取出量也相应增大或减小,这样才能保持搭内固定的回流比,维持塔的正常操作。如果进料不变,增加塔顶取出量,会引起回流比减小,操作压力下降,使重组分带到塔顶,引起产品不合格。减小取出量,会引起回流比增大,塔内的物料增多,上升蒸汽速度增大,塔顶与塔釜压差增大,时间长了会引起液泛,从而导致塔釜产品不合格。 8、塔底采出量的大小对精馏操作有何影响?精馏操作中塔釜液面必须保持稳定,而塔底采出量的大小将会引起液面变化。当塔釜液排

农机维修工教学计划与大纲

第一篇农机修理工初级培训教学计划 一、培训目标 通过培训,使学员掌握农机维修管理法律、法规及农机安全规章;熟悉农业机械的基本知识;懂得使用维护技术;具备独立操作技能;遵纪守法,具有良好的职业道德;达到农机修理工考试要求的水平。 二、培训对象 符合农机修理工申请条件,报名参加培训者。 三、课程设置和顺序 (一)职业道德与基础知识 (二)农业机械维修相关知识 (三)技能操作 四、教学要求 (一)了解《中华人民共和国产品质量法》、《中华人民共和国消费者权益保护法》、《中华人民共和国农业机械化促进法》、《农业机械维修管理规定》、《甘肃省农业机械管理条例》等农机维修管理法规及规章,具有较强的安全意识。 (二)熟悉农业机械基本构造、工作原理。 (三)掌握农业机械维修技能以及安全生产和环保知识。 (四)掌握农业机械产品故障排查及修复检验。 (五)零件鉴定及修复。 (六)其他相关技能。 五、培训方式 按照“保证质量、方便学员”的原则,采取全日制培训方式。

六、教学方法 采用课堂讲授、实物教学、电化教学、现场教学相结合的方法。 课堂讲授应突出重点、联系实际,借助电教设备、实物、挂图等,力求直观、形象、生动。 七、培训时间与学时分配 培训时间按学时计算,每学时为1小时。学时分配见《农机修理工培训学时分配表》(附后)。 八、成绩考核 培训结束后,应对学员的学习效果进行考核,检查教学质量和评定学员的学习成绩。 考核办法参照《国家职业标准—农机修理工》中内容、顺序与评定标准进行。 培训机构对考核合格者发给结业证书和培训记录。 附:农机修理工初级培训学时分配表

第二篇农机修理工培训理论教学大纲 第一部分教学课时计划 见下表:

机械设备故障诊断技术研究

题目:机械设备故障诊断技术研究 学号: 姓名: 专业: 指导教师: 2016 年 8 月 30 日

摘要 故障诊断技术对于机械设备的安全运行有着至关重要作用,一直是工程应用领域的重点和难点, 国内外已经对此问题进行了大量的研究工作。该论文介绍了机械设备故障诊断技术的基本概念,在总结研究各种诊断技术的基础上全面分析了现代故障诊断技术存在的问题, 并针对这些问题提出了故障诊断领域将来的研究方向。故障诊断是一项实用性很强的技术, 对其进行理论上的分析研究具有重要的现实意义。 关键词:机械设备故障;诊断技术;研究

第一章引言 随着现代科学技术在设备上的应用,现代设备的结构越来越复杂,功能越来越齐全,自动化程度也越来越高。由于许多无法避免的因素影响,会导致设备出现各种故障,从而降低或失去预定的功能,甚至会造成严重的以至灾难性的事故。国内外接连发生的由设备故障引起的各种空难、海难、爆炸、断裂、倒塌、毁坏、泄漏等恶性事故,造成了极大的经济损失和人员伤亡。生产过程中经常发生的设备故障事故,也会使生产过程不能正常运行或机器设备遭受损坏而造成巨大的经济损失。因此机械设备故障诊断技术在社会中的重要性越来越高,主要体现在[1]:(1)预防事故,保证人员和设备安全。 (2)推动设备维修制度的改革。维修制度从预防制度向预知制度的转变是必然的,而真正实现预知维修的基础是设备故障诊断技术的发展和成熟。 (3)提高经济效益。设备故障诊断的最终目的是避免故障的发生,使零部件的寿命得到充分发挥,延长检修周期,降低维修费用。 因此,机械设备故障诊断技术日益受到广泛重视,对机械设备故障诊断技术的研究也不断深入。但受于机械设备故障成因的复杂性和诊断技术的局限性,目前机械设备故障诊断仍存在一些问题。

机械故障诊断之齿轮故障小议

机械故障诊断之齿轮故 障小议 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

机械故障诊断之齿轮故障小议随着时代的不断发展,机械已日益成为生产过程中不可或缺的一部分。而机械的高性能化、高自动化、高效率化是现代机械的一个重要发展方向。齿轮作为传动机械设备中至关重要的部件,它不仅关乎机械的正常运转,且对整个生产过程的进度与经济效益等产生巨大影响。而齿轮发生故障又是常出现的事件,因此,加大对齿轮出现故障的原因与解决方法的研究尤显必要。本文将针对此进行粗略探讨。 现代化的不断发展让机械设备也日益朝着大型化、复杂化方向发展,其设备的构造与操作原理也愈加复杂。齿轮是机械设备中用来传递动力的重要部件,而齿轮故障又时常发生,这无疑会对机械的整体运作产生不利影响。所以,有必要对齿轮故障进行分析,并能理论联系实际,通过实际案例来寻求解决方法,从而做到故障出现时能及时解决并予以防范。 机械设备中齿轮常见故障分析 齿轮在机械设备中有个重要作用,这就是它能传递运动,而且能控制运动方向,影响运动速度。而为更好地调控齿轮运转速度,就需要齿轮减速机装置的安装。我们知道,与齿轮减速机有关的几个主要频率为轴频、齿轮的啮合频率、轴承的内外圈、滚动体、保持架的频率,它们与

“谐频”、“边频”相结合,成为对齿轮减速机故障判定的依据。同时,与齿轮减速机有密切关系的是齿轮振动,且通过齿轮振动是判断齿轮故障的一个重要方式。因此,笔者将重点针对齿轮减速与齿轮振动的有关故障开展具体探讨。 2.1齿轮振动发生故障的一个重要原因是齿轮在生产与安装中存在失误。生产齿轮是齿轮得以发挥自身作用的首要条件,而生产制作中的微小误差就能导致齿轮的啮合精度降低,从而带来齿轮的振动和噪声增大,这些问题的出现无疑会提高齿轮的故障率[2]。因而,我们的相关机械使用单位应对齿轮的生产源与齿轮安装予以极大关注。 2.2齿轮振动出现故障的另一个原因是与齿轮的工作环境适宜度有关。因不同的工作环境在空气湿度、空气质量、温度等方面都存在差异。而齿轮作为现代化机械,其对工作环境有一定要求。因齿轮在啮合过程中,齿与齿连续冲击使齿轮产生受迫振动,如果此时其工作环境存在高湿度或其他不利影响,就会对齿轮的正常振动带来不利影响。为减少此种不必要的失误,我们的机械使用单位就应提前做好齿轮工作环境的净化工作。 2.3齿轮运行过程中存在因所使用到的润滑剂质量不达标而导致齿轮故障的现象。齿轮的运转少不了润滑剂的调节,有些单位为减少经济成本投入而使用不够清洁的润滑剂,或者使用的润滑剂不足,这些情况无疑会

精馏塔常见问题解答

精馏技术广泛应用于各类化学品的生产中,而精馏塔在化工厂也是较为常见的装置之一。而在实际操作中,大家都会遇到这样那样的问题,今天正太压力容器就给总结精馏操作中常见的几种问题 1精馏操作中怎样调节塔的压力?影响塔压变化的因素是什么? 任何一个精馏塔的操作,都应把塔压控制在规定的指标,以相应地调节其它参数。塔压波动过大,就会破坏全塔的物料平衡和气液平衡,使产品达不到所要求的质量。所以,许多精馏塔都有其具体的措施,确保塔压稳定在适宜围。 对于加压塔的塔压,主要有以下两种调节方法: 1. 塔顶冷凝器为分凝器时,塔压一般是靠气相采出量来调节的。 在其它条件不变的情况下,气相采出量增大,塔压下降;气相采出量减小,塔压上升。 2. 塔顶冷凝器为全凝器时,塔压多是靠冷剂量的大小来调节,即相当于调节回流液温度。 在其它条件不变的前提下,加大冷剂量,则回流液的温度降低,塔压降低;若减少冷剂量,回流液温度上升,塔压上升。 对于减压精馏塔的压力控制,主要有以下两种方法: 1. 当塔的真空借助于喷射泵获得时,可以用调节塔顶冷凝器之冷剂量或冷剂温度从而改变尾气量的方法来调节塔的真空度。 当被分离的物料允许与空气接触时,在此控制方案中,蒸汽喷射泵在最大的能力下工作,调节阀装在通大气的管线上,用调节阀开度的大小,调节系统的尾气抽气量,从而达到调节塔的真空度的目的。 2. 当采用电动真空泵抽真空时,调节阀装在真空泵的回流管线上,用调节阀开度的大小来调节系统的尾气抽出量,从而调节塔的真空度。 对于常压塔的压力控制,主要有以下三种方法:

1. 对塔顶压力在稳定性要求不高的情况下,无需安装压力控制系统,应当在 精馏设备(冷凝器或回流罐)上设置一个通大气的管道,以保证塔压力接近于大气压。 2. 对塔顶压力的稳定性要求较高或被分离的物料不能和空气接触时,塔顶压 力的控制可采用加压塔塔压的控制方法。 3. 用调节塔釜加热蒸汽量的方法来调节塔釜的气相压力。 2精馏操作中怎样调节釜温?影响釜温波动的因素是什么? 釜温是由釜压和物料组成决定的。精馏过程中,只有保持规定的釜温,才能确保产品质量。因此釜温是精馏操作中重要的控制指标之一。 ? 当釜温变化时,通常是用改变蒸发釜的加热蒸汽量,将釜温调节至正常。 ? ? 当釜温低于规定值时,应加大蒸汽用量,以提高釜液的汽化量,使釜液中重组分的含量相对增加,泡点提高,釜温提高。 ? ? 当釜温高于规定值时,应减少蒸汽用量,以减少釜液的汽化量,使釜液中轻组分的含量相对增加,泡点降低,釜温降低。 ? 釜温波动的原因比较多,正太压力容器经过长期的总结,当塔压突然升高时,釜温会随之升高,而后又复下降。这是由于这种釜温的升高是因压力升高引起了釜液泡点的升高所致。因而,塔的上升蒸汽量不但不会增加,反而还会因为压力的升高而减少;这样,塔釜混合液中轻组分的蒸出就不完全,将导致釜液泡点的下降,因而使釜温又随之下降。 反之,当塔压突然下降时,塔的上升蒸汽量会因塔压的降低而增加,造成塔釜液面的迅速降低,这样重组分可能带至塔顶。随着釜液中组分的变重,釜液的泡点

人工神经网络在设备故障诊断中的应用

人工神经网络在设备故障诊断中的应用 程瑞琪 (西南交通大学 成都 610031) 摘 要 介绍了神经网络技术在设备故障诊断中应用的2个主要方向———故障模式识别和诊断专家系统,对应用的方法、特点及存在的问题也 作了概略分析。 关键词 神经网络 故障诊断 模式识别 专家系统中图分类号 TP 18 近年来人工神经网络(Artificial neural network -ANN )的研究发展迅速,ANN 以其诸多优点在设备状态监测与故障诊断中受到了愈来愈广泛的重视,为设备故障诊断的研究开辟了一条新途径。 ANN 具有以下主要特征:①实现了并行处理机制,可提供高速的信息处理能力;②分布式信息存储,可提供联想与全息记忆的能力;③网络的拓扑结构具有非常大的可塑性,使系统有很高的自适应和自学习能力;④具有超巨量的联接关系,形成高度冗余,使系统具有很强的容错能力;⑤是一类大规模非线性系统,提供了系统自组织与协同的潜力。本文作者仅就ANN 用于故障模式识别及诊断专家系统这两个方面应用的主要方法、特点及存在的问题作概括介绍。 1 神经网络与故障模式识别 模式识别是ANN 应用的一个较成功的领域,诊断问题实质上就是一种模式分类,是将系统的状态区分为正常状态或某一种故障状态的问题。通常故障模式的分布是非常不规则的,故要求所用模式分类方法能在模式空间里形成各种非线性分割平面,ANN 的特性使其可以作为一类性能良好的非线性分类器。1.1 方法及特点 ANN 故障模式识别可用图1所示BP 模型来说明 。 图1 BP 网模型 其中网络输入节点对应故障征兆,输出节点对应故障原因。进行故障模式识别时,先用一批故障样本 对模型进行训练,以确定网络结构(隐层及其节点数)和参数(节点间的联接权);网络训练好后,故障的模式分类就是根据给定的一组征兆,实现征兆集到故障集之间非线性映射的过程。 用ANN 作故障模式识别的特点有:①可用于系统模型未知或系统模型较复杂及非线性系统的故障模式识别;②兼有故障信号的模式变换与特征提取功能;③对系统含有不确定因素、噪声及输入模式不完备的情况不太敏感;④可用于复杂多模式的故障诊断;⑤可用于离线诊断,也能适应实时监测的要求。1.2 模型 用于故障模式识别的ANN 模型按学习方式可分有监督学习模型和无监督学习模型两大类,前者主要包括B P 网和径向基函数(RB F )网;后者主要包括自适应共振(ART )网和自组织特征映射(SOM )网。1.2.1 有监督学习模型 BP 网是目前故障诊断中应用最多且较成熟的一种模型,其神经元的非线性映射函数采用Sigmoid 函数,网络训练采用误差反向传播(Back pr opagation )学习算法。BP 网的结构及学习算法简单,但应用中还存在2个问题:一是关于网络的学习,因BP 算法是自适应最小均方(LMS )算法的推广,故网络的学习速度较慢,且可能陷入局部极小值点,针对这一问题已有许多改进的BP 算法;二是关于网络的结构设计,即如何选取隐层及隐层节点数,目前尚无确定的理论和方法。根据Hecht -Nilson 的映射定理:对任何闭区间上的一个连续函数,总可以用含一层隐单元的感知器网来映射;目前应用中多采用含一层隐单元的BP 网。关于隐层节点下限的确定已有一些研究结果,鉴于问题的复杂性,此处不作说明。选择较多的隐层及隐层节点虽可加快学习速度,但使网络的结构变得复杂,网络的推广能力也会变差。实际应用中,通常用对测试样本与学习样本的误差进行交叉评价的试错 法来选择隐层及隐层节点数。 RB F 网是一种较新颖的ANN 模型,只有一层隐含层,输出节点是线性的,隐单元采用对称的高斯基 · 13·第12卷第1期 《机械研究与应用》 ME CHANICAL RESE ARCH &APPLICATION Vol 12No .1 1999

论述齿轮啮合频率产生的机理及齿轮故障诊断方法分析

一、论述齿轮啮合频率产生的机理及齿轮故障诊断方法 一、齿轮啮合频率的机理 由齿轮传动理论可知,渐开线齿廓齿轮在节点附近为单齿啮合,而在节线的两边为双齿啮合,啮合区的大小则由重叠系数ε决定。因此,每对轮齿在啮合过程中承受的载荷是变化的,从而引起齿轮的振动,另外,一对轮齿在啮合过程中两齿面的相对滑动速度和摩擦力均在节点处改变方向,引起齿轮的振动.这两者形成了啮合频率fz 及其谐波Nfz ,其计算式为: 60z nZ f = 式中 Z ——齿轮的齿数;n ——轴的转速,/min r 。 60z nZ Nf N =? 式中N —自然数,1,2,3,……。N=1称为基波,即啮合频率;N = 2,3,……时,称为二次,三次…谐波。 啮合频率fz 及其谐波Nfz 的频谱特点: ①初始状态,啮合颇率的幅值最高,各次谐波的幅值依次减小(图1的实线部分); ②随着齿轮磨损的增加,渐开线齿廓逐渐受到破坏,使齿轮振动加剧,此时啮合频率及其各次谐波的幅值逐渐增大,而且各次谐波幅值的增加比啮合频率快得多(图中虚线所示); ③磨损严重时,二次谐波幅值超过啮合频率幅值。 图1 啮合频率及其谐波 图2 严重磨损时的啮合频率及其二次谐波 由频谱图上啮合频率及其谐波幅值的增量可判断出齿轮的磨损程度。

啮合频率分析: (1)负载和啮合刚度的周期性变化 负载和啮合刚度的变化可用两点来说明:一是随着啮合点位置的变化,参加啮合的单一齿轮的刚度发生了变化,二是参加啮合的齿数在变化。如渐开线直齿轮,在节点附近是单齿啮合,在节线两侧某部位开始至齿顶、齿根区段为双齿啮合。显然,在双齿啮合时,整个齿轮的载荷由两个齿分担,故此时齿轮的啮合刚度就较大;同理单齿啮合时,载荷由一个齿承担,此时齿轮的啮合刚度较小。从一个轮齿开始进入啮合到下一个轮齿进入啮合,齿轮的负载和啮合刚度就变化一次,所以齿轮的负载和啮合刚度周期性变化的频率与齿轮旋转频率成整数倍关系。 (2)节线冲击的周期性变化 齿轮在啮合过程中,轮齿表面既有相对滚动,又有相对滑动。主动轮带动从动轮旋转时,主动轮上的啮合点从齿根移向齿顶,啮合半径逐渐增大,速度渐次增高;而从动轮上的啮合点是由齿顶移向齿根,啮合半径逐渐减小,速度渐次降低。两轮齿齿面在啮合点的速度差异就形成了主动轮和从动轮的相对滑动。在主动轮上,齿根和节点之间的啮合点速度低于从动轮上的啮合点速度,因此滑动方向向下;在节点处,因为两轮上的啮合点速度相等,相对滑动速度为零。因此,摩擦力在节点处改变了方向,形成节线冲击。由以上分析可知,从一个轮齿开始进入啮合到下一个轮齿进入啮合,发生两次节点冲击,所以节线冲击发生的频率与齿轮旋转频率成整数倍关系。 (3)齿轮运转时,其振动频谱上都含有啮合频率及其谐波分量。随着齿轮的磨损,频谱上的啮合频率及其各次谐波都会上升,即幅值增大。但值得注意的是,啮合频率高次谐波的幅值要比基波的幅值上升得快。啮合频率是齿轮振动中比较突出的成分,它既是齿轮齿廓磨损的一个灵敏指标,同时齿面上产生点蚀、剥落等损伤也会在啮合频率及各次谐波成分上表现出来。对于一对新齿轮来说,其频谱的整个振动能量水平较低,啮合频率的基波及其第二、三次谐波幅值依次减小。对于具有中等点蚀故障的齿轮,其频谱随着点蚀的增加,整个谱的水平都随之增加,且啮合频率高次谐波幅值将超过基波。另一个特点是啮合频率的二次谐波两边的边频带愈加丰富。当齿面出现重度点蚀时,谱噪声总量急剧上升,且啮合频率的谐频延伸到七次以上。啮合频率分析也有其不足之处,它毕竟是众多齿轮振动能量的平均值,因此在局部轮齿呈现损伤时,其幅值的增长就不那么明显,只有大多数轮齿受到磨损或出现点蚀、剥落等损坏时才有明显的增量。 当齿轮发生故障时,振动信号常会发生调制现象而产生调制波(调幅波和调频波),其载

齿轮故障诊断方法综述

齿轮故障诊断方法综述 摘要齿轮就是机械设备中常用得部件,而齿轮传动也就是机械传动中最常见得方式之一。在许多情况下,齿轮故障又就是导致设备失效得主要原因。因此对齿轮进行故障诊断具有非常重要得意义。介绍了故障得特点与几种诊断方法,并比较了基于粒子群优化得小波神经网络,基于相关分析与小波变换,基于小波包与BP神经网络与基于小波分析等故障诊断方法得优缺点,并提出了齿轮故障诊断得难点与发展方向。 关键字齿轮故障诊断诊断方法分析比较发展

目录 第一章齿轮故障诊断发展及故障特点 (1) 1、1 齿轮故障诊断得发展 (1) 1、 2齿轮故障形式与震动特征 (1) 第二章齿轮传动故障诊断得方法 (2) 2、 1高阶谱分析 (2) 2、1、1参数化双谱估计得原理 (3) 2、1、2试验装置与信号获取 (3) 2、1、3 故障诊断 (4) 2、1、4 应用双谱分析识别齿轮故障 (4) 2、2基于边频分析得齿轮故障诊断 (6) 2、2、1分析原理 (6) 2、2、2铣床振动测试 (6) 2、2、3 边频带分析 (7) 2、2、4 故障诊断 (8) 2、 3时域分析 (10) 2、3、1 时域指标 (10) 2、3、2非线性时间分析 (10)

第一章齿轮故障诊断发展及故障特点 1、1 齿轮故障诊断得发展 齿轮故障诊断始于七十年代初,早期得齿轮故障诊断仅限于在旋转式机械上测量一些简单得振动参数,用一些简单得方法进行诊断。这些简单得参数与诊断方法对齿轮故障诊断反应灵敏度较低,根本无法准确判断发生故障得部位。七十年代末到八十年代中期,旋转式机械中齿轮故障诊断得频域法发展很快,其中R、B、Randall与James1、Taylor等人做好了许多有益得工作,积累了不少故障诊断得成功实例,出现了一些较好得频域分析方法,对齿轮磨损与齿根断裂等故障诊断较为成功。进入九十年代以后,神经网络、模糊推理与网络技术得发展与融合使得齿轮系统故障诊断进入了蓬勃发展得时期。 我国学者在齿轮故障诊断研究方面也做了大量工作。1986年,屈梁生、何正嘉在《机械故障诊断学》中分析了齿轮故障得时频域特点。1988年,颜玉玲、赵淳生对滚动轴承得振动监测及故障诊断进行了分析。1997年,郑州工业大学韩捷等在“齿轮故障得振动频谱机理研究”中对齿轮得故障机理做了探讨。西安交通大学张西宁等在“齿轮状态监测与识别方法得研究”中提出了一种新方法即基于一致度分析。 1、 2齿轮故障形式与震动特征 通常齿轮在运转时,由于制造不良或操作维护不善会产生各种形式得故障。故障形式又随齿轮材料、热处理、运转状态等因素得不同而不同,常见得齿轮故障形式有齿面磨损、齿面胶合与擦伤、齿面接触疲劳与弯曲疲劳与断齿。 在齿轮运转状态下,伴随着内部故障得发生与发展,必然会产生振动上得异常。实践证明,振动分析就是齿轮故障检测中最有效得方法。若齿轮副主轮转速为n1,齿数为z1,频率为f1;从轮转速为n2,齿数为z2,频率为f2,则齿轮啮合频率fC 为:fC=Nf1z1=Nf2z2=Nn160z1=Nn260z2(1) 式中:N=1, 2, 3,…。齿轮处于正常或异常状态下,啮合频率振动成分及其倍频总就是存在得,但两种状态下得振动水平有差异。如果仅仅依靠对齿轮振动信号得啮合频率及其倍频成分得差异来识别齿轮得故障就是不够得,因故障对振动

精馏塔操作技巧基本学习知识

精馏操作基本知识 1、何为相和相平衡: 答:相就是指在系统中具有相同物理性质和化学性质的均匀部分,不同相之间往往有一个相界面,把不同的相分别开。系统中相数的多少与物质的数量无关。如水和冰混合在一起,水为液相,冰为固相。一般情况下,物料在精馏塔内是气、液两相。 在一定的温度和压力下,如果物料系统中存在两个或两个以上的相,物料在各相的相对量以及物料中各组分在各个相中的浓度不随时间变化,我们称系统处于平衡状态。平衡时,物质还是在不停地运动,但是,各个相的量和各组分在各项的浓度不随时间变化,当条件改变时,将建立起新的相平衡,因此相平衡是运动的、相对的,而不是静止的、绝对的。比如:在精馏系统中,精馏塔板上温度较高的气体和温度较低的液体相互接触时,要进行传热、传质,其结果是气体部分冷凝,形成的液相中高沸点组分的浓度不断增加。塔板上的液体部分气化,形成的气相中低沸点组分的浓度不断增加。但是这个传热、传质过程并不是无止境的,当气液两相达到平衡时,其各组分的两相的组成就不再随时间变化了。 2、何为饱和蒸汽压? 答:在一定的温度下,与同种物质的液态(或固态)处于平衡状态的蒸汽所产生的压强叫饱和蒸汽压,它随温度的升高而增加。众所周知,放在杯子里的水,会因不断蒸发变得愈来愈少。如果把纯水放在一个密闭容器里,并抽走上方的空气,当水不断蒸发时,水面上方气相的压力,即水的蒸汽所具有的压力就不断增加。但是,当温度一定时,气相压力

最中将稳定在一个固定的数值上,这时的压力称为水在该温度下的饱和蒸汽压。 应当注意的是,当气相压力的数值达到饱和蒸汽压力的数值是,液相的水分子仍然不断地气化,气相中的水分子也不断地冷凝成液体,只是由于水的气化速度等于水蒸汽的冷凝速度,液体量才没有减少,气体量也没有增加,气体和液体达到平衡状态。所以,液态纯物质蒸汽所具有的压力为其饱和蒸汽压时,气液两相即达到了相平衡。 3、何为精馏,精馏的原理是什么? 答:把液体混合物进行多次部分汽化,同时又把产生的蒸汽多次部分冷凝,使混合物分离为所要求组分的操作过程称为精馏。 为什么把液体混合物进行多次部分汽化同时又多次部分冷凝,就能分离为纯或比较纯的组分呢?对于一次汽化,冷凝来说,由于液体混合物中所含的组分的沸点不同,当其在一定温度下部分汽化时,因低沸点物易于气化,故它在气相中的浓度较液相高,而液相中高沸点物的浓度较气相高。这就改变了气液两相的组成。当对部分汽化所得蒸汽进行部分冷凝时,因高沸点物易于冷凝,使冷凝液中高沸点物的浓度较气相高,而为冷凝气中低沸点物的浓度比冷凝液中要高。这样经过一次部分汽化和部分冷凝,使混合液通过各组分浓度的改变得到了初步分离。如果多次的这样进行下去,将最终在液相中留下的基本上是高沸点的组分,在气相中留下的基本上是低沸点的组分。由此可见,多次部分汽化和多次部分冷凝同时进行,就可以将混合物分离为纯或比较纯的组分。 液体气化要吸收热量,气体冷凝要放出热量。为了合理的利用热量,我

农机维修中级工培训课程考核标准

农机维修(中级工)培训课程考核标准第一篇培训农机维修工培训教学 一、培训目标和对象 农机维修工是我国农业行业首批实行就业准入的职业之一,《国家标准—农机修理工》已颁布实施。通过培训,使学员掌握农机维修管理法律、法规及农机安全规章;熟悉农业机械的基本知识;懂得使用维护技术;具备独立操作技能;遵纪守法,具有良好的职业道德;达到农机修理工考试要求的水平。符合农机修理工申请条件,报名参加培训者需要有初级维修证书者。 二、培训课程和要求 (一)培训课程 1、职业道德与基础知识 2、农业机械维修相关知识 3、技能操作 (二)要求 1、熟悉农业机械基本构造、工作原理。 2、掌握农业机械维修技能以及安全生产和环保知识。 4、掌握农业机械产品故障排查及修复检验。 5、零件鉴定及修复。 6、其他相关技能。 三、培训教学方法 采用课堂讲授、实物教学、电化教学、现场教学及实验实习相结合的方法。课堂讲授应突出重点、联系实际,借助电教设备、实物、挂图、示教板等,力求直观、形象、生动。实习课指导教师应做必要的讲解和示范,重点指导学员动手操作。每项实习各地可根据农时季节具体安排。

四、培训时间 培训时间按学时计算,每学时为50分钟。 五、培训成绩考核 1、培训理论考核 培训结束后,应对学员的学习效果进行考核,检查教学质量和评定学员的学习成绩。 2、培训技能鉴定考核 考核办法参照《国家职业标准—农机修理工》中内容、顺序与评定标准进行。 第二篇农机维修工培训理论教学 第一部分培训教学课时计划 见下表:

第二部分培训教学内容 第一章职业道德与基础知识一、职业道德 (一)职业道德、职业素质的核心内容 (二)农机修理工应遵守的职业守则 二、机械基础知识 (一)法定计量单位 (二)机械识图、公差与配合基础知识 (三)金属与非金属材料 (四)常用油料 (五)常用标准件、常用量具 三、农业机械基础知识 四、安全文明生产及环境保护知识 (一)安全文明生产要求 (二)防火与安全用电措施 (三)触电事故与触电后的急救方法 (四)农业机械修理中环境污染与治理 五、有关法律法规 (一)《中华人民共和国产品质量法》 (二)《农业机械维修管理规定》 (三)《安徽省农业机械管理条例》 第二章培训农业机械维修相关知识一、机械基础知识 (一)农业机械维修概念与基本知识

设备故障诊断技术说明

设备故障诊断技术简介

上海华阳检测仪器有限公司 Shanghai Huayang MeasuringInstruments Co., Ltd 目录 设备故障诊断技术定义

-----------------------------------------------( 3)一.设备维修制度的进展-----------------------------------------------( 4)二.检测参数类型-------------------------------------------------------( 5) 三.振动检测中位移、速度和加速度参数的选择-----------------------------( 5) 四.测点选择原则------------------------------------------------------( 6) 五.测点编号原则------------------------------------------------------( 7) 六.评判标准----------------------------------------------------------( 7) 七.测量方向及代号----------------------------------------------------

(10) 八.搜集和掌握有关的知识和资料----------------------------------------(10) 九.故障分析与诊断----------------------------------------------------(11) 十.常见故障的识不----------------------------------------------------(14) 1.不平衡------------------------------------------------------------(14) 2.不对中------------------------------------------------------------(14) 3.机械松动----------------------------------------------------------(15) 4. 转子或轴裂纹

相关文档
最新文档