横纵向进给机构的设计

横纵向进给机构的设计
横纵向进给机构的设计

三、横纵向进给机构设计

1纵向进给机构的设计

纵向进给机构的改造:拆去原机床的溜板箱、光杆与丝杠以及安装装置,纵向驱动的步进电机及减速箱安装在车床的床尾,并不占丝杠的空间由于采用了滚珠丝杠可提高系统的精度和纵向进给的刚度。

1纵向进给系统设计参数 已知参数

纵向脉冲当量

mm

y 01.0=δ/脉冲。

纵向最高进给速度

min

/2max m Vfy =。

CA6140车床工作台质量W 根据图形尺寸忽略计算W=20kg. 纵向进给切削切削力Fy 的确定 有参考文献查得

%

5~%3/=a df P P

式中:-df P 进给系统所需电机功率;

-a P 主动传动电机的功率;

已知Pa 为7.5kw ,取比例系数为4%,则

kw

P P a df 3.0%4*==

f

df f V P F /6120??=η

式中:

-

f η进给系统效率,其范围为0.15~0.20,取

175

.0=f η;

-

f V 进给速度查得

max

)3/1~2/1(Vfy V f =,取

min

/1)2/1(max m Vfy V f ==

得出

N

fy 3149=

为安全起见,取安全系数为1.5则

N

fy 4724=。

2滚珠丝杠副的设计

滚珠丝杠副已经标准化。因此滚珠丝杠副的设计归结为滚珠丝杠副型号的选择。 一般情况下设计滚珠丝杠时,丝杠的长度(或螺母的有效行程),丝杠的转速(或平均转速),滚道的硬度及丝杠运转的情况。 滚珠丝杠副的计算

1. 滚珠丝杠的最大动负载寿命值:

61060i i i T n L =

其中

01000DL vf

L f n n h i π==

取工件直径D=80mm ,

h

T i 1500=,得:

min

/206

8014.33

.01001000r n i =????=

1810

15000

20606

=??=

i L 最大动负载:

H w i f pf L Q 3=

得:运转系数

2

.1=w f 硬度系数

1

=H f ,

则:

N

Q 82456.26212.1183=???=

根据最大动负载Q 的值,可选择滚珠丝杠的型号。得此最大动负载下丝杠型号为FFB5006

内循环浮动反相器单螺母变位导程预紧。滚珠丝杠直径选择50mm ,其额定动载荷是15KN ,所以其结构强度足够。 2.支撑方式

选用“单推-单推”的支撑方式。 临界转速的校核 丝杠的名义直径

min

/200/,500max max 0r L V N mm D ===。支撑为“固定-固定”

支撑长度L=1788mm.L 与n 的交点线在mm

D 500=左侧,所以安全。

3.效率计算

)

tan(/tan ?ββη+=

式中:

β

-螺纹的螺旋升角,可查参考文献,取

3=β

?

-摩擦角,

004

.0~003.0tan =?,

所以

"

45'13=?,

%

93)"45'13'33tan(/'33tan =+= η

4.刚度计算

滚珠丝杠受工作负载P 引起的导程变化量:

EF

PL L 0

=? 式中:

mm

L 60=

2

526/1006.2/106.20mm N cm N E ?=?=

滚珠丝杠的截面积

2

22

2118888.1114.3)2

89.3()2(mm cm d F ==?==π 则

mm cm L 566

1104.6104.688

.11106.206

.06.2621--?=?=???±

=? 滚珠丝杠受扭矩引起的导程的变化量

2

L ?小,可以忽略,即:

1

L L ?=?,

所以

m m L L /66.10104.66.0100

10060μ=??=?=

?-

差参考文献知E 级精度丝杠允许的螺距误差(1m 长)为m m /15μ,故强度足够。 由于选用滚珠丝杠的直径为50mm ,支撑方式“单推-带推”,所以稳定性完全可以保证。

齿轮的设计 齿轮的初选

传动比:

5

25.101

.03606

75.0360/0<=??=

=P L i δ? 式中:-?步进电机的步距角,选

75.0,计算出i=5,因此可以一级传动。

大小齿轮均采用

45钢调质,选小齿轮硬度为HB HB 290~260,大齿轮硬度为

HB HB 250~220,精度选六级,模数m=2,齿数

20

,20,40,3221====αmm b Z Z ,

mm

Z Z m a 72)()2/1(21=+=

齿轮的疲劳强度校核

弯曲疲劳强度校核公式为

]

[0F sa

Fa t sa F F bm

Y Y KF Y σδδ≤=

= 式中:-sa Y 为载荷作用于齿顶的应力校正系数; -Fa Y 为齿形系数; -K 为载荷系数; -t F 为圆周力

-][F σ 弯曲疲劳许用应力。

载荷系数K :

βF Fa V A K K K K K ???=

35.1,2.1,12.1,1====βF Fa V A K K K K

则βF Fa V A K K K K K ???=814.135.12.112.11=???= 齿轮1弯曲疲劳强度校核

1112d T F r =

圆周力计算

mm

mz d 6432211=?==

kw

P P 649.893.010221=?==η

min

/15001r n n ==

mm N n P T ??==41

1

110506.59550000

所以 N

d T F t 172064

1050506224

111=??== 得 齿轮1

54

.2,625.1==Fa Sa Y Y

则 ][0F bm

Y Y KF Y sa

Fa t sa F F σδδ≤=

=

MPa

2.1802

2054

.2625.11720184.1=????=

弯曲疲劳许用力计算:

S

K FE

FN σσ=

][ 差参考文献得

MPa

K FE FN 500,85.0==σ。

取弯曲疲劳安全系数S=1.4,

MPa S K FE FN F 57.3034

.1500

85.0][1=?==

σσ 根据以上结果得

1

1][F F σσ<,所以齿轮1满足弯曲疲劳强度。

齿轮2弯曲疲劳强度校核

圆周力计算:

2222d T F t =

mm N n P T r i n n kw

P P mm mz d ??===?===?===?==42

2

222222210256.69550000

min

/120025.1115001649.893.01080402η

所以 N

d T F t 156480

10256.62224

22=??== 齿轮2

40

.2,67.1==Fa Sa Y Y ,

]

[0F sa

Fa t sa F F bm

Y Y KF Y σδδ≤=

= MPa

7.1562

2040

.267.11564184.1=????=

弯曲疲劳许用力计算:

S

K FE

FN σσ=

][

查参考文献得

MPa

K FE FN 380,85.0==σ。

取弯曲疲劳安全系数S=1.4,

MPa

S K FE FN F 71.2304

.1380

85.0][2=?==

σσ 根据以上结果得

]

[22F F σσ<,所以齿轮2满足弯曲疲劳强度。

齿面接触疲劳强度校核

齿轮1齿面疲劳强度计算

齿面接触疲劳强度校核公式为:

][1

1H E H t H Z Z u

u bd KF σσ≤?±?=

式中:

-

u 轮齿在节点啮合时,两齿轮齿数的比值;

-

u Z 区域系数;

-

E Z 弹性影响系数;

载荷系数K :

βH Ha V A K K K K K ???=

得,

423

.1,2.1==βH Ha K K

则βH Ha V A K K K K K ???=913.1423.12.112.11=???= 得,

2

/18.189MPa Z E =标准知齿轮

20=α时,

5

.2=H Z ,

25.132/40/12===z z u

所以 E H t H Z Z u

u bd KF ?±?=

1

MPa

3.2568

.1895.225

.11

25.164201720913.1=??±???=

计算齿轮1接触疲劳许用应力:

S

K H HN H lim

][σσ=

MPa K H HN 500,90.0lim ==σ。

取安全系数S=1,

MPa S

K H HN H 4505009.0][lim

1=?==

σσ 所以<][H σ1][H σ满足接触疲劳强度。 齿轮1的齿面疲劳强度计算 查参考文献得,

2

/18.189MPa Z E =标准知齿轮

20=α时,

5

.2=H Z ,

25.132/40/12===z z u

所以 E H t H Z Z u

u bd KF ?±?=

1

1σ MPa

3.2568

.1895.225

.11

25.164201720913.1=??±???=

计算齿轮2接触疲劳许用应力:

S

K H HN H lim

][σσ=

查参考文献[12]得,MPa K H HN 450,90.0lim ==σ 取安全系数S=1,

MPa S

K H HN H 5.4274509.0][lim

1=?==

σσ 所以<][H σ2][H σ满足接触疲劳强度。 步进电机的确定

步进电机步距角的选择

75.0)/(3600=??≤L i P δ?

转动惯量的计算

惯量对运动特性有很大的影响,对加速能力、加速时驱动力矩及动态的快速反应有直接关系,因此核算转动惯量很有必要。

工作台质量折算到电机上的转动惯量:

w P

J 21)180(

π?

δ=

2

2

2.2950

)75.014.3001.0180(

mm kg ?=???= 丝杠转动惯量:

L D J s ???=-4108.7

其中L 为螺纹长度:

螺母l l l L e ++=20

mm

952104

242800=+?+=

mm L l e 246440=?==

20

4.6108.724???=-s J

2

3109.1mm kg ??= 齿轮的转动惯量:

2

2417.261204.6108.7mm

kg J z ?=???=-

2

242639208108.7mm

kg J z ?=???=-

由于电机的转动惯量很小,所以可以忽略。 因此,总的转动惯量:

=

J 1122)(1

J J J J i

z z s +++ 2

32

5.18772.291.267)639109.1(25.11

mm kg ?=+++?=

所需转动力矩计算

1. 快速空载启动时所需力矩 0max M M M M f a ++= 最大切削负载时所需的力矩 t f at M M M M M +++=0 快速进给时所需力矩

0M M M f +=

式中:

_

max a M 空载启动时折算到电机轴时的加速度力矩;

_

f M 折算到电机轴时的摩擦力矩;

_

0M 由于丝杠预紧所引起,折算到电机轴时的附加摩擦力矩;

_

at M 切削时折算到电机轴上的加速度力矩;

_

t M 折算到电机轴上的切削负载力矩;

mm N T

Jn

M a ??=

-2106.9 当

max n n =时,

a

a M M =max

min /6.416625

.120000max max r L i V n =?==

mm N M a ?=??=

-332610025

.60.97

.416159.194max

t

n n =时,

at

a M M =max

min /88.246

8014.325.13.01001000100000i 1r L f D v

L f n n i

=?????===π主

mm

N M at ?=???=

-6.19410025

.06.988

.24159.194 i

wL f i L F M f πηπη220

'00=

= 当

16

.0;8.0'==f η时,

mm

N M f ?=?????=

3.12225

.18.014.3.26

.08016.0 当

9

.0=η时,预加载荷

X F P 31

0=

mm

N i L F M X ?=???-?=-=6.10425

.18.014.36)9.01(6.088.1726)1(22

000πηη

mm N i L F M X t ?=????==

165125

.18.014.326.088.17220πη

所以快速空载启动所需的力矩:

mm

N M M M M f a ?=++=++=36206.1043.12233940max

切削时所需要力矩:

mm

N M M M M M t f at ?=+++=+++=207016516.1043.1226.1940

快速进给时所需的力矩:

mm

N M M M f ?=+=+=9.2266.1043.1220

由以上计算可知: 所需最大力矩

max

a M 发生在快速启动时,

mm

N M a ?=3620max

步进电机最高的工作频率

Hz

v f b 333401

.0602000

)60/(max max =?=

?=δ 启动频率

步进电机通常是带负载启动运行,而步进电机有空载启动频率

q

f 参数,步进电机的负载频

f 有经验公式进行估算,也可以按

)2/1(q q f f =估算。经综合考虑来选择步进电机若

q

f

不合要求,还可以采取升降速环节加以解决。

综合考虑,选用130BF001型直流步进电机,能满足使用要求。

2横向进给机构的设计

横向进给机构的改造:由于原横向进给丝杠的空间有限,一种方法是拆除横向丝杠换是滚珠丝杠,但现有的滚珠丝杠系列中选出合适的丝杠副比较难,需特制丝杠副;另一种方法是仍采用原丝杠,这样就避免了特质滚珠丝杠副的麻烦,减少了成本,但需要采用电器补偿丝杠精度和反向间隙的措施。而本方案采用前者,并且保留横向原手动机构,横向步进电机和减速箱安装在机床后侧。 横向进给系统设计参数 已知条件: 横向脉冲当量

脉冲

/005.0mm y =δ

横向最高进给速度

min

/2Vfy max m =。

溜板箱的重量kg W 30=

横向进给切削切削力Fy 的确定

横向进给量为纵向进给量的3/1~2/1,取2/1,安全系数为5.1,则切削力Fy 约为:

N Fy 236247245.0=?=

滚珠丝杠副的设计

滚珠丝杠副已经标准化。因此滚珠丝杠副的设计归结为滚珠丝杠副型号的选择。 一般情况下设计滚珠丝杠时,丝杠的长度(或螺母的有效行程),丝杠的转速(或平均转速),滚道的硬度及丝杠运转的情况。

滚珠丝杠副的计算

滚珠丝杠上的最大动负载

)('w F f kF P z y ++=

16

.0';1==f k

则N P 2.121)304.176(16.02.881=++?= 滚珠丝杠寿命值:

得:

61060i i i T n L =

其中

min /9.1748014.33

.0601000r n i =????=

12.1610

150009.17606

=??=i L 最大动负载:

N f pf L Q H w i 36742.1212.112.1633=??==

根据最大动负载Q 的值,可选择滚珠丝杠的型号。差参考文献[2]得此最大动负载下丝杠型号为FFB3205内循环浮动反向器单螺母变位导程预紧滚珠丝杠。其额定动载荷为14KN ,所以强度足够。其工程直径选32mm. 支撑方式

选用“单推-单推”的支撑方式。 临界转速的校核 丝杠的名义直径

磁悬浮列车设计方案

自制教具 磁悬浮列车 设计方案 一、制作材料:53cm × 20cm×3cm的木料、2cm×1cm×3mm的强力磁铁一百多块、小型铁钉一包、几片10厘米×5厘米的薄木片、53厘米×20厘米、21厘米×20厘米的玻璃各两快、若干装饰彩纸等材料。 二、制作工具:老虎钳、羊角锤、剪刀、尺子等。 三、制作过程: 1. 准备一块长方体木料,大小大致53cm×20cm×3cm,在53cm ×20cm长方形面上横向留出2条宽2厘米磁铁轨道槽,磁铁轨道槽上方用薄木片盖上,并用铁钉加以固定(这样可以防止强力磁铁在拼装过程中向外挤压,可以使强力磁铁的拼装更加方便。) 2. 磁铁轨道槽钉上薄木片以后,把磁铁按排列单位进行横向组合连续磁铁拼装,并将两条磁铁轨道槽拼装完整。两条轨道的磁铁排列呈左右对称方式。 3. 准备一块厚2cm的木料板,木料板宽度略小于53cm ×20cm×3cm长方体木料,长度自定。留出方式和53cm × 20cm×3cm 长方体木料相同。列车上的底面磁铁轨道拼装方式和53cm ×20cm×3cm长方体木料类似,磁铁方向也横向组合连续拼装,以

增强列车悬浮滑行的稳定性,列车上的两条底面磁铁轨道呈左右对称方式,宽度和53cm × 20cm×3cm长方体木料磁铁轨道相同。 4、依据53cm × 20cm×3cm长方体木料,制作底座,用以安放53cm × 20cm×3cm长方体木料。 5. 准备4块玻璃,长53厘米、宽20厘米,长21厘米、宽20厘米的玻璃各两块,再将这4块玻璃固定到长方体底座木料的前后左右四侧,玻璃下面部分和长方体底座木料对齐,成为列车防滑护栏板。为防止悬浮列车滑出两侧,在列车防滑护栏板左右两侧再固定几块小型防滑玻璃。这样即能保证磁悬浮列车的稳定性,又能保障高效的演示性。 6. 最后在根据个人喜好对磁悬浮列车模型进行装饰,模型即宣告制作完成。 注意:1、拼装要紧密; 2、磁铁片的同极向上; 3、拼装时,钉一次薄木片拼装一次,并钉钉抵住磁铁,防止磁铁向外挤压,用相同方法直至拼装完四条磁铁轨道槽。 使用说明: 1. 将磁悬浮列车模型的列车部分,磁铁面朝下横放入列车底座防滑护栏板之间,即能实现列车的有效悬浮,悬浮高度大约是3厘米。

哈工大_控制系统实践_磁悬浮实验报告

研究生自动控制专业实验 地点:A区主楼518房间 姓名:实验日期:年月日斑号:学号:机组编号: 同组人:成绩:教师签字:磁悬浮小球系统 实验报告 主编:钱玉恒,杨亚非 哈工大航天学院控制科学实验室

磁悬浮小球控制系统实验报告 一、实验内容 1、熟悉磁悬浮球控制系统的结构和原理; 2、了解磁悬浮物理模型建模与控制器设计; 3、掌握根轨迹控制实验设计与仿真; 4、掌握频率响应控制实验与仿真; 5、掌握PID控制器设计实验与仿真; 6、实验PID控制器的实物系统调试; 二、实验设备 1、磁悬浮球控制系统一套 磁悬浮球控制系统包括磁悬浮小球控制器、磁悬浮小球实验装置等组成。在控制器的前部设有操作面板,操作面板上有起动/停止开关,控制器的后部有电源开关。 磁悬浮球控制系统计算机部分 磁悬浮球控制系统计算机部分主要有计算机、1711控制卡等; 三、实验步骤 1、系统实验的线路连接 磁悬浮小球控制器与计算机、磁悬浮小球实验装置全部采用标准线连接,电源部分有标准电源线,考虑实验设备的使用便利,在试验前,实验装置的线路已经连接完毕。 2、启动实验装置 通电之前,请详细检察电源等连线是否正确,确认无误后,可接通控制器电源,随后起动计算机和控制器,在编程和仿真情况下,不要启动控制器。 系统实验的参数调试

根据仿真的数据及控制规则进行参数调试(根轨迹、频率、PID 等),直到获得较理想参数为止。 四、实验要求 1、学生上机前要求 学生在实际上机调试之前,必须用自己的计算机,对系统的仿真全部做完,并且经过老师的检查许可后,才能申请上机调试。 学生必须交实验报告后才能上机调试。 2、学生上机要求 上机的同学要按照要求进行实验,不得有违反操作规程的现象,严格遵守实验室的有关规定。 五、系统建模思考题 1、系统模型线性化处理是否合理,写出推理过程? 合理,推理过程: 由级数理论,将非线性函数展开为泰勒级数。由此证明,在平衡点)x ,(i 00对 系统进行线性化处理是可行的。 对式2x i K x i F )(),(=作泰勒级数展开,省略高阶项可得: )x -)(x x ,(i F )i -)(i x ,(i F )x ,F(i x)F(i,000x 000i 00++= )x -(x K )i -(i K )x ,F(i x)F(i,0x 0i 00++= 平衡点小球电磁力和重力平衡,有 (,)+=F i x mg 0 |,δδ===00 i 00 i i x x F(i,x) F(i ,x )i ;|,δδ===00x 00i i x x F(i,x)F (i ,x )x 对2 i F(i,x )K()x =求偏导数得:

机械机床毕业设计9CA6140横向进给系统及刀架的数控改造

CA6140横向进给系统及刀架的数控改造 学生: 学号: 专业:机械设计制造及其自动化 班级:机电一体化 指导教师: 机电工程系 年六月

摘要 所谓数字控制机床是按照含有机床(刀具)运动信息程序所指定的顺序自动执行操作的过程。而计算机数控机床就是数控机床在计算机监控下进行工作。它的优点很多,可以在同一机床上一次装夹可完成多个操作,生产率显著提高等优点,但它的价格昂贵。由于我国现在使用的机床大多数为普通车床,自动化程度低,要更新现有机床需要很多资金。为了解决这个问题,也为了适应多品种中、小批量零件加工我们选择机床经济型数控改造。纵向进给机构的改造:拆去原机床的溜板箱、光杠与丝杠以及安装座,配上滚珠丝杠及相应的安装装置,纵向驱动的步进电机及减速箱安装在车床的床尾,不占据丝杠空间。横向进给机构的改造:拆除横向丝杠换上滚珠丝杠,由步进电机带动。总体设计方案:CA6140车床主轴转速部分保留圆机床的手动变速功能。车床的纵向和横向进给运动采用步进电机驱动。最后,根据已知条件对纵向横向伺服进给机构进行设计与计算。 关键词:数控、车床、改造

ABSTRACT Numerical Control (NC) is any machining process in which the operations are executed automaticallu in sequences as specified by the program that contains the information for the tool movement .When Numerical Control is performed under computer supervision, it is called Computer Numerical Control (CNC).CNC machines have many advantages over conventional machines. For example, there is a possibility lf performing operations on the same machine in one setup and production is significantly increased. One of its disadvantages is that they are quite expensive. In our country conventional machine is used widely. So if the machines are replaced, there is going to need a large money. In order to agree with the development of our economy, we can reform the conventional machines. The reformation of the vertical mechanism: we demolish the current smooth leading, leading screw and installing stand. Then replace the ball leaking to the relevant position. The reformation of the horizontal mechanism: we make the horizontal ball lead screw instead of the conventional screw. And Stepper motor drives the screw. The overall master design: the spindle’s gearshift of the CA6140 mechanism controlled by the former operating lever. The moving of the vertical table and the horizontal table is drove by the ball screw, which is drove by the Stepper motors. The last, we design the vertical and horizontal mechanism on the basis of known numbers. Key word: Numerical Control、machining、information

机床夹紧、进给液压传动系统设计

液压传动课程设计 中国矿业大学机电学院 选修课

设计参数: 不计惯性负载 题目:在某专用机床上有一夹紧进给液压系统,完成工件的先夹紧后、后进给任务,工作原理如下: 夹紧油缸: 快进→慢进→达到夹紧力后启动进给油缸工作 进给油缸: 快进→慢进→达到进给终点→快速退回 夹紧油缸快速退回。 夹紧缸快进速度:0.05m/s 夹紧缸慢进速度:8mm/s 最大夹紧力:40KN 进给油缸快进速度:0.18m/s 进给油缸慢进速度:0.018m/s 最大切削力:120KN 夹紧缸行程:用行程开关调节(最大250mm) 进给缸行程:用行程开关调节(最大1000mm) 一、工况分析: 1.负载分析

已知最大夹紧力为40KN,则夹紧油缸工作最大负载 140 F KN = 已知最大切削力为120KN,则进给油缸工作最大负载 2120 F KN = 根据已知负载可画出负载循环图1(a) 根据已知快进、快退速度及工进时的速度范围可画出速度循环图1(b) 图1(a) 图1(b)

2.确定液压缸主要参数 根据系统工作原理可知系统最大负载约为120KN 参照负载选择执行元件工作压力和主机类型选择执行元件工作压力最大负载宜选取18p MPa =。动力滑台要求快进、快退速度相等,选用单杆液压缸。此时液压缸无缸腔面积1A 与有缸腔面积2A 之比为2,即用活塞杆直径d 与活塞直径D 有d=的关系。为防止液压缸冲击,回油路应有背压2P ,暂时取MPa P 6.02=。 从负载循环图上可知,工进时有最大负载,按此负载求液压缸尺寸。根据液压缸活塞力平衡关系可知: M e F A p A p η+= 2211 212A A = 其中,M η为液压缸效率,取95.0=M η 2 46 2 111046.8910)3.04(95.031448)2 (m p p F A M e -?=?-= - = η m A D 1067.014 .31046.894441 =??== -π m D d 075.0707.0== 将D 和d 按GB2348-30圆整就近取标准值,即

数控机床进给系统设计

数控机床进给系统设计

第一章、数控机床进给系统概述 数控机床伺服系统的一般结构如图图1-1所示: 图1-1数控机床进给系统伺服 由于各种数控机床所完成的加工任务不同,它们对进给伺服系统的要求也不尽相同,但通常可概括为以下几方面:可逆运行;速度范围宽;具有足够的传动刚度和高的速度稳定性;快速响应并无超调;高精度;低速大转矩。 1.1、伺服系统对伺服电机的要求 (1)从最低速到最高速电机都能平稳运转,转矩波动要小,尤其在低速如0.1r /min 或更低速时,仍有平稳的速度而无爬行现象。 (2)电机应具有大的较长时间的过载能力,以满足低速大转矩的要求。一般直流伺服电机要求在数分钟内过载4-6倍而不损坏。 (3)为了满足快速响应的要求,电机应有较小的转动惯量和大的堵转转矩,并具有尽可能小的时间常数和启动电压。电机应具有耐受4000rad/s2以上的角加速度的能力,才能保证电机可在0.2s以内从静止启动到额定转速。 (4)电机应能随频繁启动、制动和反转。 随着微电子技术、计算机技术和伺服控制技术的发展,数控机床的伺服系统已开始采用高速、高精度的全数字伺服系统。使伺服控制技术从模拟方式、混合方式走向全数字方式。由位置、速度和电流构成的三环反馈全部数字化、软件处理数字PID,使用灵活,柔性好。数字伺服系统采用了许多新的控制技术和改进伺服性能的措施,使控制精度和品质大大提高。 数控车床的进给传动系统一般均采用进给伺服系统。这也是数控车床区别于普通车床的一个特殊部分。 1.2、伺服系统的分类 数控车床的伺服系统一般由驱动控制单元、驱动元件、机械传动部件、执行件和检测反

馈环节等组成。驱动控制单元和驱动元件组成伺服驱动系统。机械传动部件和执行元件组成机械传动系统。检测元件与反馈电路组成检测系统。 进给伺服系统按其控制方式不同可分为开环系统和闭环系统。闭环控制方式通常是具有位置反馈的伺服系统。根据位置检测装置所在位置的不同,闭环系统又分为半闭环系统和全闭环系统。半闭环系统具有将位置检测装置装在丝杠端头和装在电机轴端两种类型。前者把丝杠包括在位置环内,后者则完全置机械传动部件于位置环之外。全闭环系统的位置检测装置安装在工作台上,机械传动部件整个被包括在位置环之内。 开环系统的定位精度比闭环系统低,但它结构简单、工作可靠、造价低廉。由于影响定位精度的机械传动装置的磨损、惯性及间隙的存在,故开环系统的精度和快速性较差。 全闭环系统控制精度高、快速性能好,但由于机械传动部件在控制环内,所以系统的动态性能不仅取决于驱动装置的结构和参数,而且还与机械传动部件的刚度、阻尼特性、惯性、间隙和磨损等因素有很大关系,故必须对机电部件的结构参数进行综合考虑才能满足系统的要求。因此全闭环系统对机床的要求比较高,且造价也较昂贵。闭环系统中采用的位置检测装置有:脉冲编码器、旋转变压器、感应同步器、磁尺、光栅尺和激光干涉仪等。 数控车床的进给伺服系统中常用的驱动装置是伺服电机。伺服电机有直流伺服电机和交流伺服电机之分。交流伺服电机由于具有可靠性高、基本上不需要维护和造价低等特点而被广泛采用。 直流伺服电动机引入了机械换向装置。其成本高,故障多,维护困难,经常因碳刷产生的火花而影响生产,并对其他设备产生电磁干扰。同时机械换向器的换向能力,限制了电动机的容量和速度。电动机的电枢在转子上,使得电动机效率低,散热差。为了改善换向能力,减小电枢的漏感,转子变得短粗,影响了系统的动态性能。 交流伺服已占据了机床进给伺服的主导地位,并随着新技术的发展而不断完善,具体体现在三个方面。一是系统功率驱动装置中的电力电子器件不断向高频化方向发展,智能化功率模块得到普及与应用;二是基于微处理器嵌入式平台技术的成熟,将促进先进控制算法的应用;三是网络化制造模式的推广及现场总线技术的成熟,将使基于网络的伺服控制成为可能。 1.3、主要设计任务参数 车床控制精度:0.01mm(即为脉冲当量);最大进给速度:V max=5m/min。最大加工直径为D =400mm,工作台及刀架重:110㎏;最大轴,向力=160㎏;导轨静摩擦系数=0.2; max 行程=1280mm;步进电机:110BF003;步距角:0.75°;电机转动惯量:J=1.8×10-2㎏.m2。

数控车床纵向进给系统和横向进给系统的设计1

数控车床纵向进给系统和横向进给系统的设计1

1绪论 1.1数控系统的发展简史 1952年第一代数控系统——电子管数控系统的诞生。20世纪50年代末,完全由固定布线的晶休管元器件电路所组成的第二代数控系统——晶体管数控系统被研制成功,取代了昂贵的、易坏的、难以推广的电子管控制装置。随着集成电路技术的发展,1965年出现了第三代数控系统——集成电路数控系统。1970年,在美国芝加哥国际机床展览会上,首次展出了第四代数控系统——小型计算机数控系统,然后,随着微型计算机以其无法比拟的性能价格比渗透各个行业,1974年,第五代数控系统——微型计算机数控系统也出现了。应用一个或多个计算机作为数控系统的核心组件的数控系统统称为计算机数控系统(CNC)。综上所述,由于微电子技术和计算机技术的不断发展,数控机床的数控系统也随着不断更新,发展非常迅速,几乎5年左右时间就更新换代一次[1]。 数控机床是先进制造业的基础机械,是最典型的多品种、小批量、高科技含量的机电一体化产品。欧、美、日等工业化国家已先后完成了数控机床产品进程,1990年日本机床产值数控化率达75%,美国达70.1%,德国达57%。目前世界数控机床年产量超过15万台,品种超过1500多种[2]。 1.2我国数控系统的发展现状及趋势 1.2.1 数控技术状况 目前,我国数控系统正处在由研究开发阶段向推广应用阶段过渡的关键时期,也是由封闭型向开放型过渡的时期。 我国数控系统在技术上已趋于成熟,在重大关键技术(包括核心技术),已达到国 际先进水平。自“七五”以来,国家一直把数控系统的发展作为重中之重来支持,现已开发出具有中国版权的数控系统,掌握了国外一直对我国封锁的一些关键技术。例如,曾长期困扰我国、并受到西方国家封锁的多坐标联动技 当量的超精密数控系统、数控仿型系统、非圆术对我们已不再是难题,0.1m 齿轮加工系统、高速进给数控系统、实时多任务操作系统都已研制成功。尤其是基于PC机的开放式智能化数控系统,可实施多轴控制,具备联网进线等功能

磁悬浮主轴设计

1前言 1.1 高速切削简介 高速切削的概念被提出后,经过了长期探索研究与发展后,才在近十几年被广泛应用在机械加工过程中。高速切削作为一种新兴的先进机械加工技术,与传统的机械加工技术相比,其具有一系列的优点。它集高效率、高加工精度、低功耗等于一体。高速切削解决了常规切削加工中一些长期存在而无法解决的问题,例如由于机械加工过程中,刀具的切削量很小,产生的切削热比较少并且绝大部分切削热被切屑及时带走,从而提高了刀具的切削寿命;随着切削速度的提高,在单位时间内被加工材料的去除率有了很大的提高,进而减少了切削时间,提高了工件的加工效率;高速切削的进给量小,因而切削力也就相对要小,而且形成的切屑能够在很短的时间内被排出,切削过程所产生的热量在还没有传导至刀具时,就被切屑带走了,这样就降低了刀具及工件上的切削热;由于高速切削可以达到很高的加工精度,所以在某些场合可以实现以车代铣、以铣代磨等工序。这些优点极大地缩短了产品的制造周期,这在竞争日益激烈的当代是很有发展前途的。 1.2 磁悬浮轴承简介 磁悬浮轴承也被人们称为磁力轴承,它是一种靠磁场力来承受载荷或将转子悬浮起来的一种新型的支承形式,根据不同的工作原理可将磁悬浮轴承系统分为三大类:主动磁悬浮轴承、被动磁悬浮轴承和混合式磁悬浮轴承。主动磁悬浮轴承是利用可控电磁力来悬浮主轴转子的,它有主动电子控制系统;被动磁悬浮轴承是利用磁场本身的特性使主轴转子悬浮,它没有主动电子控制系统,其应用最多的是永磁轴承;混合式磁悬浮轴承是由主动磁悬浮轴承和被动磁悬浮轴承以及其他一些必要的辅助支撑共同组合而成的,它既有主动磁轴承的优点也有被动磁轴承的优点。为了便于设计制造,本设计中采用主动磁悬浮轴承磁悬浮轴承具有一系列的优点:定子与转子之间无接触,因而无摩擦,且功耗低,可以使主轴实现高速旋转;无需润滑和密封,因而可以简化系统结构的设计;支撑精度比一般的接触式轴承还高,工作稳定可靠。但是,其支撑刚度比接触式轴承要低,而且结构复杂,需要专门的控制系统,主轴上还要设计增加位移传感器,成本较高。 虽然磁悬浮轴承由多个磁极构成,但是为便于研究【2】,我们仍然可以将其简化为下图所示结构。

毕业论文CNC数控车床纵向进给系统设计说明

1前言 我国数控车床从20世纪70年代初进入市场,至今通过各大机床厂家的不懈努力,通过采取与国外著名机床厂家的合作、合资、技术引进、样机消化吸收等措施,使得我国的机床制造水平有了很大的提高,其产量在金属切削机床中占有较大的比例.但我国在五轴加工技术、高速加工技术、精密加工技术等方面与国外方面还有很大的差距。主要问题有:1缺乏系统深入的科研工作, 难以对各种技术资料进行积累, 设计方法旧。2、缺乏实事的科学精神, 忽视了数控机床本身的技术特点、发展规律, 没有实事地制定数控机床发展的规划, 盲目性大。3、没有合理地运用资源。各个研究所孤军奋战,不通力合作,并且床行业人员素质低, 缺乏各方面人才。4、我国制造业大环境的制约。我国依靠引进和合作生产来发展各类主机, 至今我国许多高性能、新结构的数控机床大都为合作产品, 基本处于仿制阶段。 国产数控机床及其功能部件无论在技术参数上,还是在各种动态指标上,与工业发达国家的同类产品均存在一定差距。目前,国机床集团在引进技术的基础上成功开发出BW60HS/I型系列高速卧式加工中心,并已批量进入市场。该机采用电主轴,主轴最高转速16 000 r/min,由零至最高转速的时间为l s,快速移动速度60 m/min。宁江集团开发的高速加工中心主轴转速高达40 000 r/min。 当前,在数控机床精密化方面,美国的水平最高,不仅生产中小型精密机床,而且由于国防和尖端技术的需要,研究开发了大型精密机床。其代表产品有LLL 实验室研制成功的DTM一3型精密车床和LODTM大型光学金刚石车床,它们是世界公认水平最高的、达到当前技术最前沿的大型精密机床。其它国家也相应研制成功各种类似的装备,如英国的Cran·field、日本的东芝机械等。近年来我国对超精密机床的研制也一直在进行。机床研究所研制成功了JCS一027型超精密车床、JCS一03型超精密铣床、JCS一035型数控超精密车床等。

磁悬浮系统建模及其PID控制器设计

《Matlab仿真技术》 设计报告 题目磁悬浮系统建模及其PID控制器设计 专业班级电气工程及其自动化 11**班 学号 201110710247 学生姓名 ** 指导教师 ** 学院名称电气信息工程学院 完成日期: 2014 年 5 月 7 日

磁悬浮系统建模及其PID控制器设计 Magnetic levitation system based on PID controller simulation 摘要 磁悬浮技术具有无摩擦、无磨损、无需润滑以及寿命较长等一系列优点,在能源、交通、航空航天、机械工业和生命科学等高科技领域有着广泛的应用背景。 随着磁悬浮技术的广泛应用,对磁悬浮系统的控制已成为首要问题。本设计以PID 控制为原理,设计出PID控制器对磁悬浮系统进行控制。 在分析磁悬浮系统构成及工作原理的基础上,建立磁悬浮控制系统的数学模型,并以此为研究对象,设计了PID控制器,确定控制方案,运用MATLAB软件进行仿真,得出较好的控制参数,并对磁悬浮控制系统进行实时控制,验证控制参数。最后,本设计对以后研究工作的重点进行了思考,提出了自己的见解。 PID控制器自产生以来,一直是工业生产过程中应用最广、也是最成熟的控制器。目前大多数工业控制器都是PID控制器或其改进型。尽管在控制领域,各种新型控制器不断涌现,但PID控制器还是以其结构简单、易实现、鲁棒性强等优点,处于主导地位。 关键字:磁悬浮系统;PID控制器;MATLAB仿真

一、磁悬浮技术简介 1.概述: 磁悬浮是利用悬浮磁力使物体处于一个无摩擦、无接触悬浮的平衡状态,磁悬浮看起来简单,但是具体磁悬浮悬浮特性的实现却经历了一个漫长的岁月。由于磁悬浮技术原理是集电磁学、电子技术、控制工程、信号处理、机械学、动力学为一体的典型的机电一体化高新技术。伴随着电子技术、控制工程、信号处理元器件、电磁理论及新型电磁材料的发展和转子动力学的进一步的研究,磁悬浮随之解开了其神秘一方面。 1900年初,美国,法国等专家曾提出物体摆脱自身重力阻力并高效运营的若干猜想--也就是磁悬浮的早期模型。并列出了无摩擦阻力的磁悬浮列车使用的可能性。然而,当时由于科学技术以及材料局限性磁悬浮列车只处于猜想阶段,未提出一个切实可行的办法来实现这一目标。 1842年,英国物理学家Earnshow就提出了磁悬浮的概念,同时指出:单靠永久磁铁是不能将一个铁磁体在所有六个自由度上都保持在自由稳定的悬浮状态。 1934年,德国的赫尔曼·肯佩尔申请了磁悬浮列车这一的专利。 在20世纪70、80年代,磁悬浮列车系统继续在德国蒂森亨舍尔测试和实施运行。德国开始命名这套磁悬浮系统为“磁悬浮”。 1966年,美国科学家詹姆斯·鲍威尔和戈登·丹比提出了第一个具有实用性质的磁悬浮运输系统。 1970年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始筹划进行磁悬浮运输系统的开发。 2009年时,国内外研究的热点是磁悬浮轴承和磁悬浮列车,而应用最广泛的是磁悬浮轴承。它的无接触、无摩擦、使用寿命长、不用润滑以及高精度等特殊的优点引起世界各国科学界的特别关注,国内外学者和企业界人士都对其倾注了极大的兴趣和研究热情。 2. 磁悬浮技术的应用及展望 20世纪60年代,世界上出现了3个载人的气垫车试验系统,它是最早对磁悬浮列车进行研究的系统。随着技术的发展,特别是固体电子学的出现,使原来十分庞大的控制设备变得十分轻巧,这就给磁悬浮列车技术提供了实现的可能。1969年,德国牵引机车公司的马法伊研制出小型磁悬浮列车模型,以后命名为TR01型,该车在1km 轨道上的时速达165km,这是磁悬浮列车发展的第一个里程碑。在制造磁悬浮列车的

数控机床进给系统设计

第一章、数控机床进给系统概述 数控机床伺服系统的一般结构如图图1-1所示: 图1-1数控机床进给系统伺服 由于各种数控机床所完成的加工任务不同,它们对进给伺服系统的要求也不尽相同,但通常可概括为以下几方面:可逆运行;速度范围宽;具有足够的传动刚度和高的速度稳定性;快速响应并无超调;高精度;低速大转矩。 1.1、伺服系统对伺服电机的要求 (1)从最低速到最高速电机都能平稳运转,转矩波动要小,尤其在低速如0.1r /min或更低速时,仍有平稳的速度而无爬行现象。 (2)电机应具有大的较长时间的过载能力,以满足低速大转矩的要求。一般直流伺服电机要求在数分钟内过载4-6倍而不损坏。 (3)为了满足快速响应的要求,电机应有较小的转动惯量和大的堵转转矩,并具有尽可能小的时间常数和启动电压。电机应具有耐受4000rad/s2以上的角加速度的能力,才能保证电机可在0.2s以内从静止启动到额定转速。 (4)电机应能随频繁启动、制动和反转。 随着微电子技术、计算机技术和伺服控制技术的发展,数控机床的伺服系统已开始采用高速、高精度的全数字伺服系统。使伺服控制技术从模拟方式、混合方式走向全数字方式。由位置、速度和电流构成的三环反馈全部数字化、软件处理数字PID,使用灵活,柔性好。数字伺服系统采用了许多新的控制技术和改进伺服性能的措施,使控制精度和品质大大提高。 数控车床的进给传动系统一般均采用进给伺服系统。这也是数控车床区别于普通车床的一个特殊部分。 1.2、伺服系统的分类 数控车床的伺服系统一般由驱动控制单元、驱动元件、机械传动部件、执行件和检测反馈环节等组成。驱动控制单元和驱动元件组成伺服驱动系统。机械传动部件和执行元件组成机械传动系统。检测元件与反馈电路组成检测系统。

磁悬浮系统建模及其PID控制器设计

《Matlab仿真技术》 设计报告 题目磁悬浮系统建模及其PID控制器设计专业班级电气工程及其自动化11**班 学号 2 学生姓名 ** 指导教师** 学院名称电气信息工程学院 完成日期: 2014年 5 月 7 日

磁悬浮系统建模及其PID控制器设计Magnetic levitation system base don PID controller simulation 摘要 磁悬浮技术具有无摩擦、无磨损、无需润滑以及寿命较长等一系列优点,在能源、交通、航空航天、机械工业与生命科学等高科技领域有着广泛得应用背景。 随着磁悬浮技术得广泛应用,对磁悬浮系统得控制已成为首要问题。本设计以PID 控制为原理,设计出PID控制器对磁悬浮系统进行控制。 在分析磁悬浮系统构成及工作原理得基础上,建立磁悬浮控制系统得数学模型,并以此为研究对象,设计了PID控制器,确定控制方案,运用MATLAB软件进行仿真,得出较好得控制参数,并对磁悬浮控制系统进行实时控制,验证控制参数。最后,本设计对以后研究工作得重点进行了思考,提出了自己得见解。 PID控制器自产生以来,一直就是工业生产过程中应用最广、也就是最成熟得控制器。目前大多数工业控制器都就是PID控制器或其改进型。尽管在控制领域,各种新型控制器不断涌现,但PID控制器还就是以其结构简单、易实现、鲁棒性强等优点,处于主导地位。 关键字:磁悬浮系统;PID控制器;MATLAB仿真 一、磁悬浮技术简介 1、概述: 磁悬浮就是利用悬浮磁力使物体处于一个无摩擦、无接触悬浮得平衡状态,磁悬浮瞧起来简单,但就是具体磁悬浮悬浮特性得实现却经历了一个漫长得岁月。由于磁悬浮技术原理就是集电磁学、电子技术、控制工程、信号处理、机械学、动力学为一体得典型得机电一体化高新技术。伴随着电子技术、控制工程、信号处理元器件、电磁理论及新型电磁材料得发展与转子动力学得进一步得研究,磁悬浮随之解开了其神秘一方面。 1900年初,美国,法国等专家曾提出物体摆脱自身重力阻力并高效运营得若干猜想--也就就是磁悬浮得早期模型。并列出了无摩擦阻力得磁悬浮列车使用得可能性。然而,当时由于科学技术以及材料局限性磁悬浮列车只处于猜想阶段,未提出一个切实可行得办法来实现这一目标。 1842年,英国物理学家Earnshow就提出了磁悬浮得概念,同时指出:单靠永久磁铁就是不能将一个铁磁体在所有六个自由度上都保持在自由稳定得悬浮状态。

数控车床横向进给系统设计

1、数控机床进给系统概述 1.1 伺服进给系统概述 数控机床的伺服进给系统由伺服驱动电路、伺服驱动装置、机械传动机构和执行部件组成。它的作用是接收数控系统发出的进给速度和位移指令信号,由伺服驱动电路作转换和放大后,经伺服驱动装置(直流、交流伺服电动机,功率步进电机,电业脉冲马达等)和机械传动机构,驱动机床的工作台、主轴刀架等执行部件实现工作进给和快速移动。数控机床的伺服进给系统与一般机床的进给系统有本质的差别,他能根据指令信号精确地控制执行部件的运动速度与位置,以及几个执行部件按一定运动规律所合成的运动轨迹。 1.2 伺服进给系统分类 数控私服进给系统按有无位置检测和反馈进行分类,有以下三种: (1)开环伺服系统 (2)半闭环伺服系统 (3)闭环伺服系统 1.3 伺服进给系统的基本要求 (1)精度要求 (2)响应速度 (3)调速范围 (4)低速、大转矩 2、运动设计 2.1传动方案拟定 数控机床按控制方式分为开环、闭环、半闭环,由于采用直流式交流伺服电机的闭环控制方案,结构复杂,技术难度大,调试和维修困难,造价也高。闭环控制可以达到很好的机床精度,能补偿机械传动系统中各种误差,消除间隙、干扰等对加工精度的影响,一般应用于要求高的数控设备中,由于数控车床加工精度不十分高,采用闭环系统的必要性不大。若采用直流或交流伺服电机的半闭环控制,精度较闭环控制的查,但是稳定性好,成本较低,调试维修较容易;但是对于经济型数控机床来说必要性不大。故在本次设计中,采用开环控制步进电机驱动。 确定设计任务后,初步拟定三种传动方案即1电机直接与丝杠相连;2电机通过同步带的传动带动丝杠转动;3电机通过齿轮传动带动丝杠转动。 步进电机具有如下优点 :

数控车床纵向进给系统和横向进给系统的设计

数控车床纵向进给系统和横向进给系统的设计

目录 1 绪论 (3) 1.1 数控系统的发展简史及国外发展现状 (3) 1.2 我国数控系统的发展现状及趋势 (3) 1.3 伺服系统的特点 (4) 1.4 设计的内容、目的和方法 (7) 2 总体方案设计 (8) 2.1 方案设计及总体布局 (8) 2.2 主切削力的计算 (8) 3 横向进给系统 (11) 3.1 已知技术参数 (11) 3.2 滚珠丝杠的计算及选择 (11) 3.3 校核 (14) 4 纵向进给系统 (20) 4.1 已知技术参数 (20) 4.2 滚珠丝杠的计算及选择 (20) 4.3 校核 (21) 5 床身及导轨 (26) 5.1 床身 (26) 5.2 导轨 (27) 6 数控系统选择 (29) 6.1 西门子数控系统的优点 (29) 6.2 数控连线图 (30) 7 数控编程 (31) 结论 (35) 致谢 (36)

1绪论 1.1数控系统的发展简史及国外发展现状 1949年美国帕森公司首先提出了机床数字控制的概念。1952年第一代数控系统——电子管数控系统的诞生。20世纪50年代末,完全由固定布线的晶休管元器件电路所组成的第二代数控系统——晶体管数控系统被研制成功,取代了昂贵的、易坏的、难以推广的电子管控制装置。随着集成电路技术的发展,1965年出现了第三代数控系统——集成电路数控系统。1970年,在美国芝加哥国际机床展览会上,首次展出了第四代数控系统——小型计算机数控系统,然后,随着微型计算机以其无法比拟的性能价格比渗透各个行业,1974年,第五代数控系统——微型计算机数控系统也出现了。应用一个或多个计算机作为数控系统的核心组件的数控系统统称为计算机数控系统(CNC)。综上所述,由于微电子技术和计算机技术的不断发展,数控机床的数控系统也随着不断更新,发展非常迅速,几乎5年左右时间就更新换代一次[1]。 数控机床是先进制造业的基础机械,是最典型的多品种、小批量、高科技含量的机电一体化产品。欧、美、日等工业化国家已先后完成了数控机床产品进程,1990年日本机床产值数控化率达75%,美国达70.1%,德国达57%。目前世界数控机床年产量超过15万台,品种超过1500多种[2]。 1.2我国数控系统的发展现状及趋势 1.2.1 数控技术状况 目前,我国数控系统正处在由研究开发阶段向推广应用阶段过渡的关键时期,也是由封闭型向开放型过渡的时期。 我国数控系统在技术上已趋于成熟,在重大关键技术(包括核心技术),已达到国际先进水平。自“七五”以来,国家一直把数控系统的发展作为重中之重来支持,现已开发出具有中国版权的数控系统,掌握了国外一直对我国封锁的一些关键技术。例如,曾 当长期困扰我国、并受到西方国家封锁的多坐标联动技术对我们已不再是难题,0.1m 量的超精密数控系统、数控仿型系统、非圆齿轮加工系统、高速进给数控系统、实时多任务操作系统都已研制成功。尤其是基于PC机的开放式智能化数控系统,可实施多轴控制,具备联网进线等功能既可作为独立产品,又是一代开放式的开发平台,为机床厂

推荐-直线驱动磁悬浮进给机构设计 精品

直线驱动磁悬浮进给机构设计 第31卷第3期 20XX年O6月 长春工业大学学报(自然科学版) JournalofChangchunUniversityofTeehonology(Natural— S— cien— e — eEd... i... t. ion—— ) V ol_31No.3 Jun.20XX 直线驱动磁悬浮进给机构设计 荆丹,陶晓巍,郝成弟 (长春工业大学机电工程学院,吉林长春130012) 摘要:采用直线同步电机对悬浮的平台进给机构提供驱动力,实现了进

给机构在水平和垂 直两方向的无接触支撑和导向.对磁悬浮力和直线电机推力进行了分析计算. 关键词:磁悬浮;进给机构;直线同步电机;数字PID控制 中图分类号:TH61.21文献标志码:A文章编号:1674—1374(20XX)03—0309—04 Designofmagneticlevitationstagedrivenbylinearmotor JINGDan,TAOXiao—wei,HAoCheng—di (SchoolofMechatronicEngineering,ChangchunUniversityofTechnology,C hangehun130012,China) Abstract:Thelinearsynchronousmotorisappliedtocontroltheplatformwhich non-contactlymoves inboththehorizontalandverticaldirections.Themagneticforceandthrustingfo rceofthelinear motorareanalyzedandcalculatedhere. Keywords:magneticsuspension;feeder;linearsynchronousmotor;digitalPID contro1. 0引言 微电子制造业是信息产业的核心和基础,其 技术水平的高低已成为衡量一个国家微电子工业 发展的重要标志.在微电子设备中,传统的进给 方式是刚性接触支撑和”旋转电机+滚珠丝杠”驱

数控机床进给系统范文

数控机创进给系统 数控机床的进给传动系统常用伺服进给系统来工作。 伺服进给系统的作用是根据数控系统传来的指令信息,进行放大以后控制执行部件的运动,不仅控制进给运动的速度,同时还要精确控制刀具相对于工件的移动位置和轨迹。因此,数控机床进给系统,尤其是轮廓控制系统,必须对进给运动的位置和运动的速度两方面同时实现自动控制。 数控机床进给系统的设计要求除了具有较高的定位精度之外,还应具有良好的动态响应特性,系统跟踪指令信号的响应要快,稳定性要好。 一个典型的数控机床闭环控制的进给系统组成:位置比较、放大元件、驱动单元、机械传动装置和检测反馈元件等几部分。 机械传动装置:是指将驱动源旋运动变为工作台直线运动的整个机械传动链,包括减速装置、丝杠螺母副等中间传动机构。 第一节概述 一、数控机床对进给传动系统的要求 1.减少摩擦阻力:在数控机床进给系统中,普遍采用滚珠丝杠螺母副、静压丝杠螺母副,滚动导轨、静压导轨和塑料导轨。 2.减少运动惯量 3.高的传动精度与定位精度设计中,通过在进给传动链中加入减速齿轮,以减小脉冲当量(即伺服系统接收一个指令脉冲驱动工作台移动的距离),预紧传动滚珠丝杠,消除齿轮、蜗轮等传动件的间隙等办法,可达到提高传动精度和定位精度的目的。 4.宽的进给调速范围:伺服进给系统在承担全部工作负载的条件下,应具有很宽的调速范围,以适应各工件材料、尺寸和刀具等变化的需要,工作进给速度范围可达3~6000mm/min(调速范围1:2000)。 5.响应速度要快:所谓快响应特性是指进给系统对指令输入信号的响应速度及瞬态过程结束的迅速程度,即跟踪指令信号的响应要快;定位速度和轮廓切削进给速度要满足要求;工作台应能在规定的速度范围内灵敏而精确地跟踪指令,进行单步或连续移动,在运行时不出现丢步或多步现象 6.无间隙传动:进给系统的传动间隙一般指反向间隙,即反向死区误差,它存在于整个传动链的各传动副中,直接影响数控机床的加工精度。因此,应尽量消除传动间隙,减小反向死区误差。设计中可采用消除间隙的联轴节及有消除间隙措施的传动副等方法。 7.稳定性好、寿命长:稳定性是伺服进给系统能够正常工作的最基本的条件,特别是在低速进给情况下不产生爬行,并能适应外加负载的变化而不发生共振。所谓进给系统的寿命,主要指其保持数控机床传动精度和定位精度的时间长短,即各传动部件保持其原来制造精度的能力。 8.使用维护方便 二、联轴器 联轴器是用来连接进给机构的两根轴使之一起回转,以传递转矩和运动的一种装置。机器运转时,被连接的两轴不能分离,只有停车后,将联轴器拆开,两轴才能脱开。 联轴器的类型:有液压式、电磁式和机械式;而机械式联轴器是应用最广泛的一种,它借助于机械构件相互间的机械作用力来传递转矩,

机电一体化课程C6140数控车床纵向进给传动机构..

C6140卧式车床纵向进给系统数控化改造 设计设计说明书

一、绪论3 1.机床数控改造的意义3 2.数控改造的主要内容3 3.车床数控改造的必要性与可行性4 二、课题任务及要求4 1.题目:C6140卧式车床纵向进给系统数控化改造设计4 2.主要技术要求4 三、进给系统的改造与设计方案5 四、纵向进给系统的设计计算5 1.脉冲当量的确定5 2.切削力的计算5 3.滚珠丝杆螺母副的计算和选型6 4.同步带减速箱的设计7 5.步进电机的计算与选型9 6.同步带传递功率的校核13 五、绘制进给系统的装配图13 六、控制系统的硬件电路设计14 七、步进电机驱动电源选用17 八、总结19

一、绪论 1.机床数控改造的意义 普通卧式车床应用广泛,约占车床类总数的65%。卧式车床主轴转速和进给量的调整范围大,工艺范围广,能进行多种表面的加工。但其结构也有不足之处,如刚度低,抗震性差,传动件间存在间隙,精度不足,且受操作人员技能的限制较大。而数控机床作为机电一体化的典型产品,在机械制造业中发挥着巨大的作用,很好地解决了现代机械制造中结构复杂、精密、批量小、尺寸多变零件的加工问题,且能稳定产品的加工质量,大幅度地提高生产效率。但从目前企业面临的情况看,因数控机床价格较贵,一次性投资较大而使中小型企业心有余而力不足。而机床的数控化改造由于其投资少、周期短,改造后能满足企业生产的需要,并且能有效地利用机床的剩余价值,成为中小型企业的首选。 a.节省资金 机床的数控改造同购置新机床费相比,一般可节省40% ~ 60% 的费用,大型及特殊设备尤为明显。一般机床改造只需花新机床购置费的1/3,即使将原机床的结构进行彻底改造升级,也只需花费购买新机床60% 的费用,并可以利用车间现有的基础。 b.性能稳定可靠 因原机床各基础件经过长期时效,几乎不会产生应力变形而影响精度。 c.提高生产效率 机床经数控改造后,即可实现加工的自动化,效率可比传统机床提高3~7 倍。对复杂零件而言,难度越高,功效提高得越多。且可以不用或少用工装,不仅节约了费用,而且可以缩短生产准备周期。 2.数控改造的主要内容 对卧式车床进行改造,主要是将纵向和横向进给系统改成用微机控制的、能独立运动的进给伺服系统;将手动的刀架换成能自动换刀的电动刀架。这样,利用数控装置,车床就可以按预先输入的加工指令进行切削加工。由于加工过程中的切削参数、切削次序和刀具都可以按程序自动进行调节和更换,再加上纵、横

(完整版)基于单片机的磁悬浮小球控制系统设计毕业设计

基于单片机的磁悬浮小球控制系统设计 摘要 随着越来越多的磁悬浮技术应用到现实生活中的各个领域,磁悬浮这个在几年前还是很陌生的一个词现在已经广为人知。磁悬浮以悬浮力产生的原理分类可以分为超导磁悬浮和常导磁悬浮。磁悬浮的控制系统是一个很复杂的问题。本文 研究的重点就是这两种磁悬浮的控制问题。 超导磁悬浮是利用处于超导状态下的超导体具有斥磁力的原理产生的。超导磁悬浮的悬浮物体就是超导体本身,所以超导磁悬浮的控制重点就落在了超导体上。本文从介绍超导磁悬浮的基本应用入手,逐步深入地介绍超导体的基本物理性质,然后介绍超导磁悬浮系统的控制方法、过程和原理。 与超导磁悬浮相比,常导磁悬浮的应用就更为广泛,因为常导磁悬浮的实现过程要简单得多。常导磁悬浮可以分为应用电磁铁的磁悬

浮和引用非电磁性磁铁(稀土永磁铁、普通磁铁等)的磁悬浮。但是由于电磁铁便于控制和利用,所以利用电磁铁的磁悬浮义勇更为广泛。本文在常导磁悬浮方面的研究是从一个实例入手,分析电磁铁式磁悬浮的原理,从而进一步研究电磁铁式磁悬浮的控制方法、过程和原理。 在本文的最后,我利用在大学里所学的知识,结合本文的研究重点——磁悬浮装置的控制问题,做出了一个简单的电磁悬浮装置。这个悬浮装置的原理是利用对电磁铁电流的控制来实现一个铁球在空中的来回反复运动,达到视觉上的悬浮效果。这虽然与实际的电磁铁悬浮控制方原理不同,但是利用这简单手段也能够达到相同的目的。这个实例给了我们一个启示:简单的演示实验装置也能够说明磁悬浮列车等高新技术的工作原理,磁悬浮并不是遥不可及的。 关键词:常导磁悬浮,超导磁悬浮,磁悬浮的控制,演示实验装置,磁悬浮列车

相关文档
最新文档