刘河煤矿巷道交叉点U型钢棚抬棚支护技术资料讲解

刘河煤矿巷道交叉点U型钢棚抬棚支护技术资料讲解
刘河煤矿巷道交叉点U型钢棚抬棚支护技术资料讲解

刘河煤矿巷道交叉点U型钢棚抬棚支护技

神火煤业公司“五小”创新成果推荐表

煤矿巷道支护方法

煤矿巷道支护技术 摘要:推行巷道支护改革,对于降低原煤生产成本,提高经济效益,有着巨大的促进作用,本文就煤矿巷道支护问题进行了探讨。 关键词:煤矿巷道支护被动式支护主动式支护 近几年来,随着我国煤矿开采深度的不断增加,煤矿井巷支护经历了由单一型支护技术到联合支护型技术的发展历程。煤矿早期开采阶段几乎全部是以木材作为巷道及采煤工作面的支护材料,随着新型材料的出现,开始采用混凝土或钢筋混凝土砌碹等支护形式,这些被动式支护耗费大量材料且受深度和岩性影响。随着井巷支护技术的发展演变,可将其归纳为被动式支护方式、主动式支护方式。 1.被动式支护方式 被动式支护技术是源于古典压力理论和坍落理论,认为巷道开挖后围压主要由围岩局部坍塌导致而成,而巷道的稳定主要靠围岩坍塌致使硐室形状改变后自行获得。被动式支护把围岩坍塌岩与支护分开来考虑,把围岩视作荷载,支护看作承载结构,二者之间形成“荷载—结构”体系,认为支护是为了承受由围岩所产生的荷载,无法控制围岩变形破坏的发生,只能起被动抵抗的作用。 1.1木支护方式 木支护技术主要是采用木材作为支护材料,典型的支护方式有“亲口”棚、鸭嘴棚、戴帽点柱、木垛等。木支护耗费大量木材而且受采深和岩性影响严重,因此只适用于浅部围岩,而且支护断面形状必须与围岩曲线一致,以充分发挥围岩和支护结构抗压强度大的优势,从而硬性抵抗岩体的变形压力。 1.2石材支护方式 石材支护分片石、料石两种支护方式,优点是具有抗压性好、一次成巷好、安全系数大、抗灾能力强、支架变形小和质量易保证等特点,不足之处在于初期投资高,只适用于矿井服务年限长的巷道。 1.3金属支架支护方式 金属支架支护技术主要分刚性支架支护与可缩性支架支护,其中刚性支架允许压缩变形量小,工作阻力随变形量增大而减小,直至破坏而失去工作阻力;可缩性支架允许压缩变形量大,在结构设计压缩范围内,工作阻力随压缩量大而增大,或者恒阻。金属支架支护视支架为支护体,围岩为荷载,其破坏是由于支架上弯曲力矩达到屈服极限的破坏应力所致,同时,由于支架承受侧压力和荷载的不均匀常使支架失去稳定性或可缩性而减弱或失去竖向承载能力。特别是u型钢支架支护由多段弧形构件相互叠置搭接而成,大多支护面呈拱形或环形,主要使用于松软围岩、地压大、底臌严重和两帮位移量大的开拓和采区巷道。 1.4装配式钢筋混凝土支架支护方式 装配式钢筋混凝土支架支护施工技术,可以在地面工厂化预制,质量有保证且利于批量化生产和井下机械化安装,不足之处在于不能有效抵抗上覆岩层整体移动而产生的底板沉降及巷帮测压,受扭曲折断而失去支护作用。钢筋混凝土支架支护分一般钢筋混凝土支架、预应力钢筋混凝土支架。预应力钢筋混凝土支架具有抗压性好、一次成巷好、安全系数大、抗灾能力强、支架变形小和质量易保证等优点,不足之处在于初期投资高,易松动等。

煤矿巷道支护技术现状及发展趋势分析

煤矿巷道支护技术现状及发展趋势分析 引言:煤矿巷道的安全性关系着整个煤矿开采工程的安全,随着煤矿开采深度的不断加深,也就对煤矿巷道支护技术所起到的安全作用提出了更高的要求。因此,要分析现在应用的煤矿巷道支护技术,解决当前煤矿巷道支护存在的问题,探究煤矿巷道支护技术今后的发展。 1.煤矿巷道支护技术应用分析 1.1煤矿巷道棚式支护技术 棚式支护技术曾经得到过很广泛地应用,按其使用的材质主要分为木结构,混凝土和金属材料等几种形式。现在应用的主要是金属材料的支架支护。在支架使用过程中,金属材质的支架的长,宽,高等要符合一定的比例,才能达到理想的支护作用。但是这种棚式支护技术的缺点是岩石表层和支架之间不能很好地进行连接且金属支架的成本比较高,而且在地质环境比较复杂的地方还不能起到很好的支护作用,所以目前这种支护技术并没有得到广泛地应用,已经逐渐被比较先进的支护技术所取代。 1.2煤矿巷道砌碴支护技术 在如今的煤矿巷道支护技术中,砌碴技术属于比较早应用到煤矿巷道支护中去的。这种支护技术应用起来方便简单,在一些大巷中加固作用比较好。砌碴支护技术大致可以分为现浇混凝土,混凝土砌块等方式。使用煤矿巷道砌碴支护技术成本比较高,如果要岩层发生改变,砌碴技术能发挥的作用就会比较小,不能起到很好的支护作用。所以在一些岩层比较固定的特殊的煤矿巷道中可以采用这一支护技术,对于其他情况,使用这种支护技术就会用很多限制,不适合大规模广泛地使用。 1.3U型钢支架支护技术 U型支架支护技术的承载能力比较好,一般会在比较深的矿井中使用,能发挥比较好的支护作用。在使用这种支护技术时,要对卡缆进行合理的调质和处理,岩石的支护壁要填充好,这样才能更好地发挥U型钢支架的支护作用。注意如果出现岩土巷道破碎和剥落的现象,最好不要单独使用这种支护作用,可以采取锚喷和U型钢联合支护技术,可以弥补单独使用U型钢支架支护的缺陷。由于承载能力比较好,适用范围比较广,是一种典型的巷道支护技术。 1.4锚杆支护技术 锚杆支护技术是利用锚杆的支护增强煤矿巷道的支护强度,可以很好有效地控制煤矿巷道岩层的变形,提高巷道的稳定性。在应用锚杆支护技术时要根据煤矿巷道的实际情况,建立起完善的锚杆支护体系。使得设计出来的锚杆支护体系能够有效地发挥支护作用,提高煤矿巷道的稳定性,针对一些特殊的情况,需要设计出良好的强有力的锚杆支护,防止煤矿巷道的岩层的变形。锚杆支护技术是现在使用最广泛的巷道支护技术。 1.5联合支护技术 除上述的对煤矿巷道单独支护的技术外,还可以对煤矿巷道进行联合支护,与单独支护相比,联合支护如果运用得当可以取得更好的效果。经常使用的联合技术是锚杆锚索的联合支护技术。在联合支护技术中,锚杆支护主要是利用锚杆等构件对围岩进行一定程度上的支撑,来提高对围岩应力等的承受能力,即起到了支护作用。而锚索的作用则是将围岩本身主要的承载层与由锚杆支护所衍生出的承载层相连接,借此增大了承受应力的岩体面积,使得支护效果更加明显。此为锚杆锚索联合支护技术的工作原理。 该技术主要起到加固和互补的作用。因锚杆锚索和岩体紧密相连,提高了岩体整体的承载力,且由于承载面积的增大导致应力的分布状态也发生改变,岩体抗变形的能力明显加强。当锚杆锚索到达稳定层岩时,锚杆在切向和径向出现约束力,避免了破坏的岩层肆意流动影

同煤集团巷道支护理论计算设计方法(初稿)详解

汾西矿业集团巷道支护理论计算设计方法 (初稿) 生产技术部 2009年8月

前言 煤矿巷道支护有架棚、料石砌碹、锚杆等一系列支护形式,架棚和料石砌碹等支护是被动支护,由于成本高、进度慢、消耗体力大、支护效果差等原因逐渐被淘汰。而锚杆支护在煤矿巷道支护中占主导地位,是唯一能实现安全、快速、经济的一种支护形式。现在无论在国内还是国外,煤矿巷道都优先采用锚杆支护,锚杆支护已成为巷道支护发展的方向。 支护设计是巷道支护中的一项关键技术,对充分发挥锚杆支护的优越性和保证巷道安全具有十分重要的意义。如果支护形式和参数选择不合理,就会造成两个极端:其一是支护强度太高,不仅浪费支护材料,而且影响掘进进度;其二是支护强度不够,不能有效控制围岩变形,出现冒顶事故。 目前,国内外锚杆支护设计方法主要分为三大类:工程类比法、理论计算法和数值模拟法。工程类比法包括:根据已有的巷道工程,通过类比提出新建工程的支护设计;通过巷道围岩稳定性分类提出支护设计;采用简单的经验公式确定支护设计。 理论计算法基于某种锚杆支护理论,如悬吊理论、组合梁理论及加固拱理论,计算得出锚杆支护参数。由于各种支护理论都存在着一定的局限性和使用条件,而且很难比较准确、可靠地确定计算所需要的一些参数。因此,依据理论计算所做的设计结果很多情况下只能作为参考。 随着数值计算方法在采矿工程中的大量应用,采用数值模拟法进行锚杆支护设计也得到了较快发展。与其他设计方法相比,数值模拟法具有多方面的优点,如可模拟复杂围岩条件、边界条件和各种断面形状巷道的应力场与位移场;可快速进行多方案比较,分析各因素对巷道支护效果的影响;模拟结果直观、形象,便于处理与分析等。数值模拟法已经在美国、澳大利亚及英国等锚杆支护技术先进的国家得到广泛应用。如澳大利亚锚杆支护设计方法就是在巷道围岩地质力学测试与评估的基础上,采用数值模拟分析结合其他方法提出锚杆支护初始设计,然后进行井下监测,根据监测数据验证、修改和完善初始设计。尽管数值模拟法还存在很多问题,如很难合理地确定计算所需的一些参数,模型很难全面反映井下巷道状况,导致计算结果与巷道实际情况相差较大。但是,数值模拟法作为一种有前途的设计方法,经过不断的改进和发展,会逐步接近于实际。

巷道锚杆支护参数设计

巷道锚杆支护参数设计 一、锚杆支护理论研究 (一)锚杆支护综述 1、锚杆支护技术的发展 锚杆支护作为一种有效的、技术经济优越的采准巷道支护方式,自美国1912年在aberschlesin(阿伯施莱辛)的Friedens(弗里登斯)煤矿首次使用锚杆支护顶板至今已有90多年的历史。 1945~1950年,机械式锚杆研究与应用; 1950~1960年,采矿业广泛采用机械式锚杆,并开始对锚杆支护进行系统研究; 1960~1970年,树脂锚杆推出并在矿山得到了应用; 1970~1980年,发明管缝式锚杆、胀管式锚杆并得到了应用,同时研究新的设计方法,长锚索产生; 1980~1990年,混合锚头锚杆、组合锚杆、特种锚杆等得到了应用,树脂锚固材料得到改进。 美国、澳大利亚、加拿大等国由于煤层埋藏条件好,加之锚杆支护技术不断发展和日益成熟,因而锚杆支护使用很普遍,在煤矿巷道的支护中的比重几乎达到了100%。 澳大利亚锚杆支护技术已经形成比较完整的体系,处于国际领先水平。澳大利亚的煤矿巷道几乎全部采用W型钢带树脂全长锚固组合锚杆支护技术,尽管其巷道断面比较大,但支护效果非常好。对于复合顶板、破碎顶板及其巷道交叉点、大跨度硐室等难维护的地方,采用锚索注浆进行补强加固,控制了围岩的强烈变形。美国一直采用锚杆支护巷道,锚杆消耗量很大。锚杆种类也较多,有胀壳式、

树脂式、复合锚杆等。组合件有钢带。具体应用时,根据岩层条件选择不同的支护方式和参数。 锚杆支护发展最快的是英国。在1987年以前,英国煤矿巷道支护90%以上采用金属支架,而且主要是矿用工字钢拱型刚性支架。由于回采工作面单产低、效率低、巷道支护成本高,因而亏损严重。为了摆脱煤炭行业的这种困境,在巷道支护方面积极发展锚杆支护,到1987年,英国从澳大利亚引进了成套的锚杆支护技术,从而扭转了过去的被动局面,煤巷锚杆支护得到迅速发展,经过近10年实验的基础上,又进行了改进和提高,到1994年在巷道支护中所占的比重己达到80%以上。锚杆支护技术的广泛采用给英国煤矿带来巨大的活力和经济效益。 德国是U型钢支架使用最早、技术上最为成熟的国家,自1932年发明U型钢支架以来,U型钢支架发展迅速,支护比重很快达到了90%以上,从井底车场一直到采煤工作面两巷均采用U型钢可缩性支架。但是自20世纪80年代以来,随着矿井开采深度日益增加,维护日益困难。面临这种困境,德国采用不断增加金属支架的型钢质量,逐步减小棚距的做法,这不仅使巷道支护费用增高,而且施工、运输更加困难和复杂。即便如此,巷道维护困难的状况仍然难以改观,于是寻求成本低,运输和施工简单方便、控制围岩变形效果好的锚杆支护变得尤为重要。到20世纪80年代初期,锚杆支护在鲁尔矿区实验成功后获得推广,现己应用到千米的深井巷道中,取得了许多成功的经验。 法国煤巷锚杆支护的发展也很迅速,到1986年其比重己达50%。在采区巷道支护中同时发展金属支架、锚杆支护、混凝土支架。 俄罗斯锚杆支护的发展也引人瞩目。他们研制了多种类型的锚杆,在俄罗斯第一大矿区——库兹巴斯矿区锚杆支护巷道所占比重己达50%。 我国在煤矿岩巷中使用锚杆支护也已有近50余年的历史。从1956年起在煤矿岩巷中使用锚杆支护,20世纪60年代锚杆支护开始进入采区,但由于煤层巷道围岩松软,受采动影响后围岩变形量很大,对支护技术要求很高,加之锚杆支护理论、设计方法,锚杆材料、施工机具、检测手段等还不够完善,因而发展缓慢。“八五”期间,原煤炭工业部把煤巷锚杆支护技术作为重点项目进行攻关,在“九五”期间,原煤炭工业部将“锚杆支护”列为煤炭工业科技发展的五个项目之一,

大断面巷道锚杆支护设计与围岩稳定性研究

大断面巷道锚杆支护设计与围岩稳定性研究 【摘要】针对利民煤矿Ⅱ011603工作面5.6m×4.0m大断面运输顺槽的实际生产地质条件,基于围岩力学性质、断面尺寸和采动影响等因素,提出四种可选方案,应用FLAC3D数值模拟计算四种方案,根据模拟效果初步确定支护方案,最后通过现场实测判断围岩的稳定性,验证设计方案的合理性和可靠性。 【关键词】大断面巷道锚杆支护围岩稳定性 随着高产高效综采工作面机械化程度的提高,工作面的开采强度与产量大幅度增加,为满足通风、运输、大型设备的安装等要求,必须开掘大断面巷道。随之而来的是巷道支护难度的加大和对支护技术的挑战。大量的研究和实践表明,煤矿巷道在开挖以后,会在巷道围岩形成应力集中,当巷道跨度增加以后,应力集中程度会急剧增加,从而使控制巷道稳定的难度增加,尤其是复杂地质条件巷道更易于发生跨冒事故,从而影响煤矿的安全生产[1-6]。 本文结合利民煤矿Ⅱ011603工作面运输顺槽的实际生产地质条件,基于地质力学条件和数值模拟初步提出锚杆支护方案,通过现在实测顶底板、两帮移近量和顶板离层量验证支护方案的合理性。 1 生产地质条件 试验巷道是神华乌海能源公司利民煤矿Ⅱ011603工作面大断面运输顺槽,布置在16#煤层中,沿顶板掘进。16#煤层厚度3.34-8.67m,平均7.2m,煤层倾角3-12°,平均6°。16#煤层结构复杂,含夹矸1~8层,一般3~4层,夹矸岩性为灰黑色泥岩、炭质泥岩。顶板岩性灰黑色泥岩、砂质泥岩为主,局部为粉砂岩、细粒砂岩;底板岩性以细粒砂岩为主,局部为砂质泥岩。 16#煤层破坏载荷24KN,抗压强度12.5MPa,直接顶岩性砂质泥岩,破坏载荷38KN,抗压强度20MPa,、老顶岩性为细粒砂岩(破坏载荷92KN,抗压强度50MPa)和砂质泥岩(破坏载荷26KN,抗压强度14MPa)。煤层顶底板岩石的力学强度中等,以半坚硬岩石为主,稳固性中等。 试验巷道断面为矩形,宽5.6m,高4.0m,断面面积为22.4m2。 2 基于地质力学条件和三维数值计算的锚杆支护设计 2.1 基于地质力学条件确定锚杆支护方案 根据16#煤层生产地质条件和Ⅱ011603工作面运输顺槽围岩力学性质、断面尺寸和采动影响等因素,初步确定四个支护方案见表1。 2.2 基于三维数值模拟计算确定支护方案

煤矿巷道锚杆支护技术规范

煤矿巷道锚杆支护技术规范 1 范围 本标准规定了煤矿巷道锚杆支护技术的术语和定义、技术要求、锚杆支护施工质量检测及锚杆支护监测。 本标准适用于煤矿岩巷、煤巷及半煤岩巷的锚杆支护。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 175-2007 硅酸盐水泥、普通硅酸盐水泥 GB/T 228.1-2010 金属材料拉伸试验第1部分:室温试验方法 GB/T 23561.1-2009 煤和岩石物理力学性质测定方法第1部分:采样一般规定 GB 50086 岩土锚固与喷射混凝土支护工程技术规范 GB/T 50266-2013 工程岩体试验方法标准 MT 146.1-2011 树脂锚杆第1部分:锚固剂 MT 146.2-2011 树脂锚杆第2部分:金属杆体及其附件 MT 285 缝管锚杆 MT/T 861 W型钢带 MT/T 1061-2008 树脂锚杆玻璃纤维增强塑料杆体及其附件 3 术语和定义 GB/T 228.1-2010、MT 146.1-2011、MT 285界定的以及下列术语和定义适用于本文件。 3.1 巷道 roadway 为煤矿提升、运输、通风、排水、行人、动力供应等而掘进的通道。 3.2 煤巷 coal roadway 断面中煤层面积占4/5或4/5以上的巷道。 3.3 岩巷 rock roadway 断面中岩石面积占4/5或4/5以上的巷道。 3.4

半煤岩巷 coal-rock roadway 断面中岩石面积(含夹石层)大于1/5到小于4/5的巷道。 3.5 锚杆 rock bolt 安装在围岩中,对围岩实施锚固的杆件系统。一般由杆体、托盘、螺母、垫圈、锚固剂或锚固构件组成。 3.6 预应力锚杆 pretensioned rock bolt 在安装过程中施加一定预拉力的锚杆。 3.7 无预应力锚杆 non-pretensioned rock bolt 在安装过程中不施加预拉力的锚杆。 3.8 树脂锚杆 resin anchored bolt 采用树脂锚固剂锚固的锚杆。 注:改写MT 146.1-2011,定义3.1。 3.9 注浆锚杆 grouting bolt 杆体为中空式,兼做注浆管,对围岩进行注浆加固的锚杆。 3.10 钻锚注锚杆 self-drilling bolt 杆体为中空式,自带钻头,集钻孔、锚固、注浆于一体的锚杆。 3.11 玻璃纤维增强塑料锚杆 glass fibre reinforced plastic bolt 杆体主体部分由玻璃纤维和树脂复合而成的锚杆。 3.12 缝管锚杆 s plit set bolt 经特殊加工成纵向开缝的钢管及其附件。 [MT 285—1992,术语 3.1] 3.13 锚索 cable bolt 安装在围岩中,对围岩实施锚固的索体系统。一般由钢绞线、托盘、锚具及锚固剂组成。 3.14 锚杆支护 rock bolting

U型钢可缩性支架支护工艺标准

U型钢可缩性支架支护工艺标准 1.适用范围:围岩松软及地压较大的巷道施工中,一般采用U型钢可缩性支架支护,目前常用的为半圆拱形,三心拱形和梯形U型钢可缩性支架。 2.材料准备: 2.1施工材料 2.1.1支架及其附件:U型钢支架(常用型号为18号、25号、29号、及36号)、卡缆、螺栓、拉杆等材质、规格、强度以及加工必须符合设计和有关标准规定。 2.1.2背板和充填材料:材质、规格符合设计要求和规程规定。 2.2施工机具;大锤、铁木榔头、钢卷尺、木锯、风镐、手镐、铁铣、活口扳手、水平尺。 2.3施工前准备工作; 2.3.1所需材料,施工机具等准备齐全并运至施工地点。 2.3.2认真检查顶板情况发现危岩活石用长柄工具摘除掉。 2.3.3架设支架前,掘进迎头应用前探梁控制顶板,超前支护。 2.3.4检查架棚处井巷掘进工程质量,巷道欠挖超过规定必须处理,使其符合设计要求。 2.3.5找准中腰线并做好标记: 用小线拉一条中线通过所要架设支架的地段,把腰线引到两旁做出记号。 3.施工工艺 3.1工艺流程 放中、腰线→挖柱窝→立棚腿→上棚梁→加固→背板(充填)。 3.2根据中线及设计棚距大小找出柱窝位置,再按中腰线把柱窝深度挖够。 3.3在柱腿上画出腰线所在位置,把立柱放在柱窝内,使柱上腰线和帮上腰线一致。 3.4用拉条固定立柱以免倾斜 3.5在弧形顶梁上画出中线位置,把顶梁架到立柱上,弧形顶梁的两端插入和搭接在柱腿的弯曲部分,梁腿的搭接长度一般为400毫米,即可缩性,该处用两个卡箍固定(每个卡箍包括一个U型螺杆和一块U型垫板,两个螺母),并保证顶梁上中线记号与事先拉好的中线一致,这时可把立柱临时稳住,以免顶梁左右摇摆。 3.6检查支架的垂直度和扭斜度,超过质量标准规定的允许误差范围时要调整,根据顶梁中间放下的垂线和两个柱脚之间连线的水平间距,就能知道支架是否垂直,根据巷道中线和两立柱之间连线是否垂直,就能知道支架是否扭斜。 3.7背帮、背顶:上背板时要上一块,填一块(把背板和岩帮之间空隙用木楔背紧或全部用岩石填满)并且要目测检查所上背板是否平整,背帮时应两侧对称进行。 3.8棚子与棚子之间应用金属拉杆通过螺栓夹板等互相紧紧拉住或打入撑柱撑紧,来加强支架沿巷道轴线方向的稳定性. 4.质量标准 4.1 保证项目 4.1.1 U型钢可缩性支架及其附件的材质和加工必须符合设计和有关标准规定。检验方法:检查出厂合格证或检验报告,并现场实查。 4.1.2 可缩性支架的装配附件齐全,无锈蚀现象,螺纹部分有防锈油脂。

煤矿巷道支护的发展前景

浅谈煤矿巷道支护的发展 摘要:推行巷道支护改革,对于降低原煤生产成本,提高经济效益,有着巨大的促进作用,本文就煤矿巷道支护问题进行了探讨。 近几年来,随着我国煤矿开采深度的不断增加,煤矿井巷支护经历了由单一型支护技术到联合支护型技术的发展历程。煤矿早期开采阶段几乎全部是以木材作为巷道及采煤工作面的支护材料,随着新型材料的出现,开始采用混凝土或钢筋混凝土砌碹等支护形式,这些被动式支护耗费大量材料且受深度和岩性影响。随着井巷支护技术的发展演变,可将其归纳为被动式支护方式、主动式支护方式。 1.被动式支护方式 被动式支护技术是源于古典压力理论和坍落理论,认为巷道开挖后围压主要由围岩局部坍塌导致而成,而巷道的稳定主要靠围岩坍塌致使硐室形状改变后自行获得。被动式支护把围岩坍塌岩与支护分开来考虑,把围岩视作荷载,支护看作承载结构,二者之间形成“荷载—结构”体系,认为支护是为了承受由围岩所产生的荷载,无法控制围岩变形破坏的发生,只能起被动抵抗的作用。 1.1木支护方式 木支护技术主要是采用木材作为支护材料,典型的支护方式有“亲口”棚、鸭嘴棚、戴帽点柱、木垛等。木支护耗费大量木材而且受采深和岩性影响严重,因此只适用于浅部围岩,而且支护断面

形状必须与围岩曲线一致,以充分发挥围岩和支护结构抗压强度大的优势,从而硬性抵抗岩体的变形压力。 1.2石材支护方式 石材支护分片石、料石两种支护方式,优点是具有抗压性好、一次成巷好、安全系数大、抗灾能力强、支架变形小和质量易保证等特点,不足之处在于初期投资高,只适用于矿井服务年限长的巷道。 1.3金属支架支护方式 金属支架支护技术主要分刚性支架支护与可缩性支架支护,其中刚性支架允许压缩变形量小,工作阻力随变形量增大而减小,直至破坏而失去工作阻力;可缩性支架允许压缩变形量大,在结构设计压缩范围内,工作阻力随压缩量大而增大,或者恒阻。金属支架支护视支架为支护体,围岩为荷载,其破坏是由于支架上弯曲力矩达到屈服极限的破坏应力所致,同时,由于支架承受侧压力和荷载的不均匀常使支架失去稳定性或可缩性而减弱或失去竖向承载能力。特别是u型钢支架支护由多段弧形构件相互叠置搭接而成,大多支护面呈拱形或环形,主要使用于松软围岩、地压大、底臌严重和两帮位移量大的开拓和采区巷道 1.4装配式钢筋混凝土支架支护方式 装配式钢筋混凝土支架支护施工技术,可以在地面工厂化预制,质量有保证且利于批量化生产和井下机械化安装,不足之处在于不能有效抵抗上覆岩层整体移动而产生的底板沉降及巷帮测压,受扭

巷道锚杆支护技术参数的合理选择与设计(孙巧龙)

巷道锚杆支护技术参数的合理选择与设计 孙巧龙 (淮北朔里矿业有限责任公司,安徽淮北235052) 【摘要】本文浅析煤矿巷道锚杆支护高应力巷道影响锚杆支护的因素、煤巷锚杆支护的关键问题和煤巷锚杆支护的合理设计。 【关键词】锚杆支护;合理设计;选择;巷道 1引言 在煤矿巷道的锚杆支护中,由于其对破碎岩体的加固效果好,又优于U型钢被动支护,加上劳动强度低、经济效益显著的特点,因而在煤矿中得到了广泛的应用。煤矿软岩地层分布十分广泛,75%以上的采准巷道还要经受采动的频繁影响,所以在设计服务年限内的大部分巷道围岩变形量都比较大,严重的冒落无法再利用。因此,煤矿巷道锚杆支护技术研究的重点应是有效控制高应力、软岩和采动等大变形量围岩特性,以保障煤矿在安全、经济的良好环境下持续生产。 2高应力巷道影响锚杆支护的因素 2.1巷道断面 巷道锚杆支护过程中,对于深部高应力的地点,在进行断面选择时,必须根据顶底板岩性和巷道服务年限原则考虑选择。①对服务年限较长的开拓、准备巷道,应尽量选用承压效果好的圆弧拱断面。②对回采、顶板完整性较好的巷道,可采用梯形断面;复合顶板或破碎顶板的巷道,应采用承压性效果较好的斜切圆拱形断面。 就斜切圆拱形断面来说,斜切圆弧拱高一般应为巷道宽度的2/5—1/4,上肩窝部高度达到煤层顶板,下帮墙高根据设计要求进行设计。拱高控制可在掘进过程中通过控制中部高度实现。根据众多的实验证明,其断面承压效果要比梯形断面好。但是,岩石掘进工作量大是其缺点,并在一定程度上会影响掘进速度。 2.2锚杆性能 在锚杆的种类选择上,主要考虑锚杆的材质、粗度、延伸性、让压性能和预紧力等参数特性比较选择,其次是考虑锚固剂的选择。随着各种锚杆的不断出

千米深井软岩大断面巷道支护技术研究

煤矿机械Coal Mine Machinery Vol.39No.10 Oct.2018 第39卷第10期 2018年10月 doi:10.13436/j.mkjx.201810020 0引言 随着浅部资源的日益枯竭,深部开采将成为我国煤炭资源的主要来源。受深部高地应力、复杂构造应力、采掘扰动等多重因素影响,深部巷道掘进后产生严重的变形破坏,常规的支护方法难以维持巷道围岩的稳定。深部巷道掘进与支护难题已成为影响煤炭深部资源开采的重要制约因素,探索研究深部巷道支护技术与对策将是软岩巷道工程支护技术的发展方向。 王楼煤矿位于济宁市喻屯镇境内,-1150泵房巷道埋深逾千米,受深部复杂地质条件影响,施工难度较大,为保证巷道围岩稳定,有必要开展深部高应力软岩巷道支护技术研究。 1工程概况 -1150泵房位于王楼煤矿七采轨道下山下部,七采下车场南部,西部、南部均无采掘工程,工作面标高-1149.865~-1149.758m,地面标高+33.4~+35m,泵房巷道穿过3上煤层,泵房围岩岩性分两段:3上煤底板和3上煤顶板。3上煤顶、底板岩性柱状图如图1所示。 2王楼煤矿泵房地质条件分析 2.1远场地压 王楼煤矿泵房埋深约1180m,水平地应力资料缺少,根据目前巷道软弱围岩性质和深部地应力一般规律,可近初步认为水平地应力与垂直地应力近似相等。 图13上煤顶、底板岩性柱状图 2.2岩石水理性质岩石强度测试与围岩类型划分 (1)岩石水理性质 对3上煤层顶、底板岩石做岩石黏土矿物成分分析,岩石矿物成分如表1所示,黏土矿物成分如表2所示。由分析结果可以看出,围岩遇水软化崩解碎裂。 表1矿物成分分析结果 千米深井软岩大断面巷道支护技术研究 苑仁鹏,孟庆新 (山东东山王楼煤矿有限公司,山东济宁272063) 摘要:为解决深部矿井复杂地质条件下泵房围岩急剧变形失稳的问题,以王楼煤矿-1150泵房为工程研究背景,分析了该泵房所处的地质情况,并基于巷道支护的强支护与让压原理,提出了锚网索+椭圆钢筋混凝土+让压环复合型支护体系。矿压观测结果表明,该支护体系有效控制了巷道围岩变形,能够保证泵房围岩的长期稳定。 关键词:深井;软岩;大断面;支护技术 中图分类号:TD353文献标志码:A文章编号:1003-0794(2018)10-0060-03 Study on Supporting Technology of Roadway for Large Section of Soft Rock in Kilometer Deep Mine Yuan Renpeng,Meng Qingxin (Shandong Dongshan Wanglou Coal Mine Co.,Ltd.,Jining272063,China) Abstract:In order to solve the problem of the rapid deformation and instability of the surrounding rock of the pump room under the complicated geological conditions of the deep mine,taking the-1150 pump room of the Wanglou coal mine as the research background,analyzes the geological conditions of the pump room,and based on the strong support and yielding principle of roadway support,puts forward the composite supporting system of cable anchor+elliptical reinforced concrete+let pressure ring.The results of mine pressure observation show that the supporting system effectively controls the deformation of surrounding rock and ensures long-term stability of the surrounding rock of pump house. Key words:deep mine;soft rock;large section;supporting technology 煤层顶板1煤层顶板2煤层底板1煤层底板2石英 29.4 30.6 53.4 52.6 钾长石 0.2 0.3 4.0 4.7 方解石 1.0 1.3 / / 黏土矿物 总量/% 69.4 70.8 42.6 43.5 编号 矿物种类和含量/% 厚度 /m 柱 状岩石名称及岩性描述 细砂岩,灰白色。主要由石英、长石及少量的岩屑组成,夹深灰色泥质团块、条带及煤线,不规则裂隙发育,方解石全部充填,分选性 好,磨圆度一般,呈次棱角状,具波状层理,岩芯完整 泥岩,黑灰色。致密、块状,以泥质为主,少夹细砂岩条纹,多见植物叶片化石及炭质线理,断口平坦状,微波状层理 3上煤,黑色。块状,条带状结构,层状构造,沥青光泽,条痕灰黑色,断口呈阶梯状,内生垂直裂隙较发育为方解石脉充填,成份以亮煤为主,暗煤次之及少量镜煤及丝炭,属半亮半暗型煤 粉砂岩,黑灰色。致密、块状,以粉砂质为主,裂隙由方解石充填,上部岩石多见植物根茎化石、黄铁矿,断口平坦 细砂岩,灰色。主要由石英、长石及少量的岩屑组成,夹深灰色泥质团块、条带及煤线,见黄铁矿,不规则裂隙发育,方解石全部充填,分选性好,磨圆度一般,呈次棱角状,具斜层理,岩芯完整4.09 4.00 3.30 4.43 7.73 60万方数据

煤矿锚杆支护技术规范标准设计

煤矿锚杆支护技术规范(新) ICS 73.100.10 D 97 备案号:26921—2010 MT 2009-12-11发布 2010-07-01实施 中华人民共和国煤炭行业标准 MT/T 1104—2009 煤巷锚杆支护技术规范 Technical specifications for bolt supporting in coal roadway 国家安全生产监督管理总局发布 前言 本标准的附录A为资料性附录。 本标准由中国煤炭工业协会科技发展部提出。 本标准由煤炭行业煤矿专用设备标准化技术委员会归口。 本标准由中国煤炭工业协会煤矿支护专业委员会负责起草。煤炭科学研究总院南京研究所、煤炭科学研究总院开采设计研究分院、煤炭科学研究总院建井研究分院、中国矿业大学、兖州矿业集团公司、徐州矿务集团公司、鹤岗矿业集团公司、新汶矿业集团公司、山西焦煤西山煤电集团公司、江阴市矿山器材厂、石家庄中煤装备制造有限公司、深圳海川工程科技有限公司参加起草。 本标准主要起草人:袁和生、康红普、陈桂娥、权景伟、张农、王方荣、王富奇、何清江、周明、秦斌青、晨春翔、黄汉财、赵盘胜、何唯平。 煤巷锚杆支护技术规范 1 范围 本标准规定了煤巷锚杆支护技术的术语和定义、技术要求、煤巷锚杆支护监测及煤巷锚杆支护施工质量检测。 本标准适用于煤矿煤巷锚杆支护,也适用于半煤岩巷锚杆支护。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 5224-2003 预应力混凝土用钢绞线 GB/T 14370-2000 预应力筋用锚具、夹具和连接器 GB 50086-2001 锚杆喷射混凝土支护技术规范 MT 146.1-2002 树脂锚杆锚固剂 MT 146.2-2002 树脂锚杆金属杆体及其附件 MT/T 942-2005 矿用锚索 MT 5009-1994 煤矿井巷工程质量检验评定标准

简述煤矿井下巷道支护方式及架设金属棚支护技术

简述煤矿井下巷道支护方式及架设金属棚支护技术 摘要煤矿开采中,会对原本的地质构造形成破坏,导致煤壁上部应力的增大,因此,从保证煤矿井下生产安全的角度,需要做好巷道支护工作。本文对煤矿巷道支护方式进行了简单分析,并就架设金属鹏支护技术的要点以及需要注意的问题进行了讨论,希望能够为煤矿巷道支护工作提供一些参考。 关键词煤矿;井下巷道;支护方式;金属棚支护 前言 我国煤矿多数蕴藏在地下,开采工作也多是采用井下开采模式,对于煤矿企业而言,井下巷道掘进和支护是一项异常复杂的工作,存在大量的不确定性因素,必须做好地质条件的研究,对巷道掘进速度进行控制,同时采取有效的支护措施,保证井下作业的效率和安全性。 1 煤矿井下巷道支护方式 煤矿井下巷道支护的主要目的,是缓和和减少围岩移动,避免巷道断面的过度收缩,同时预防已经散离和破坏的围岩出现冒落。巷道支护的效果主要受其支架自身的支承力影响,但是却并不仅仅取决于支承力,还会受到围岩性质、支架力学性质、支架安装时间、支架设置密度以及围岩接触方式等因素的影响。一般情况下,为了保证巷道支架能够在调控围岩变形中发挥积极作用,需要在围岩出现松动和破坏前,对支架进行安装,确保其能够与围岩共同发挥承载作用。 针对不同的煤矿地质条件,需要采用不同的巷道支护方式,依照支护时间長短,可以将巷道支护分为临时支护和永久支护;依照支护原理,可以将巷道支护分为支撑式支护和补强式支护,前者主要是对岩体进行直接支撑,一般选择整体式支架,即运用石料、混凝土或者钢筋混凝土砌筑后得到连续整体支护体系,常见的是直墙拱顶式,可以分为墙、拱和基础三部分,拱形多为半圆拱或者三心拱;后者则是以岩体为对象,运用相应的措施来对其进行加固补强,通过提升围岩强度的方式,保证巷道整体的稳定和安全。比较常见的补强支护方式包括锚杆支护、锚网支护、喷射混凝土支护等。 不同的巷道结构对于支护有着不同的要求,以倾斜巷道为例,其本身存在一定倾角,或导致重力方向与巷道顶板不垂直,从而形成平行于巷道顶板和垂直于巷道顶板两个方向的作用力,在平行于巷道顶板方向,推力向下作用,支护措施必须能够对这个推力进行克服或者抵消,而想要实现这个目标,要求支护体系必须能够与巷道顶板垂线保持一定夹角,也就是所谓的迎山角[1]。 2 架设金属棚支护技术的应用 2.1 技术要点

巷道支护技术

2.1 巷道围岩控制理论 1907年俄国学者普罗托吉雅可诺夫提出普氏冒落拱理论[1-2],该理论认为:巷道开掘后,已采空间上部岩层将逐步垮落,其上方会形成一个抛物线形的自然平衡拱,下方冒落拱的高度与岩层强度和巷道宽度有关。该理论适用于确定巷道围岩强度不高、开采深度不是很大的巷道支护反力。20世纪50年代以来,人们开始用弹塑性力学解决巷道支护问题,其中最著名的是Fenner [3]公式和Kastner 公式[4]。 Fenner 公式为: ()[]10cot sin 1cot -??? ??+-+-=???σ?N i R r C C P (1) 式中,i P —支护反力;C —围岩内聚力;?—内摩擦角;0σ—原岩应力;r —巷道半径;R —塑性圈半径;?N —塑性系数,κ??sin 1sin 1-+= N 。 Kastner 公式为: ()()?????sin 1sin 20sin 1cot cot -??? ??-?++-=R r C P C P i (2) 式中,i P —支护反力;C —围岩内聚力;?—内摩擦角;0P —初始应力;r —巷道半径;R —塑性圈半径。 国内外巷道顶板控制理论发展很快[3-4],我国在1956年开始使用锚杆支护,迄今为止,已有50多年的历史。锚杆支护机理研究随着锚杆支护实践的不断发展,国内外已经取得大量研究成果[5-10]。 (1)悬吊理论 1952年路易斯阿帕内科L(ouis.Apnake)等提出了悬吊理论,悬吊理论认为锚杆支护的作用就是将巷道顶板较软弱岩层悬吊在上部稳固的岩层上,在预加张紧力的作用下,每根锚杆承担其周围一定范围内岩体的重量,锚杆的锚固力应大于其所悬吊的岩体的重力。 (2)组合梁理论

矿井巷道支护

矿井巷道支护、岩层控制与安全综合技术 应用行业:矿山 技术领域:采煤方法 主要内容 本课题结合实际工程进度,在现场试验的基础上深入探讨该矿岩层移动规律,建立了系统化岩层移动预测预报系统,有效地解决了一号井锚喷支护技术、实验和推广锚杆和组合锚杆支护技术。提出了现场确定合理支护参数、支护方案、支护形式,以及与采掘作业方式有关的技术问题。 在进行充分的现场实验和数值模拟实验研究的基础上,查明了各种支护方案的支护效果,工作特性、矿压规律以及与支护采掘工程有关的技术和理论难题。 提出了一套实用的支护设计方法、岩层控制、矿压监测、支护工作状态及开采过程中矿压规律的监控和预报技术。 技术要点 1. 锚杆支护技术及推广应用研究:提出了不同巷道的锚杆支护方案,建立了 实用锚杆工作状态、支护效果的检测和长期监测方法。 2. 巷道底臌机理及防治技术研究:查明了2号煤层底板岩层性质及导致巷道 底臌的各种原因,提出不同的防治技术及其实用效果分析。 3. 回采巷道支护技术、矿压规律及岩层控制研究:提出了连续采煤机开采过 程的岩层动态矿压规律以及与之相应的支护工作特性。并在此基础上完成了支护技术、岩层控制,以及合理的采掘作业方式和开采参数理论和实用技术的研究。 4. 岩石性态实验及顶底板分类研究:对一号井煤层及顶底板的岩石物理力学 参数进行了系统实验室测定。 5. 监测及安全预报技术研究:提出了现场有关锚杆支护检测、矿压规律监测 以及安全技术预报的具体方法。运用现代数据处理方法和计算机可视化技术建立了一套完整的锚杆工作特性的测试和监测技术、回采过程中矿山压力及岩层动态的监测技术,和自动监测仪器及数据处理技术。 6. 房柱式开采的矿井通风安全防尘综合研究:研制了一种新型高效的快速风 墙材料及涂料。提出了房柱式开采过程中粉尘测定和综合防治技术

巷道支护方案

支护方案 一、概述 二、处理方案 现场勘查后,根据现场各部位情况制定施工方案。下盘运输巷采用喷锚网支护,距已施工完成工作面3米;采矿进路开口5m采用喷锚网,矿体部分采用素喷混凝土;交叉点右侧墙体先施工喷锚网支护,再外部砌护;材料库房钢筋混凝土支护。具体施工方案如下: 1、喷锚网支护 喷锚网支护混凝土强度等级均为C25;喷锚网钢筋网采用∮8 mm钢筋,钢筋网间距100mmx100mm;锚杆采用∮20 mm螺纹钢筋,1m ×1m间距交错布置,锚杆长度2.2m,施工中可根据具体情况调整钢筋网和锚杆的设置参数。喷射混凝土支护、喷锚支护和喷锚网支护断面应按照相应施工规范进行施工。 1)喷射混凝土 喷射混凝土要求凝结硬化快、早期强度高,优先选用硅酸盐水泥和普通硅酸盐水泥。为了保证混凝土强度,防止混凝土硬化后的收缩和减少粉尘,喷射混凝土中的细骨料采用坚硬干净、细度模数宜大于2.5的中砂或粗砂。 为了减少回弹和防止管路堵塞,喷射混凝土的粗骨料粒径应不大于15mm。根据采用的速凝剂性能,通过试验确定其掺量,使喷射混凝土初凝不应大于5min,终凝不应大于10min。 一次喷射厚度。若一次喷射厚度过大,由于重力作用会使混凝土颗粒间的凝着力减弱,混凝土将发生坠落;若喷层厚度太小,石子无法嵌入灰浆层,将会使回弹增大。一次喷射合理厚度,墙50mm,拱

30mm。 分层喷射的间歇时间。当一次喷射厚度达不到设计厚度,需进行分次喷射时,后一层的喷射应在前一层混凝土终凝后进行。在常温15℃~20℃下喷射掺有速凝剂的混凝土时,分层喷射的间歇时间为15~20min。 混和料的存放时间。由于砂、石含有一定水分,与水泥混合后,存放时间应尽量缩短。不掺速凝剂时,存放时间不应超过2h;掺速凝剂时,存放时间不应超过20min,最好随拌随用。 喷射顺序是先墙后拱,自下而上进行。喷射前应埋设控制喷厚的标志,调节好给料速度。在喷射中,喷头应保持不断移动,以便减少回弹,保持喷层厚度均匀。如使喷头按圆形和椭圆形轨迹做螺旋式连续喷射,环形圈应为长轴400~600mm,短轴150~200mm。随时检测喷层厚度,确保达到设计厚度,岩面有较大凹陷处,应予以喷射找平。 2)锚杆施工 锚杆孔的施工应遵守下列规定:钻锚杆孔前,应根据设计要求和围岩情况,定出孔位,做出标记;锚杆孔距的允许偏差为150mm;钻孔的孔深、孔径均应符合设计要求。钻孔深度不宜比规定值大200mm以上,钻头直径不应比规定的钻孔直径小3.0mm以上;钻孔与锚杆预定方位的偏差为1°~3°。 锚杆安装前检查锚杆原材料型号、规格、品种。检查孔内积水和岩粉是否吹洗干净,不合格的锚杆孔要重钻。 采用药卷锚固剂进行锚固,锚杆安装采用先灌后锚法,把锚杆体插入孔眼直到底部,杆体安装后,不得随意敲击。锚杆锚入围岩的长度不低于2米。 要定期对安装好锚杆进行抗拔力测试,锚杆抗拔力可通过拉拔器作拉拔试验测出数值,不合格的锚杆可用加密锚杆的方法予以补强,并分析总结原因。 孔口承压垫座应符合下列要求:钻孔孔口必须设有平整、牢固的承压垫座;承压垫座的几何尺寸、结构强度必须满足设计要求,承压面与锚杆垂直。

u型钢支护

宝龙山煤矿-110m主运输大巷加强支护段锚网喷及U型钢可伸缩性支架联合支护的安全技术措施 第一章 工程概况 现-110m主运输大巷已掘进成巷,掘进时采用锚网喷临时支护,因胶带输送机斜巷从该巷道上过,为保证巷道不受胶带输送机斜巷围岩压力影响,以保证巷道设计净断面。故采用锚网喷及36#U型钢可缩性支架联合支护巷道。为保证施工安全,特制定本措施。 -110m主运输大巷加强支护段设计断面为半圆拱直墙巷道,长度40米,巷道净断面:宽4400mm,高3700mm,拱高2200mm,拱基1500mm,喷砼厚度以覆盖U型钢支架的实测厚度为准。 第二章 施工方法 一、施工方案 施工前先由测量技术人员准确放出巷道中、腰线,根据中、腰线检查巷道断面是否符合设计要求,符合要求后开始架设U型钢支架。 二、施工前准备 1、材料准备: U型钢支架及其附件: U型钢支架(型号为36号)、卡缆、螺栓、拉杆等。

2、施工机具准备: 施工机具:大锤、手镐、钢卷尺、木锯、风镐、铁锹、活口板手、梅花板手、水平尺等。 3、施工前检查 U型钢可缩性支架无裂纹,弧线段无飞边、氧化物、溶渣等阻碍物,无硬过渡现象,主要配件应具有可换性。 4、施工所需材料及机具等准备齐全并运至施工地点。 5、检查架棚处井巷工程掘进质量,巷道欠挖超过规定必须处理,使其符合设计要求。 6、找准中腰线并做好标记,用线绳拉一条中线通过所要架设支架的地段,把腰线引至两旁做出记号。 三、施工工艺: 1、工艺流程:放中、腰线→挖柱窝→上棚梁→加固→背板(充填) 2、安设支架的基本要求: (1)U型钢可缩性支架及其附件的材质和加工必须符合设计和有关标准规定。 (2)U型钢可缩性支架装配附件齐全,无锈蚀现象,螺纹部分有防锈油脂。 (3)U型钢支架棚距600mm,允许误差±50mm。巷道净宽允许误差+100mm。净高允许误差±100mm。 (4)水平巷道支架的前倾、后仰符合以下规定: 合格:偏差±10mm(1m垂线不大于17mm)

相关文档
最新文档