7个实用技巧,让您的深度神经网络发挥最大作用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7个实用技巧,让您的深度神经网络发挥最大作用

深度学习已经成为解决许多具有挑战性的现实世界问题的方法。对目标检测,语音识别和语言翻译来说,这是迄今为止表现最好的方法。许多人将深度神经网络(DNNs)视为神奇的黑盒子,我们放进去一堆数据,出来的就是我们的解决方案!事实上,事情没那么简单。

在设计和应用DNN到一个特定的问题上可能会遇到很多挑战。为了达到现实世界应用所需的性能标准,对数据准备,网络设计,训练和推断等各个阶段的正确设计和执行至关重要。在这里,我将与大家分享7个实用技巧,让您的深度神经网络发挥最大作用。

1 - 数据,数据,数据

这不是一个大秘密。一直工作得很好的深度学习机器需要燃料- 大量的燃料; 燃料是数据。我们拥有的标记数据越多,模型的表现就越好。更多的数据导致更好的性能,已经由谷歌大规模的探索3亿图像的数据集印证!

在实际应用中部署Deep Learning模型时,您应该不断地为其提供更多的数据和微调以继续提高其性能。喂饱怪兽:如果你想提高你的模型的性能,那就获得更多的数据!

不断增加的数据产生更好的性能

2 - 你应该使用哪个优化器?

多年来,已经开发了许多梯度下降优化算法,各有其优缺点。一些最流行的包括:

·随机梯度下降(SGD)+动量方法

·Adam

·RMSprop

·Adadelta

RMSprop,Adadelta和Adam被认为是自适应优化算法,因为它们会自动更新学习速率。使用SGD时,您必须手动选择学习率和动量参数,通常会随着时间的推移而降低学习率。在实践中,自适应优化器倾向于比SGD更快地收敛,然而,他们的最终表现通常稍差。

相关文档
最新文档